MORFOLOGÍA POLÍNICA DE BALLOTA L., LAMIUM L. Y PHLOMIS L. (LAMIACEAE) EN EL Suroeste de España

I. Fernández, R. Juan & J. Pastor
Departamento de Biología Vegetal y Ecología, Apartado 1095, E-41080 Sevilla
(Recibido el 16 de Diciembre de 2005)

Resumen. Se describe la morfología polínica, tanto al microscopio óptico como electrónico de barrido, de los taxones de Ballota L., Lamium L. y Phlomis L. presentes en suroeste de España. Las diferencias observadas en el modelo de ornamentación permiten establecer dos tipos morfológicos: el tipo I caracterizado por una exina microrretilucida y que incluye L. flexuosum y L. purpureum; y el tipo II constituido por B. hirsuta subsp. hirsuta, B. nigras subsp. foetida, L. amplexicaule, P. composita, P. herba-venti, P. lychinitis y P. purpurea, que muestra una ornamentación birreticulada. Dentro del tipo II el tamaño del polen de las especies de Ballota permiten diferenciar este género de Phlomis.

Summary. The pollen morphology of taxa of Ballota L., Lamium L. and Phlomis L. from southwest of Spain are described using light and scanning electron microscopy. The ornamentation has allowed to establish two morphological type: the type I with microreticulate pollen which includes L. flexuosum and L. purpureum; and the type II including B. hirsuta subsp. hirsuta, B. nigras subsp. foetida, L. amplexicaule, P. composita, P. herba-venti, P. lychinitis and P. purpurea which features birreticulate pollen. In the last type, the Ballota taxa can be easily distinguished from the Phlomis species by the pollen size.

INTRODUCCIÓN

La familia Lamiaceae se encuentra ampliamente distribuida por todo el mundo, especialmente en la Región Mediterránea (Morales, 2000) donde sus géneros son componente característicos de los matorrales seriales propios de esta zona (Heywood, 1978, 1985). En el área de estudio, SO de España, esta familia es notable por su diversidad florística y está representada por 105 taxones pertenecientes a 28 géneros (Valdés, 1987).

Numerosos representantes de esta familia son de interés etnobotánico (González Tejero & al., 1992; Rivera Nuñez & Obón de Castro, 1992) y actualmente con el incremento del consumo de productos naturales (alimentos, perfumes, colorantes, etc.) esta familia es de interés para las industrias químicas y alimenticias (Lawrence, 1992; Heinrich, 1992).
Entre los alimentos que recientemente se encuentra en alza está la miel y son numerosos los autores que señalan el carácter nectarífero de las Labiadas (Crane & al., 1984; Herrera, 1985; Muñoz & Devesa, 1987; Talavera & al., 1988; Hidalgo & Cabezudo, 1995). Además, Talavera & al. (1988) señalan que, en la zona de estudio, algunos taxones por su potencial nectarífero y su abundancia, pueden ser explotados apícolalemente para la obtención de mieles monoflorales.

El análisis polínico de la miel tiene como finalidad dilucidar el origen botánico de la misma y poner de manifiesto las preferencias alimenticias de las abejas (Ortiz & Fernández, 1992). Sin embargo, desde el punto de vista melitopalinológico una de las características de las Lamiaceae es su baja representación en los espectro polínico aun cuando su néctar contribuya mayoritariamente en la elaboración de la miel (Stanley & Linskens, 1974; Serra & al., 1986, 1987).

En este estudio se examina el valor de los caracteres derivados del polen para la identificación de los distintos taxones estudiados.

MATERIAL Y MÉTODOS

Las muestras estudiadas proceden de material fresco, fijado directamente en el campo con ácido acético glacial. El origen de las poblaciones estudiadas se indica en el Apéndice.

El polen fue acetolizado por el método de Erdtman (1960). Una vez obtenidas las muestras, la mayor parte de los caracteres se han estudiado al microscopio óptico (MO). Para las dimensiones del eje polar (P) y diámetro equatorial (E), se han medido al menos 30 granos de polen en cada una de las poblaciones y
alrededor de 10 para el resto de los caracteres. Para el estudio de la ornamen-
tación, las muestras acetolizadas y deshidratadas en la serie de alcohol se han
colocado en portaobjetos y se han metalizado con oro-paladio para su posterior
estudio en el microscopio electrónico de barrido (MEB).

Todas las muestras se conservan en la Palinoteca del Departamento de
Biología Vegetal y Ecología de la Universidad de Sevilla.

Para la terminología se ha seguido fundamentalmente a PUNT & al.
(1994).

RESULTADOS

El polen de Ballota se caracteriza por ser trizonocolpado, isopolar y radio-
SIMÉTRICO; elíptico en visión ecuatorial y circular en visión polar, de tamaño
PEQUEÑO (Cuadro 1), con aberturas de tipo colpo terminales con margen irregular
y membrana apertural granulada. Exina de c. 1.5 μm ligeramente engrosada en
los polos con sexina tan gruesa como la nexina. La ornamentación es birreti-
culada con un retículo primario con lúmenes > 1 μm, más o menos uniformes,
que contienen un retículo secundario formado por pequeñas perforaciones.

En Lamium el polen es trizocolpado, isopolar y radiosímétrico; de circular
a elíptico en visión ecuatorial y circular en visión polar (Figs. 1-2), de tamaño
PEQUEÑO o mediano (Cuadro 1), con aberturas de tipo colpo terminales con
margen irregular y membrana apertural areolada en L. flexuosum (Fig. 3) y
granulada en L. amplexicaule y L. purpureum. Exina de 1-1.5 μm, de uniforme
a ligeramente engrosada en los polos con sexina tan gruesa como la nexina.
En L. flexuosum y L. purpureum la ornamentación es microrreticulada (Fig. 4),
mientras que en L. amplexicaule es birreticulada (retículo doble) con un retículo
primario formado por lúmenes más o menos uniformes > 1 μm, que contienen
un retículo secundario formado por pequeñas perforaciones.

El polen de Phlomis se caracteriza por ser trizonocolpado, isopolar y ra-
diosímétrico; de circular a elíptico en visión ecuatorial y circular en visión
POLAR (Figs. 5-6), de tamaño mediano (Cuadro 1), con aberturas de tipo colpo
terminales con margen irregular y membrana apertural areolada (Fig. 7). Exina
de 1.5-2.2 μm, de uniforme a ligeramente engrosada en los polos con sexina
tan gruesa como la nexina. La ornamentación es birreticulada con un retículo
primario con lúmenes más o menos poligonales de 1-1.5 μm, que contienen un
retículo secundario formado por pequeñas perforaciones (Figs. 8-9).

Teniendo en cuenta la ornamentación entre los taxones estudiados se esta-
blecen dos tipos:

Tipo I: Polen con ornamentación microrreticulada formada por lúmenes
< 1 μm. Incluye Lamium flexuosum y L. purpureum (Figs. 1-4).
Tipo II: Polen con ornamentación birreticulada formada por un retículo primario con lúmenes > 1 μm que encierran un retículo secundario perforado. Incluye a *Lamium aplexicaule*, *Ballota hirsuta* subsp. *hirsuta*, *B. nigra* subsp. *foetida*, *Phlomis composita*, *P. herba-venti*, *P. lychnitis* y *P. purpurea* (Figs. 5-9). Dentro de este tipo el tamaño del polen permite diferenciar las especies de *Ballota* de las de *Phlomis* (Cuadro 1).

DISCUSIÓN

De acuerdo con Azizian & Moore (1982) el carácter de mayor utilidad en el polen de los géneros examinados es la ornamentación, la cual ha permitido establecer dos tipos morfológicos.
<table>
<thead>
<tr>
<th>Taxones</th>
<th>P (µm)</th>
<th>E (µm)</th>
<th>P/E</th>
<th>Grosor Exine (µm)</th>
<th>Engrosamiento polar</th>
<th>Ornamentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballota hirsute</td>
<td>20 (22.86 ± 1.07) 25</td>
<td>20 (22.00 ± 0.83) 24</td>
<td>0.95 (1.03 ± 0.05) 1.15</td>
<td>1 - 1.5</td>
<td>Ligeramente</td>
<td>Perforado (MO) Birreticulado (MEB)</td>
</tr>
<tr>
<td>subsp. hirsuta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballota nigra</td>
<td>22 (23.10 ± 0.64) 24</td>
<td>21 (21.90 ± 0.44) 23</td>
<td>1.00 (1.05 ± 0.03) 1.14</td>
<td>1 - 1.5</td>
<td>Ligeramente</td>
<td>Perforado-reticulado (MO) Birreticulado (MEB)</td>
</tr>
<tr>
<td>subsp. foetida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamium amplexicaule</td>
<td>27 (30.40 ± 2.34) 35</td>
<td>26 (28.96 ± 1.54) 32</td>
<td>0.96 (1.04 ± 0.05) 1.20</td>
<td>1.5 - 2.5</td>
<td>Ligeramente</td>
<td>Perforado (MO) Birreticulado (MEB)</td>
</tr>
<tr>
<td>Lamium flexuosum</td>
<td>23 (23.90 ± 0.78) 25</td>
<td>21 (23.20 ± 1.23) 25</td>
<td>0.92 (1.02 ± 0.03) 1.09</td>
<td>1 - 1.5</td>
<td>No o débilmente</td>
<td>Perforado (MO) Birreticulado (MEB)</td>
</tr>
<tr>
<td>Lamium purpureum</td>
<td>24 (24.95 ± 0.86) 27</td>
<td>23 (26.28 ± 1.27) 28</td>
<td>0.88 (0.94 ± 0.04) 1.04</td>
<td>1 - 1.5</td>
<td>No</td>
<td>Perforado (MO) Microreticulado (MEB)</td>
</tr>
<tr>
<td>Phlomis composita</td>
<td>31 (31.85 ± 0.74) 33</td>
<td>30 (30.55 ± 0.68) 32</td>
<td>1.00 (1.04 ± 0.03) 1.06</td>
<td>1.5 - 2</td>
<td>Ligeramente</td>
<td>Reticulado (MO) Birreticulado (MEB)</td>
</tr>
<tr>
<td>Phlomis herba-venti</td>
<td>31 (34.36 ± 1.32) 36</td>
<td>30 (31.26 ± 0.78) 33</td>
<td>1.03 (1.09 ± 0.04) 1.16</td>
<td>2 - 2.5</td>
<td>No</td>
<td>Reticulado (MO) Birreticulado (MEB)</td>
</tr>
<tr>
<td>Phlomis lychnitis</td>
<td>29 (31.83 ± 1.96) 35</td>
<td>26 (29.13 ± 2.31) 33</td>
<td>1.03 (1.09 ± 0.04) 1.20</td>
<td>1.5 - 2</td>
<td>Ligeramente</td>
<td>Reticulado (MO) Birreticulado (MEB)</td>
</tr>
<tr>
<td>Phlomis purpurea</td>
<td>33 (35.20 ± 0.88) 37</td>
<td>30 (32.03 ± 0.96) 34</td>
<td>1.03 (1.09 ± 0.04) 1.20</td>
<td>1.5 - 2</td>
<td>Ligeramente</td>
<td>Reticulado (MO) Birreticulado (MEB)</td>
</tr>
</tbody>
</table>

Cuadro 1. Relación de caracteres en los taxones estudiados. En las columnas P, E y P/E se indican el valor mínimo, la media y el máximo. Todas las medidas se expresan en µm.
El tipo I (Figs. 1-4), que incluye a *Lamium flexuosum* y *L. purpureum*, muestra granos de polen con una exina microrreticulada debido a que el tamaño de los lúmenes es inferior a 1 μm. Según Abu-Asab & Cantino (1992) las *Lamioideae* con estilo ginnobásico, entre las que se encuentra *Lamium*, presentan en general, una exina cuya estructura varía de tectado-perforada a microrreticulada y una escultura que es suprarreticulada, debido a que en el supratéctum aparecen plieques que forman un retículo. Posteriormente, estos mismos autores (Abu-Asab & Cantino, 1994) describen el polen de *L. flexuosum* y *L. purpureum* como escrobiculado y suprarreticulado no coincidiendo los resultados del presente estudio con su observación.

El tipo II (Figs. 5-9), que incluye los restantes taxones estudiados, se caracteriza por presentar el polen birreticulado. En lo referente a *Ballota* los resultados coinciden con los de Abu-Asab & Cantino (1994), sin embargo difieren de los de Luque & Candaú (1987) que no observaron un doble retículo en el polen de *B. hirsuta* ni de *L. amplexicaule*. En cuanto a *Phlomis* los datos del presente estudio coinciden con los Azizian & Moore (1982), Uberta & Galán (1983) y Abu-Asab & Cantino (1994).

Entre las *Lamiaceae* el tamaño del retículo o el número de perforaciones por lúmenes son de utilidad para establecer diferencias, como han puesto de manifiesto algunos autores (Henderson & al., 1968; Azizian & Moore, 1982; Afzal-Rafii, 1983; Fernández & al., 2000). Sin embargo, en el presente estudio este último carácter no puede ser usado debido a la variabilidad observada entre los taxones estudiados.

En cuanto al sistema apertural, esta familia presenta polen con 3, 4 o 6 aberturas (Erdtmann, 1952). El número de aberturas del polen en estos tres géneros hace que se incluyan dentro del grupo de las Labiadas tricolpadas, rasgo generalmente asociado con el carácter binucleado del mismo (Erdtmann, 1945, 1952, 1986) y con la aparición de una ornamentación perforada o microrreticulada (Luque & Candaú, 1987; Abu-Asab & Cantino, 1992). No obstante, *Phlomis*, *Ballota* y *L. amplexicaule* muestran polen birreticulado, favoreciendo de esta manera el que se puedan diferenciar de otros taxones de esta familia.

El tamaño del polen en los tres géneros estudiados oscila entre pequeño y mediano, mostrando a veces un rango de variabilidad amplio (Cuadro 1). No obstante, las dos especies de *Lamium* incluidas en el tipo I así como *Ballota hirsuta* subsp. *hirsuta* y *B. nigra* subsp. *foetida* presentan polen pequeño, lo que por un lado contribuye a diferenciar el tipo I y por otro, permite separar dentro del tipo II al género *Ballota* de las especies de *Phlomis* y de *L. amplexicaule*.

Finalmente, se puede concluir que la morfología polínica de los taxones estudiados, a excepción de *L. amplexicaule*, permite establecer diferencias entre estos tres géneros, favoreciendo de esta manera su identificación en los análisis polínicos.
Agradecimientos. Los autores agradecen al Servicio de Microscopía Electrónica de la Universidad de Sevilla la ayuda prestada.

APÉNDICE

Phlomis composita: Cádiz. Puerto de las Palomas, 17.VII.1996, Juan y Martín Mosquero (SEV 153612).

BIBLIOGRÁFIA

