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Abstract. We consider undirected graphs up to an ambient isotopy in
3-space. Such a graph can be represented by a plane diagram or a Gauss
code. We recognize in linear time if a Gauss code represents an actual
graph in 3-space. We also design a linear time algorithm for drawing a
topological 3-page embedding of a graph isotopic to a given graph.
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1 Introduction: Spatial Graphs and Book Embeddings

It is a well-known fact that any graph can be topologically embedded in 3 pages
[1, Theorem 5.4]. However, an embedded graph may cross many times the spine
of such 3-page book. It is only known that O(|E|log|V]) spine crossings suffice
for a embedding graph with |V| vertices and |E| edges [3]. We largely strengthen
the former result by designing a linear time algorithm to continuously move any
graph embedded in 3-space to a graph within 3 pages. Fig. 1 is a high-level
illustration of our fast algorithm for a simple embedding K5 C R3.

Fig.1. A 3-page embedding of a spatial graph K5 C R® within its isotopy class

A homeomorphism between spaces is a bijection that is continuous in both
directions. An embedding of one space into another is a continuous function
f: X =Y that induces a homeomorphism between X and its image f(X).

We study embeddings of undirected finite graphs, possibly disconnected and
with loops or multiple edges. The concept of a spatial graph extends the classical
theory of knots [9] to arbitrary graphs considered up to isotopy in 3-space R3.
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Definition 1 A spatial graph is an embedding G C R3 of a finite graph G.
An ambient isotopy between spatial graphs G, H C R3 is a continuous family of
homeomorphisms f; : R® — R3, t € [0,1] such that fo = idgs and f1(G) = H.

An isotopy between directed graphs is similarly defined and should respect
directions of edges. If the underlying graph G is a circle S', then a spatial graph
is a knot. A knot isotopic to a round circle is the unknot or trivial. The simplest
non-trivial knot is the trefoil in Fig. 2. If G is a disjoint union of a few circles,
then it is a link. The simplest non-trivial link is the Hopf link in Fig. 2.

Fig. 2. Plane diagrams of the trefoil, the Hopf link and a spatial graph

If the ambient isotopy keeps a small neighborhood of each vertex of a spatial
graph in one moving plane, the graph is called rigid. Rigid spatial 4-regular
graphs are sometimes called singular knots, because they consist of one or several
circles intersecting each other at singular points. The pictures in Fig. 2 show
plane diagrams of spatial graphs, which are formally defined in section 2.

The input of our algorithm for drawing an embedding in 3 pages should be a
spatial graph or its plane diagram, which is usually represented on a computer
by a Gauss code. Even in the case of knots an abstract Gauss code may not
represent a closed curve in 3-space. That is why we first solve the planarity
problem for Gauss codes of spatial graphs in Theorem 8, see section 3.

If we know that a given Gauss code represents a plane diagram D of a spatial
graph G, our next step in Theorem 9 from section 4 is to draw the diagram D
in a 2-page book as defined below. In linear time we upgrade this topological
2-page embedding of D to a 3-page embedding of G, see Theorem 10 in section 4.

Definition 2 The k-page book consists of k half-planes with a common bound-
ary line « called the spine of the book. An embedding of an undirected graph G
into a k-page book is topological if the intersection of G with the spine « is finite
and includes all vertices of G. A bend of an edge e C G is any interior point p
of an edge e such that p € . If every edge of an embedded graph G is contained
in a single page, then the k-page book embedding of G is called combinatorial.

So we convert an abstract code of a spatial graph G into a 3-page embed-
ding within the isotopy class of G. Section 4 highlights key advantages of 3-page
embeddings over other representations of spatial graphs. Our fast drawing algo-
rithm is applicable to huge spatial graphs. We anticipate applications of 3-page
embeddings for Reeb graphs of shapes [2] and for knotted molecular structures.



Drawing a Graph in 3 Pages within its Isotopy Class in 3-Space 3

2 Plane Diagrams and Gauss Codes of Spatial Graphs

Definition 3 A plane diagram D of a spatial graph G C R? is the image of G
under a projection R® — R? from 3-space to a horizontal plane. In a general po-
sition we assume that all intersections of a plane diagram D are double crossings
so that the crossings and projections of all vertices of G are distinct. For each
crossing of D we specify one of two intersecting arcs that crosses over another.

The key problem in knot theory is to efficiently classify knots and graphs up
to ambient isotopy. The first natural step is to reduce the dimension from 3 to
2. Any isotopy of spatial graphs can be realized by finitely many moves on plane
diagrams. The following result extends Reidemeister’s theorem for knots.

Theorem 4 (Reidemeister’s moves) [6] Two plane diagrams represent iso-
topic spatial graphs if and only if the diagrams can be obtained from each other
by an isotopy in R? and finitely many Reidemeister’s moves in Fig. 3. (The
move RS is only for rigid graphs, the move RS’ is only for non-rigid graphs.)
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Fig. 3. Reidemeister moves on plane diagrams for any isotopy of spatial graphs

The move R4 is shown only for a degree 4 vertex, but also works for other
degrees. The move R5 turns a small neighborhood of a vertex in the plane
upside down, while the moves R5’ can arbitrarily reorder all edges at a vertex.
Theorem 4 should formally include all symmetric images of moves in Fig. 3.

A standard way to encode a plane diagram of a knot is to use a Gauss code.
The Gauss code of a link has several words and is sometimes called a Gauss
paragraph [8]. We extend this classical concept to arbitrary spatial graphs.

Definition 5 Let D C R? be a plane diagram of a spatial graph G with vertices
A, B,C,... We fix a direction on every edge of G and arbitrarily label all cross-
ings of D by 1,2,...,n. Then each crossing of D has the sign locally defined
in Fig. 4. To get a Gauss code of D, we associate a single word Wap to every
directed edge (or a loop) of G from a vertex A to a vertex B as follows:
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o the word Wap starts with the letter A and finishes with the letter B;
e Wap contains labels of all crossings in AB according to the direction of AB;

e if AB goes under another edge at a crossing i with a sign e € {+} as in Fig. 4,
we add the superscript € to © and get the symbol i€ with the sign € in Wap.

The edges at each vertex A are clockwisely ordered in R?, so the code specifies a
cyclic order of the words starting with A. The words might be written reversed.

Fig. 4. Local rules for signs of crossings, signs in diagrams of directed graphs

If a graph G is a single circle as in the case of a knot, Definition 5 re-
quires at least one degree 2 vertex (a base point) on G. For simplicity, we may
ignore degree 2 vertices in this case and consider the corresponding word cycli-
cally. The plane diagram of the blue trefoil in Fig. 4 has the cyclic Gauss code
12%317237". The plane diagram of the red spatial graph in Fig. 4 has the Gauss
code {AB, A172A, B12~ B} with the cyclic orders AB — A21- A — Al172A,
B12™B — B271B — BA. The edges A172A, B27 1B, BA are reversed.

A Gauss code of any undirected graph depends on a choice of extra degree 2
vertices, directions of edges, an order of crossings. However, any Gauss code of
G uniquely determines a plane diagram of G, hence the isotopy class of G.

The single cyclic word 127172 does not encode any plane diagram. If we try
to draw a closed curve with 2 self-intersections as required by 127172, we have
to add a 3rd intersection (a virtual crossing) to make the curve closed.

(1.2%)

Fig. 5. Trefoil with 3 classical crossings, a diagram with 1 virtual, 2 classical crossings

This obstacle can be resolved if we draw a diagram on a surface as in Fig. 5,
because we can hide a virtual crossing by adding a handle. A different approach
is to embrace virtual crossings, which has led to the virtual knot theory.
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3 Linear-Time Algorithm for Planarity of Gauss Codes

If we wish to study embedded graphs, not virtual, we need to recognize planarity
of Gauss codes, namely determine if a Gauss code represents a plane diagram of
a spatial graph. So we first introduce abstract Gauss codes in Definition 6 and
then recognize their planarity in the general case of spatial graphs in Theorem 8.

Definition 6 Let the alphabet consist of m letters A, B,C,... and 3n symbols
i,it,i7,i=1,...,n. An abstract Gauss code is a collection of words such that

e cach word starts with a letter and finishes with a (possibly different) letter,

e the set of symbols in all words (apart from the initial and final letters) contains,
for each i =1,...,n, the symbol i and ezactly one symbol from the pair iT,i~.

Also each of the m letters defines a cyclic order of words that start or finish with
this letter. The length |W| is the number of pairs of adjacent symbols in W,

which equals the total number of symbols minus the number of words in W.

The Gauss code of any plane diagram of a spatial graph G from Definition 5
satisfies the conditions above. Indeed, the letters A, B, C, ... denote (projections
of) vertices of G. Then an edge, say from A to B, contains crossings marked by 4,
it or i~. The clockwise order of edges around any vertex in the plane diagram of
G defines the cyclic order of words (possibly reversed) starting with this vertex.
If a component of G is a circle, we may remove its vertices of degree 2 and write
only the remaining symbols as in the cyclic code 12731%23% of the trefoil.

Let us try to draw a plane diagram represented by an abstract Gauss code
W. We can easily plot vertices A, B,C,... and crossings 1,2,...,n. For any
adjacent symbols in the code W, we should connect the corresponding vertices
and crossings by a continuous arc in the plane. Since W also specifies the cyclic
order of edges at each vertex, we may draw a diagram locally around each vertex,
but arcs connecting vertices and crossings may intersect in the plane.

To avoid potential intersections, we shall draw a diagram not in the plane,
but in the Carter surface defined below. We first introduce a combinatorial graph
G (W) describing the adjacency relations between symbols in W. Then we attach
disks to G(W) to get a surface containing a required diagram without self-
intersections. The criterion of planarity will check if the resulting surface is S2.

Definition 7 Any abstract Gauss code W with m letters A, B,C,... and 2n
symbols from {i,it,i~ | i = 1,...,n} gives rise to the combinatorial graph
G(W) with m+n vertices labeled by A, B,C, ... and 1,2, ..., n (without signs).
We connect vertices p,q by a single edge in G(W) if p,q (possibly with signs)
are adjacent symbols in the code W. Below when we travel along an edge from
p to q, we record our path by (p,q)+ if q follows p in the code W, otherwise by
(p,q)—. We define unoriented cycles in the graph G(W) by going along edges
and turning at vertices according to the following rules illustrated in Fig. 6:

e at each of m vertices A, B,C, ..., say A, we turn to the next edge (in the graph
G(W) at A) from the (clockwise) order of words starting or finishing with A;
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e at each vertex labeled by i € {1,...,n} we turn to the next edge by one of the
rules below for a unique possible choice of § € {+,—} and both ¢ € {+,—}

(pvi)-l- - (iavq)& (pai)— - (i67Q)—5a (pai+)a - (iaQ)—sv (pvii)a — (iaQ)s-

We stop traversing cycles when every edge was passed once in each direction.
The Carter surface is obtained from G(W) by gluing a disk to each cycle above.

Fig. 6. A geometric interpretation of rules for turning left at crossings

The number of edges in the graph G(W) equals the length |W| of the code
W. The rules for constructing cycles in Definition 7 geometrically mean that at
each vertex or crossing we locally turn left to a unique edge. Hence the Carter
surface is compact, orientable and has no boundary. If W is a Gauss code of a
diagram D C S2, then each disk is a face of D and the Carter surface is S2.

For example, let us construct the Carter surface of the abstract Gauss code
W = 1271%2, whose plane diagram with one virtual crossing is in Fig. 7. For
simplicity, we removed the degree 2 vertex from the circle and consider the word
12%172 in the cyclic order. Then 4 pairs 121, 2+1, 172, 21 of successive symbols
in the Gauss code W lead to the graph G(W') whose 2 vertices with labels 1,2
are connected by 4 edges with labels (1,27), (27,1), (11,2), (2,1) in Fig. 7.

If we start traveling from the edge (1,2%), in the same direction as in W, the
next edge should be (2,17)_ by the rule (p,i*). — (4,q) _c, where p=1, i = 2,
£ = + uniquely determine the next symbol ¢ = 17 from the code W (going from
2 in the opposite direction). After the second edge (2,17)_ we return to the first
edge (1,27) by the same rule (p,i"). — (i,q) - forp=2,i=1,e = —, qg=27.
So the first cycle consists of 2 edges (121), and (2,17)_. The second cycle of
6 edges (17,2), — (27,11), — (1,2) — (2, 1) — (17,27)_ — (2,1)4 is
shown by a red dashed curve in Fig. 7. The resulting surface with 2 vertices, 4
edges, 2 faces has Euler characteristic y = 2 — 4 4+ 2 = 0 and should be a torus.
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(1,2%)

Fig. 7. Two red dashed cycles in the graph of the abstract Gauss code W = 1271%2

In general, the Fuler characteristic of a surface subdivided by a graph with
|V| vertices and |F| edges into |F| faces is defined by x = |V| — |E| + |F| and is
invariant up to homeomorphism. Any orientable connected compact surface of a
genus ¢ (the number of handles) with b boundary components has x = 2—2g—b.
The following result extends [8, Algorithm 1.4] from links to spatial graphs.

Theorem 8 (planarity of Gauss codes of graphs) Given an abstract Gauss
code W of a length |W|, an algorithm of time complexity O(|W|) can determine
if the given code W represents a plane diagram of a spatial graph G C R3.

Proof. The Carter surface of any abstract Gauss code W contains a diagram
encoded by W due to the geometric interpretation of the rules in Fig. 6. This
surface has the maximum Euler characteristic y among all orientable connected
compact surfaces S without boundary containing a diagram D encoded by W.
Indeed, after cutting the underlying graph of the diagram D C S, the surface S
splits into several components. The Euler characteristic of S is maximal when
all these components are disks (with maximum x = 1) as in the Carter surface.

To decide the planarity of W, it remains to determine if the Carter surface of
W is a sphere, which is detectable by the Euler characteristic y = 2 in the class
of all orientable connected compact surfaces S without boundary. For computing
the Euler characteristic y, we use the polygonal splitting from Definition 7. We
have m + n vertices, |W| edges and the number of faces equal to the number
of cycles. Hence we can compute x = m + n — |W| + #(cycles) in linear time
O(|W|) by traversing the graph G(W) according to the rules of Definition 7. O

4 Algorithm for Embedding a Spatial Graph in 3 Pages

In this section the prove main Theorem 10 using auxiliary Theorems 8 and 9.

Recall that a graph D is called planar if D can be embedded in R2. A
digraph is a directed acyclic graph, possibly with undirected cycles, but without
directed cycles. If we fix a vertical orientation on R2, then we can orient all
edges of an embedded planar graph in the upward direction, which gives an
upward planar digraph. Giordano et al. [4, Theorem 1] proves that there is a
linear time algorithm to isotopically deform any upward planar diagraph into a
2-page topological embeddings with at most one bend per edge.
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Theorem 9 [4, Theorem 1] Given a planar undirected graph D C R? with |V|
vertices, an algorithm of linear time complexity O(|V]) can draw a topological
embedding of the graph D in the 2-page book with at most one bend per edge.

The planar graph D in the left hand side picture of Fig. 8 has no combi-
natorial 2-page embedding [1, section 5]. Two more pictures in Fig. 8 give an
example how we can construct a path « that passes through each vertex once
and intersects each edge at most once. By an isotopic deformation of R? we can
make the path « straight and get a required 2-page topological embedding of D.

Fig. 8. A path a through vertices of the non-hamiltonian maximum planar graph

Theorem 10 Given an abstract Gauss code W, an algorithm of time complexity
O(|W|) determines if W represents a plane diagram of a spatial graph G C
R3 and then draws a topological 3-page embedding of a graph H isotopic to G.
Moreover, the graph H has at most 8|W| intersections with the spine of the book.

Proof. We first apply the linear time algorithm from Theorem 8 to determine if
the code W represents a plane diagram D of a spatial graph G. If yes, we draw
a 2-page embedding of the diagram D C R? in linear time using Theorem 9.

We can upgrade the 2-page embedding of a small neighborhood of any cross-
ing v in the diagram D to a 3-page embedding, where the 3rd page attached
along « above the plane containing D. Fig. 9 shows these upgrades for 6 typi-
cal neighborhoods, other cases are symmetric. So we resolved the crossing v by
pushing an arc into the 3rd page with at most 3 new points in the spine «.

After pushing short overcrossing arcs at all crossings of D into the 3rd page,
we get a 3-page embedding of a spatial graph H with the same plane diagram D,
hence H is isotopic to G. We need only a constant time per crossing, so O(|W|)
in total, for upgrading the 2-page embedding of D to a 3-page embedding of H.

Since the plane diagram D has |W| edges, the 2-page embedding of D with at
most one bend per edge has at most 2|W| points in the spine «. Each crossing of
D is replaced by at most 4 intersections with the spine « in a 3-page embedding.
The total number of intersections of the graph H with « is at most 8|WV|. a

5 Conclusion and Open Problems on Spatial Graphs

We have introduced new algorithmic problems of knot theory and spatial graphs
to the computational topology community. The main results are the following.
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Fig. 9. Upgrading crossings to 3-page embeddings with at most 4 intersections

Theorem 8: a fast recognition of planarity for Gauss codes of spatial graphs.

Theorem 10: a practical linear time algorithm drawing a 3-page embedding of
any spatial graph G C R? starting from a Gauss code W of the graph G.

Here is the list of related open problems on spatial graphs for the future work.

e State and prove a criterion of planarity of Gauss codes of spatial graphs using
combinatorial invariants like sums of signs similarly to [8, Theorem 3.6].

e Decide if the problem to find a 3-page embedding of a spatial graph G C R3
having the minimum number of intersections with the spine « is NP-hard.

e Design a polynomial time algorithm to solve the word problem for the semi-
groups RSG,, and NSG,, (equivalent to a classification of spatial graphs).

We are open to collaboration on the above problems and any related projects.
The final version will be in the IEEE double-column style within 8 pages.

Acknowledgments. The author thanks any reviewers for helpful suggestions.
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Appendix: 3-page encoding of all spatial graphs

Finally, we highlight the following known advantages of 3-page embeddings over
traditional representations such as plane diagrams or Gauss codes:

e Lemma 11 encodes a 3-page embedding by a single linear word, while plane
diagrams are 2-dimensional, a Gauss code has a separate word for each edge;

e Theorem 12 decomposes any isotopy between 3-page embeddings of graphs into
finitely many local relations between 3-page codes, while Reidemeister’s moves
or their analogs on Gauss codes involve distant parts of a graph or Gauss code.

Since edges with vertices of degree 1 can be easily unknotted by isotopy in
3-space, for simplicity we consider below only graphs without degree 1 vertices.

Lemma 11 [7, Theorem 1.6a] Any 3-page embedding of a spatial graph G with
vertices up to degree n can be encoded by a single word in the alphabet consisting
of the letters a;, b;, c;,d; and xy; for each degree k =3,...,n, wherei=0,1,2.

Fig. 10 shows 12 local embeddings a;, b;, ¢;, d;, @ € {0, 1,2}, that are sufficient
for knots and links. The notation a; emphasizes that the embeddings a; can be
obtained from each other by a rotation around the spine. Fig. 10 also has 3
embeddings for neighborhoods of degree 4 vertices denoted by x; for simplicity.

To explain the 3-page encoding, we may deform any 3-page embedding so that
all arcs are monotonically projected to the spine a. Then the whole embedding
can be uniquely reconstructed by its thin neighborhood around the spine a.
Namely, if we know only directions of arcs going from points in the spine, we
can uniquely join these arcs in each of 3 pages. Hence we can encode any 3-page
embedding by the list of local embeddings at all intersections in the spine.

The following result completely reduces the topological classification of spa-
tial graphs up to isotopy in 3-space to the word problem in some semigroups.

Theorem 12 [7, Theorems 1.6 and 1.7] There is a finitely presented semigroup
whose all central elements are in a 1-1 correspondence with all isotopy classes of
spatial graphs with vertices of degree up to n. There is a linear time algorithm
to determine if a given element belongs to the center of the semigroup.
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Fig. 10. Three-page embeddings of 15 generators for the semigroup in Theorem 10.

So two spatial graphs G, H C R? are isotopic in 3-space if and only if their
corresponding central elements wg,wy are equal in the semigroup. More for-
mally, there are two slightly different semigroups: RSG,, for rigid spatial graphs
with vertices up to degree n and NSG,, for non-rigid graphs. Both semigroups
have 12 generators a;, b;, ¢;,d;, i € {0,1,2}, and 3(n — 2) generators for vertices
up to degree n, namely 3 generators for each degree from 3 to n, see Fig. 10.
The empty word is the unit in the semigroups, but a;, ¢;, 1 ; are not invertible.
In the case of links for n = 2, the semigroup has only 48 relations below.

(1) dodyda = 1, bid; = 1 = d;b; for i € {0,1,2};

(2) @i = ajy1di—1, by = ai—1¢it1, ¢; = bi—1¢it1, di = Gi11Ci—1;

(3) w(d;c;) = (dic;)w, where w € {¢;11,bidiy1d; };

(4) wv = vu, where u € {a;b;, b;—1d;d;—1b;}, v € {a;y1,bi41, Cit1,bidir1d;}.

One of the 7 relations in (1) is superfluous as it follows from the remaining 6.
The generators a;, b;, c;,ds can be expressed only in terms of dy,d;, but the
resulting relations between dg,d; will be longer. All defining relations of the
semigroups represent elementary isotopies between 3-page embeddings.

The hard part of Theorem 12 says that any isotopy between spatial graphs
decomposes into finitely many elementary isotopies. The 3-page encoding of all
isotopy classes of spatial graphs has the crucial advantage over plane diagrams
or Gauss codes. The Reidemeister moves on plane diagrams or Gauss codes are
not local, while all elementary isotopies between 3-page embeddings are local.



