Solución: Amigos del curso

Publicamos la solución al divertimento de los amigos del curso. Muchas gracias a Don Diedro y Don Pablo, Antonio Medinilla y David Ramos, Julio Ojeda y Pablo Puerto y Javier Ribelles y Carmen Zuleta por las soluciones que nos han enviado.

Divertimento

En un curso cualquiera de un grado cualquiera de una facultad cualquiera, hay tres grupos de n>0 estudiantes y cada uno de ellos tiene al menos n+1 amigos en los otros dos grupos. Probar que existen tres estudiantes, cada uno de un grupo distinto, que son amigos entre ellos.

Solución

Solución adaptada de la enviada por Julio Ojeda y Pablo Puerto.

Sea a el, o la estudiante, que podemos suponer del grupo A, que menos amigos tenga en un grupo. Supongamos, sin pérdida de generalidad, que sean k>0 amigos y en el grupo B, y llamémoslos b1,,bk. Por tanto, a tendrá al menos n+1k amigos en el grupo C. Ahora bien, sabemos que b1 tiene al menos k amigos en el grupo C, así que por el principio del palomar necesariamente uno de ellos es un amigo en común de a y b1, completando el triángulo buscado.

Sé el primero en comentar

Dejar una contestacion

Tu dirección de correo electrónico no será publicada.


*