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Alexander Davydov (26.12.1912-19.02.1993) 

“...the nonlinear states are as fundamental, as are quasi-

particles in linear theories”  

(Davydov, Theory of Molecular Solitons, Dordrecht, Reidel, 1985) 



Scope 

 

• Davydov’s soliton and electrosoliton, localized 1D 

modes, quodons  
 

• Bisoliton 
 

• Bisolectron in a lattice with cubic or quartic 

anharmonicity 
 

• Account of the Coulomb repulsion 
 

• Supesonic bisolectron 
 

• Conclusions 



Low-dimensional systems  

 

There is a large class of low-dimensional systems, which demonstrate 

nonlinear properties  and  hyperconductivity.  

Some examples: 

macromolecules (proteins and DNA) ; 
 

polydiacetylene (Wilson, J Phys C16, 6739 (1983).; Donovan, Wilson, Phil Mag B 44, 9, 31(1981); J 

Phys C 18, L-51 (1985);  Gogolin, JETP Lett 43, 511 (1986));  
 

conducting polymers and platinum chain compounds  (P. Monceau (Ed.), 

Electronic Properties of Inorganic Quasi-One-Dimensional Compounds, Part II (Reidel, Dordrecht)  
 

Bechgaard salts, salts of transition metals (PbSe,PbTe,PbS)  (Streetman,. Banerjee, 

Solid State Electronic Devices, Prentice-Hall, N.J.;  Zhang et al  PRB 80, 024303 (2009); Madelung, Roessler 

Schultz (Eds.), PdO Crystal Structure, Lattice Parameters, Thermal Expansion. V. 41D, Springer, Berlin, 

1998; Androulakis et al PRB 83 195209 (2011));  
 

superconducting cuprates (Falter et al,  PRB 64, 054516 (2001); Bohnen et al  Europhys Lett 

64, 104 (2003); Devereaux et al,  PRL 93 117004 (2004); Reznik et al Nature 440, 1170 (2006); Kresin et al 

Rev Mod Phys 81, 481 (2009); Newns, Tsuei, Nature Physics 3, 184 (2007). 
 

Many of them find numerous applications in microelectronics and 

nanotechnologies, or play important role in living  systems. 
 



Molecular (Davydov’s) solitons 

• Role of electron-lattice coupling 

• Consider an isolated molecular chain 
   

           |  a    |        κ    M            |    J    | 

….……………. …. 

           |u(n)                                    |   σ     | 
 

• Nonlinear system: (electron & lattice deformation) + interaction 

• Self-trapping of electrons (molecular excitation) in the self-

induced local deformation of the chain (comp. polaron) 

• System of nonlinear coupled equations can be reduced to the 

Nonlinear Schrödinger equation 

 

 

 

• Soliton solution: 
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Soliton profile 

• Soliton – self-trapped localized state of an electron or molecular  

excitation in a one-dimensional molecular chain. It is a bound state 

of a quasiparticle and local chain deformation. It is formed in the 

result of the quasiparticle self-trapping by the local deformation 

created by the particle itself.  
 

• Stability: soliton has the energy lower than the energy of a free 

electron! It propagates (almost) without energy dissipation  and 

provides coherent electron (energy) transport at T<Tcr 

 

• Existence of optimal temperature T0 (comp. hyperconductivity) 

Probability of electron localization in a molecular chain: 



Bisoliton 

 Self-trapping of two extra electrons (holes) with opposite spins 

in the self-induced local deformation of a chain: 

 

 

 

 

 

 

• At intermediate value of electron-phonon interaction (adiabatic 

approximation) the vector state is: 

 

 

• which leads to bisoliton (large polaron) state  
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 The Hamiltonian leads to the system of nonlinear equations which in 

the contnuum approximation can be reduced to  nonlinear coupled 

equations can be reduced to the 2-component Nonlinear 

Schrödinger equation 

 

 

 

 

Here j=1,2 and 

 

 
 

LB, A.S. Davydov, J. LTP, 1984, 10, 748; J. LTP, 1987, 13, 1222; Phys. Stat. Sol. (b), 

1987, 143, 689. 

LB,  J. LTP, 1986, 12, 437-438 

  

 

Bisoliton 
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2-component NLS has two types of solutions: 

• Two almost independent isolated solitons in two separate 

potential wells: 

 

 

• Bisoliton solution (both electrons (holes) in the common well). 

The lowest energy state is at V1=V2, hence, g1=g2. Then    

 

 

 

 It’s solution: 

 

 

 

 

Bisoliton 
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• Width: 

 

• Mass : 

 

 

•  Energy: 

 

 

• Binding energy:  
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Bisoliton vs soliton parameters 



Triplet state: The Pauli principle  does not allow electrons 

to occupy the same level in a potential well, and, as a result, 

the two separated potential wells are formed in a chain, with 

one energy level in each. (LB, A.Eremko, PSS (b) 182 (1994) 89) . 

This solution describes also the 1st excited singlet bisoliton state  

 

 

 

  

Bisoliton wave functions 

         (a)                               (b)    (c) 

Charge density distributions in a soliton (a) singlet bisoliton (b), bound triplet states (c) 



Localized modes 

• With account of lattice dicretness solitons  

      are breathers (comp. quodons) 
 

 

 

 

 

 

 

 

 

 

Amplitude of the soliton envelope as a function of the lattice site n for different times in different time-scales. 

Right: t=60 - solid line, 80 – dashed line, and 100 - dotted line.  

 

• Bisoliton width depends on its velocity:   

Hence, shrinking at V -> Vac.  
 

•Bisoliton is stable at 5/22

acVV 

)/1/()0()( 22

acbsbs VVlVl 



Role of lattice anharmonicity: 

• In this model a lattice was treated in the harmonic 
approximation 

 

• Role of anharmonicity (A.Davydov, A.Zolotaryuk; 
A.Zolotaryuk, A.Savin; Y.Gaididei, S.Mingaleev;…) -> change 
of soliton properties, supersonic solitons 

 

• Solitons do exist in anharmonic lattices -  FPU, Toda, 
… 

 

• Bisoliton (bisolectron) in anharmonic lattice:  

Cubic anharmonicity: Velarde, Brizhik, Chetverikov, Cruzeiro, 
Ebeling, Roepke, IJQC 2012, 110, 551-565;  

Quartic anharmonicityy: Velarde, Brizhik, Chetverikov, Cruzeiro, 
Ebeling, Roepke,  IJQC, 2012, 112, 2591-2598  



Consider a 1D chain with 2 extra electrons (j=1,2) . Total Hamiltonian: 

 

 

 

         

 

 

 

                                  - deformation of the chain.  

General case of the potential:   

 

 

Normalization condition 
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Hamiltonian of the system 



• In the continuum approximation we get the system of equations.: 

 

 

 

 

 

 

• Translational symmetry -->    ξ=(z-z0-Vt)/a  

 

 

 

• Introduce dimensionless parameters: 
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System of nonlinear equations 
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• We obtain the system of  equations 

 

 

 

 

 

where F is the effective lattice potential 

 

From the first equation  we get: 
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System of nonlinear equations 



• This gives: 

 

Hence,             .    

  

 

Here 

 

• From the normalization condition we have: 

 

 

Hence, 
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Lattice deformation 
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• From the Hamiltonian we calculate the energy  

 

 

 

 

 

 

 

and momentum of the system 
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• Consider cubic anharmonic potential 

 

 

 

 

 

 

 

 

  

 

 Lattice potentials, U, given by  Morse (green line), Toda (blue line) and cubic (red 
line) potentials with suitably rescaled parameters fixing approximately equal their 
first three derivatives around a common minimum  placed at zero in the abscissa 
which accounts for dimensionless lattice inter-particle equilibrium distance, r.  

 

• The effective potential:  

 

 

Cubic anharmonic potential 
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• Consider  lattice with quartic anharmonic potential 

 

 

 

• The effective potential:  

 

 

 

From the system of equations we get  

 

 

 

Here 
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Quartic anharmonic potential 
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Quartic anharmonic potential 

 

We obtain the equation 

 

 

 

Integrating it, we get 

 

 

Here ρ0  is the maximum value of the deformation. 

The inverse width of the lattice deformation localization is: 
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 Maximum value of the lattice deformation      , as a function of the dynamically 

modulated inverse anharmonic stiffness coefficient       , in lattices with quartic 

(thick line) and cubic (thin line) anharmonicity for two values of electron-lattice 

coupling constant. Left figure: G=0.025, right figure: G=0.1       
 

Here G is the dimensionless electron-lattice coupling constant: 

     

Lattice deformation 
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Cubic  anharmonic  potential 

Bisoliton wave function: 

 

 

 

 

Bisoliton energy: 

 

 

Energy of the deformation: 
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• Total momentum: 

 

 

 

• Binding energy of the bisoliton is positive: 

 

 

 

 

• Bisoliton effective mass 
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Cubic anharmonic potential 



 

Bisolectron wave function and energy: 

Quartic anharmonic potential 
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Account of the Coulomb repulsion 

One-electron wave functions (lattice with quartic anharmonicity): 

 

 

 

 

 Here l is the distance between the two maxima. It is determined 

from the condition of the  energy minimum for a bisolectron with 

account of the Coulomb repulsion. This gives: 
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Account of the Coulomb repulsion 

 

 

  

 

 

 
 

                              (a)                                                   (b)      

 (a) One-electron wave functions (thin lines) and bisolectron wave function (thick 

line) with account of the Coulomb repulsion, for  κ=1 and l=1. (b) Charge 

distribution over the lattice sites in the bisolectron state for κ =1 for l=1 (thick 

line) and l=1.5 (thin line). 

 



Coulomb repulsion in bisoliton 

 Comparison of the charge distribution obtained in numerical simulation of the 

Morse lattice with Hubbard repulsion (left, green) and analytical  model (right) for 

two different values of Coulomb repulsion, U1<U2 



Coulomb repulsion in bisoliton 

 Comparison of charge distribution obtained in numerical simulation of the Morse 

lattice with Hubbard repulsion (left, green) and analytical  model (right) for two 

different values of Coulomb repulsion,  U1<U2 <U3 <U4 



• Supersonic bisolitons are possible in chains when 

• In this regime nonlinear dispersion of the lattice   

 is important. It’s account leads to improved Boussinesq equation 

 

 

   

       corresponding to the lattice dispersion 

 

 

 or to the ill-posed Boussinesq equation 

 

 

  

 corresponding to the lattice dispersion 

 

 

Supersonic bisoliton and bisolectron 
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Electron energy dispersion: 

 

 

Dimensionless electron group velocity and its maximum value 
 

      Smax =2j  at k=π/2.  
 

In the physically relevant region both lattice dispersions are very close: 

 

 

 
 

 

 

Phonon energy dispersions for the improved (thick line) and ill-posed (thin line) 
Boussinesq equations. Red line is a linear dispersion. 

Supersonic bisoliton 
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The system of equations:  

 

 

 

 

Here 

 

 

It admits three  types of solutions:  

1. Supesonic lattice soliton and 2 free (delocalized) electrons 

2. Subsonic and supersonic bisoliton: 

 

3. Supersonic bisolectron at faster decay of the wave-function: 

Supersonic bisolectron 
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• The electron wavefunction: 

 

 

p=1 – bisoliton solution:  

 

p>1 – bisolectron solution 

 

The parameter p can be found from the normalization condition.  

Consider a lattice with cubic anharmonicity  

Localized solution: 

 

 

   

Supersonic bisolectron 
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• Boussinesq equation: 

 

 

Three terms in it’s l.h.s.:  

 

 

      Three terms in the Boussinesq eq.  

      for the bisoliton type solution.  

      Solid line - f1, thin  –  f2, dashed –  f3  

 

Hence, f1 and f2 are the leading terms, f3 :  

(equiv. to increase of the allowed effective soliton velocity)    

Supersonic bisolectron 
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• Exact solution at fixed velocity: 

 

     - for the improved Boussinesq equation 

 

      - for the ill-posed Boussinesq equation  

 

Solution at p=1: 

 

 

 

 

 

It transforms to the bisoliton solution at  

Supersonic bisolectron 
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Exact supersonic bisolectron solution at p=2: 

 

 

 

 

at fixed value of the velocity 

 

 

Numerical results at ‘arbitrary’ value of the velocity: 

Velarde, Ebeling, Chetverikov. Int. J. Bifurc. Chaos, 18 (2010) 885-890. 

Ebeling, Velarde, Chetverikov. Cond.Matter Phys. 12 (2009) 633-645 

Cisneros-Ake, Minzoni. Phys. Rev. E 85, 021925 (2012) 

Cisneros, Minzoni, Velarde: Variational Approximation to electron trapping by 

soliton-like localized excitations in one-dimensional anharmonic lattices. 

Springer Series on Wave Phenomena. ISSN 0931-7252. (in press)  

Supersonic bisolectron 
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Conclusions 

 Anharmonicity in the lattice interactions facilitates 

binding of two electrons in a singlet spin bisoliton state, 

extended over a few lattice sites.  

 

 Such a bisoliton can move along the lattice with finite 

effective mass and constant velocity in the subsonic and 

supersonic regimes and can be a hyperconducting 

charge carrier in LD systems. 

 

 Due to the Coulomb repulsion between the electrons the 

two-electron wave function may have a one-hump 

envelope at relatively strong electron-lattice coupling or 

two-hump envelope at relatively weak coupling. 



Conclusions 

 

 Capture of one or two electrons by a lattice soliton does not 

destroy or decelerate the latter (comp. quodons). 
 

 The results here reported complement and confirm earlier 

fragmentary results obtained by computer simulations:  

        i) using the Gaussian approximation to the soliton excitation: 

           Velarde, Neissner,  Int J Bifurcation Chaos 2008, 18, 885  

 ii) for lattices with the harmonic and Morse potentials: 

    Cruzeiro, Eilbeck, Marín, Russell, Eur Phys J B 2004, 42, 95. 

    Hennig, et al., Phys Rev E 2008, 78, 066606.  

    Velarde, et al.,  Int J Bifurcation Chaos 2011, 21, 546 
 

 What happens if N>2? The charge density wave is formed in 

harmonic lattices at density of electrons below the critical value. 

Preliminary results: it can be formed also in anharmonic lattices.   

 



 

 

 

 

 

THANK YOU, ALL!  
Дякую!   ¡Gracias! 



Solitary wave recreated in the Union Canal near Edinburgh in 1995 

“The great solitary wave” or “Soliton community in a boat” 
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Experimental data for proteins 

 H.-B.Kraatz, I.Bediako-Amoa, S.H.Gyepi-Garbah, T.C. Sutherland, Electron 
transfer through H-bonded peptide assemblies, J.Phys.Chem, 108, 2004,20164-
20172.  

 

 R.H. Austin, et al,  PRL 84 (2000) 5435; PRL 88 ('02) 018102;  J.Phys.:Cond.Matt. 
15 ('03) S1693  

Experimental measurements of Amid-I vibration lifetime:  

      in L-alanine molecules  t= 2.7 ps  
 

       in photoactive yellow protein (β sheets):  t =15 ps     
 

      in myoglobine (α-helix):  t=400 – 500 ps 

 

Explanation: soliton formation in alpha-helix (Brizhik,Eremko, 
Zakrzewski, Piette, PRE 70 (2004) 031914; Chem. Phys. 324 (2006) 259 ) 


