Einstein y los quanta de luz

En dos entradas anteriores (I y II) vimos como el intento de explicar la radiación que emiten los cuerpos calientes llevó al físico alemán Max Planck a finales de 1900 a proponer una idea novedosa: la energía solo puede ser absorbida o emitida de forma discontinua, o como se suele decir: en cuantos de energía. Fue el nacimiento de la Física cuántica tal y como la bautizó años después el físico alemán Arnold Sommerfeld. Así, aparentemente, se cerraba uno de los problemas que traían de cabeza a los físicos desde hacía varios años, una de las dos famosas nubecillas de Lord Kelvin de las que ya hablamos en dichas entradas. Conviene, no obstante, recordar antes de pasar a la historia de la que nos ocuparemos en esta entrada de que la hipótesis cuántica de Planck solo concernía a la forma en que los cuerpos absorbían y emitían energía, y nunca a la propia naturaleza de la radiación que estaba constituida por ondas electromagnéticas y que, como establecían las leyes del electromagnetismo de Maxwell, eran continuas en el espacio y el tiempo. Si todo hubiese quedado así, como una especie de artificio matemático, quizá todavía estuviésemos viviendo como al principio del siglo XX y no conocieramos  … pero dejemos la especulación y comencemos nuestra historia. Nuestro protagonista esta vez va a ser probablemente el científico más famoso (y sin duda el más mediático) de toda la historia: Albert Einstein. Comencemos con una breve, pero necesaria, reseña biográfica del mismo.

Einstein en 1904 en la Oficina de patentes de Berna

Einstein nació en la ciudad de Ulm (Alemania) el 14 de marzo de 1879 en el seno de una familia judía (no practicante). En 1880 la familia se mudó a Munich donde el joven Einstein recibió sus primeras clases primero en una escuela católica elemental (educación primaria) y luego en el Luidpold Gymnasium (educación secundaria). En 1894 su familia se mudó a Milán a donde Einstein les seguiría varios meses después abandonando sus estudios en el Gymnasium. Su educación preuniversitaria la terminó en Suiza, a donde lo envió su familia a finalizar el bachillerato, tras lo cual, en 1896, se matriculó en la Escuela Politécnica Federal de Zúrich (ETH, por sus siglas en alemán) para estudiar física y matemáticas. Se graduó en 1900 pero, aunque su intención era continuar con una carrera académica, no fue aceptado en ninguna universidad y eso que lo intentó de veras. ¿Qué hubiese ocurrido si Einstein hubiese entrado como asistente de alguno de sus profesores en el ETH o en otra de las Universidades alemanas a las que escribió? Nunca lo sabremos pero es muy probable que la historia de la ciencia hubiese sido muy distinta ¿por qué? Pues por dos razones. La primera nos la cuenta el propio Einstein en su autobiografía donde, en referencia a su estancia en el ETH, escribió: “Allí tuve excelentes profesores, de manera que podría haber adquirido una profunda formación matemática. Yo sin embargo, me pasaba la mayor parte de tiempo trabajando en el laboratorio de Física, fascinado por el contacto directo con la experiencia”. La segunda, fue que tras sus infructuosos intentos de trabajar en la Universidad, consiguió un puesto en la Oficinas de Patentes de Berna, donde dispuso de bastante tiempo libre para pensar en los problemas de física teórica en los que se había interesado. En otras palabras, al no disponer de ningún laboratorio y sí de mucho tiempo para meditar sobre los problemas de la física teórica Einstein consiguió en apenas tres años resolver tres de los problemas más escurridizos de la física del momento: dos de ellos relacionados directamente con las nubecillas de Lord Kelvin y el tercero sobre la existencia y dimensiones de los átomos, cualquiera de los cuales le habría valido para hacerle famoso en el mundo de la Ciencia. Finalmente Einstein obtiene una plaza de profesor en 1909 en la Universidad de Zurich, en 1914 una plaza en la Academia de ciencias prusiana, en Berlín, y en 1921 el Premio Nobel de Física por, en palabras del Comité del Nobel

for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect. (por sus servicios a la Física Teórica, y especialmente por su descubrimiento de la ley del efecto fotoeléctrico.)”

Cuando los nazis tomaron el poder en Alemania en 1933 (con el nombramiento de Hitller como canciller), Einstein que estaba de visita en los Estados Unidos decidió no regresar a Alemania, viviendo y trabajando en el Instituto de Estudios Avanzados en Princeton, Nueva Jersey, hasta su muerte en 1955.

Nuestra intención en esta entrada es discutir brevemente el trabajo que le valió a Einstein su premio nobel: «Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt» (Sobre un punto de vista heurístico concerniente a la emisión y transformación de la luz), manuscrito que Einstein envió al Annalen der Physik (recibido el 18 de marzo de 1905 y publicado el 9 de junio de 1905).

Así que vamos allá. ¿De qué iba dicho artículo que según las propias palabras de Einstein era muy revolucionario?

Para poder responder a esa pregunta hay que recordar brevemente el estado del problema sobre la radiación del cuerpo negro en los primeros años del siglo XX. Como vimos en las dos entradas anteriores a principios del año 1900 existían dos fórmulas teóricas, la ley de Wien para frecuencias altas y la de Rayleigh para frecuencias bajas, ambas incompatibles entre sí. Como también vimos allí, Planck encontró una fórmula en octubre de 1900 que permitía unificarlas pero, en un intento de darle una base física, Planck tuvo que introducir los quanta de energía, algo bastante artificial y con poco fundamento y que en general no gustó ni al mismo Planck. Con ello, en apariencia, se lograba tener una buena armonía entre la teoría y los experimentos, pero quedaban algunos flecos por arreglar. Por ejemplo ¿qué significado físico tenía esa constante h que Planck había introducido?

El propio Wien en un artículo aparecido el 11 de noviembre de 1900 (poco antes de que Planck hiciera pública la deducción de su fórmula usando los quanta de energía) argumentaba que su ley (a diferencia de la de Rayleigh) no se podía obtener a partir de la electrodinámica. Einstein influenciado por el trabajo de Wien decidió asumir las hipótesis de Wein, i.e., que la radiación del cuerpo negro estaba dividida en dos tipos: una válida para bajas frecuencias (la de Rayleigh) que se podía describir con las leyes de la electrodinámica clásica, y otra de altas frecuencias cuya explicación se basaba en leyes por descubrir. Einstein quería descubrir cuales eran esas otras leyes.

El punto de partida de Einstein fue similar al de Planck: escribir una expresión para la entropía S (ver la entrada anterior) de la radiación en un volumen V con una frecuencia \(\omega\) y una energía \(E_{\omega}\). Aunque la expresión que obtuvo Einstein era similar a la de Planck, a diferencia de este, Einstein llevó hasta las últimas consecuencias la dependencia que había encontrado entre la entropía S y el volumen V que ocupaba la radiación en una cavidad (como se le solía denominar al cuerpo negro). Aunque no vamos a entrar en detalles técnicos (el autor interesado puede encontrar una versión en castellano del artículo de Einstein aquí que se sigue muy fácilmente), sí diremos que Einstein probó que si la radiación monocromática de frecuencia \(\omega\) y energía \(E_\omega\) estaba encerrada dentro de la cavidad de volumen \(V_0\), la probabilidad P de que en un tiempo arbitrario la energía total de radiación se encuentrara en una parte V del volumen inicial \(V_0\) debía ser

$$ P=\left(\frac{V}{V_0}\right)^{\frac{E_\omega}{h\omega}}$$

(Eistein no usó la constante h, sino una combinación de otras constantes de la teoría cinética de gases y de la constante \(\beta\) que aparecía en la fórmula de Wien pero por unificar la notación y en aras de una mejor compresión usaremos aquí la h de Planck).

De ello concluyó que:

“La radiación monocromática de bajas densidades (dentro del rango de validez de la fórmula de la radiación de Wien) se comporta con respecto a la teoría cinética del calor, como si consistiese en cuantos de energía independientes entre sí con magnitud \(h\omega\). […]”

Es decir, que según Einstein, la luz (radiación) de altas frecuencias \(\omega\) se comportaba como partículas con una energía igual a \(h\omega\), algo que estaba en contradicción con las leyes de Maxwell del electromagnetismo ya que según estas la radiación electromagnética tenía que ser descrita por una función continua en el espacio y en tiempo. Así Einstein recuperó la propiedad corpuscular para la luz que había introducido Newton en su famoso trabajo sobre la óptica Opticks (publicado en 1704) y que fue desechada frente a la teoría ondulatoria gracias a los trabajos de Young y Fresnel en el siglo XIX que permitían explicar una mayor cantidad de fenómenos ópticos.

Pero Einstein no se conformó con ello. Tal y como él mismo escribió al final de la sección 6 de su artículo

“Si ahora la radiación monocromática (con una densidad suficientemente baja), en lo que respecta a la dependencia de la entropía del volumen, se comporta como un medio discontinuo, el cual consiste en cuantos de energía de tamaño \(h\omega\), es razonable investigar si también las leyes de la producción y transformación de luz están elaboradas, como si la luz consistiese de tales cuantos de energía.”

Efectivamente, en lo que resta del artículo Einstein muestra como su propuesta de considerar la radiación como cuantos de luz de energía \(E_\omega= h\omega\) puede explicar ciertos fenómenos que la teoría ondulatoria era incapaz de hacer, justo aquellos donde la radiación era creada o se transformaba. Para ello eligió tres fenómenos: 1) la ley de Stokes de la fotoluminiscencia, 2) el efecto fotoeléctrico y 3) la ionización de los gases por luz ultravioleta.

Vamos a restringirnos al segundo de los fenómenos: el efecto fotoeléctrico. Dicho fenómeno consiste en la emisión de electrones por un material al incidir sobre él una radiación electromagnética. Fue descubierto por Heinrich Hertz en 1887 y estudiado por varios físicos a lo largo del siglo XIX, pero fue el trabajo de otro físico alemán Philipp Lenard, quién en 1902 publicó en un largo artículo los resultados de sus muchos experimentos entre los que se encontraban dos propiedades muy desconcertantes del fenómeno: 1) que solo se podía obtener corriente (electrones) a partir de ciertas frecuencias de luz, y 2) que la velocidad de los electrones aumentaba con la frecuencia de la luz incidente e independiente de la intensidad de la misma (como debería ocurrir según se deducía de la teoría electromagnética de Maxwell).

Esquema del efecto fotoeléctrico.

Para explicar los resultados de Leonard, Einstein razonó como sigue: Supongamos que irradiamos la placa metálica con una luz monocromática de frecuencia \(\omega\) compuesta por quantas de energía luminosa \(E_\omega = h\omega\). Si denotamos por \(W\) la energía necesaria para extraer un electrón del metal, entonces la energía cinética de los electrones, \(E_c\), se expresará mediante la fórmula

$$ E_c=\frac12 mv^2=h\omega -W, $$

donde \(m\) es la masa del electrón y \(v\) su velocidad.

Esa simple fórmula explicaba perfectamente las dos observaciones antes descritas: la necesidad de una frecuencia mínima (para vencer la cantidad de energía \(W\) necesaria para arrancar un electrón del metal) y que la energía de los electrones dependía única y exclusivamente de la frecuencia de la luz incidente (de forma lineal además). Hay que decir que los resultados de Leonard eran más bien cualitativos debido a la poca precisión de las mediciones. Hubo que esperar 10 años hasta que el reconocido físico experimental norteamericano Robert Milikan hiciera los experimentos que confirmaron que la teoría eisteniana era correcta. El mismo Milikan escribió años más tarde en 1949:

Pasé diez años de mi vida comprobando la ecuación de Einstein de 1905, y contrariamente a todas mis expectativas me vi obligado, en 1915, a proclamar la indudable verificación experimental, a pesar de lo irrazonable que era, ya que parecía violar todo lo que sabíamos acerca de la interferencia de la luz”.

Fragmento del artíclo de Einstein de 1905. A la derecha se ve el párrafo donde einstein introduce sus cuantos de luz.

Si Planck cuantizó la forma en que se absorbía y emitía la luz, Einstein cuantizó la propia luz. Esta fue la gota que colmó el vaso, pues al parecer la luz, que era aceptada unánimemente por todos como un fenómeno continuo, tenía al parecer cierta naturaleza corpuscular. Einstein se dedicó varios años más a estudiar otros fenómenos que también se podían explicar perfectamente usando su teoría de los quanta de luz, y cada vez se convenció más de que la luz tenía un comportamiento dual: por un lado ondulatorio como describían las leyes de la electrodinámica, y por otro, corpuscular, como la que describía las leyes de la teoría cinética de los gases. Así mismo, descubrió que tanto su teoría cuántica de la luz, como la de teoría cuántica de Planck descansaban sobre los mismos principios y por tanto de alguna forma deberían poder unificarse en una nueva teoría. Esa teoría es la que hoy conocemos como “teoría cuántica” o “física cuántica” y tenía que tener (según Einstein) unos fundamentos muy distintos a los de la física clásica. Pero eso ya es otra historia de la que nos ocuparemos en otro momento.

Para saber más:

Capítulo 1 de J. Mehra y H. Rechenberg, The Historical Development of Quantum Theory, Vol 1. The Quantum Theory of Planck, Einstein, Bohr and Sommerfeld: Its Foundation and the Rise of Its Difficulties 1900-1925, 1982 Springer-Verlag New York Inc.

José Manuel Sánchez Ron, Historia de la física cuántica: I. El período fundacional (1860-1926), Drakontos, 2001.

Para saber más sobre la vida de Einstein:

Antonio J. Durán, El universo sobre nosotros. Un periplo fascinante desde el cielo de don Quijote al cosmos de Einstein, Crítica, 2015.

Sobre Renato Álvarez Nodarse 87 Artículos
Catedrático de Análisis Matemático de la Universidad de Sevilla, mis áreas de interés son teoría de funciones especiales y aplicaciones en problemas de física matemática.

1 Comment

Dejar una contestacion

Tu dirección de correo electrónico no será publicada.


*