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Maŕıa por ser el alma de la fiesta, a Leyter por lo mucho que le voy a echar de menos,
a Jaime, Bea y Raquel por ser los primeros en apuntarse a cualquier plan, a Nikita por
lo que se nota su falta cuando no está en Madrid, a Dani por estar siempre dispuesto a
echar una mano a quien lo necesite, a Felipe por su manera de aparecer y desaparecer,
y a Marta por su buen humor. Gracias también a Angélica, doctoranda honoraria, por
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Summary

Let F and ϕ be two analytic functions on the unit disk D with ϕ(D) ⊂ D. For an analytic
function on the unit disk f , the weighted composition transformation is defined as

TF,ϕ = F (f ◦ ϕ).

In this thesis we study three different aspects of these maps: as transformations in
a non-linear class of analytic functions, as operators between Banach spaces defined
axiomatically, and we also consider semigroups of weighted composition operators.

In Chapter 3 we characterize the symbols {F,ϕ} such that the transformation TF,ϕ

preserves the class P of analytic functions on the unit disk with positive real part
normalized so that f(0) = 1. We give three equivalent conditions for TF,ϕ(P) ⊂ P:
one in terms of test functions, an analytic one, and a geometrical one. The rest of the
chapter is devoted to some discussion on the counterbalance of the behavior of F and
ϕ, and the study of the fixed points of the transformation.

Chapter 4 introduces the family of mixed norm spaces that will be an example for
the axiomatic Banach spaces of Chapter 6. We give growth properties of functions
in these spaces, and characterize completely the inclusions between the spaces of the
family.

In Chapter 5 we study the semigroups of composition operators on the mixed norm
spaces defined in the previous chapter. Such semigroup is a family of (weighted, with
weight F ≡ 1) composition operators {Cϕt = Ct} such that C0 is the identity and
Ct+s = Ct ◦Cs. We characterize the symbols {ϕt} such that the semigroup is strongly
continuous in the mixed norm spaces, that is, the operators are bounded on the space
and for every f in the space

lim
t→0
‖Ctf − f‖ = 0.

In the final chapter we study the weighted composition operators acting on general
Banach spaces of analytic functions. We will require the spaces to satisfy some natural
axioms and characterize the operators that are weighted composition operators and
its invertibility in such spaces. We give several examples of spaces that do not satisfy
the axioms, in order to check the minimal requirements in the space for the weighted
composition operators to have the properties we are interested in.
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Resumen

Sean F y ϕ dos funciones anaĺıticas en el disco unidad D, con ϕ(D) ⊂ D. Para una
función f anaĺıtica en el disco unidad, el operador de composición ponderado se define
como

TF,ϕ = F (f ◦ ϕ).

En esta tesis estudiamos tres aspectos diferentes de estas aplicaciones: como transfor-
maciones en una clase no lineal de funciones anaĺıticas, como operadores entre espacios
de Banach definidos axiomáticamente, y también consideramos los semigrupos de op-
eradores de composición.

En el Caṕıtulo 3 caracterizamos los śımbolos {F,ϕ} tales que la transformación TF,ϕ

preserva la clase P de funciones anaĺıticas en el disco unidad con parte real positiva
y normalizadas de tal manera que f(0) = 1. Daremos tres condiciones equivalentes a
TF,ϕ(P) ⊂ P: una en términos de funciones test, una anaĺıtica, y una geométrica. El
resto del caṕıtulo está dedicado a discutir el equilibrio entre el comportamiento de F y
el de ϕ, y al estudio de los puntos fijos de la transformación.

En el Caṕıtulo 4 introducimos la familia de espacios de norma mixta, que será un
ejemplo para los espacios de Banach definidos axiomáticamente del Caṕıtulo 6. Dare-
mos propiedades de crecimiento de las funciones en estos espacios, y caracterizaremos
completamente las inclusiones entre espacios de la familia.

En el Caṕıtulo 5 estudiamos los semigrupos de operadores de composición en los
espacios de norma mixta definidos en el caṕıtulo anterior. Un semigrupo es una familia
de operadores de composición (ponderados, con peso F ≡ 1) {Cϕt = Ct} tales que C0

es el operador identidad y Ct+s = Ct ◦Cs. Caracterizamos los śımbolos {ϕt} tales que
el semigrupo que induce es fuertemente continuo en los espacios de norma mixta, es
decir, tales que los operadores están acotados en el espacio y para cada f en el espacio

lim
t→0
‖Ctf − f‖ = 0.

En el caṕıtulo final estudiamos los operadores de composición ponderados que ac-
tuan en espacios generales de Banach de funciones anaĺıticas. Pediremos que los es-
pacios cumplan algunos axiomas naturales y caracterizaremos los operadores acotados
que son operadores de composición ponderados y su invertibilidad en dichos espacios.
Daremos varios ejemplos de espacios que no satisfacen los axiomas, para comprobar los
requerimientos mı́nimos en el espacio para que el operador de composición ponderado
tenga las propiedades que nos interesan.
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Introduction

Overview of the area

Let D = {z : |z| < 1} be the unit disk in the complex plane and T = {z : |z| = 1} its
boundary. Given an analytic function on the unit disk F and an analytic self-map of the
disk ϕ, that is, an analytic function on the unit disk such that ϕ(D) ⊂ D, the weighted
composition transformation with symbols F and ϕ is defined, for any f analytic in the
unit disk, as

TF,ϕf = F (f ◦ ϕ).

Seen as operators, the weighted composition operators are the most straightfor-
ward generalization of two of the most classical of operators between spaces of analytic
functions: the composition operators and the pointwise multiplication operators. For
both the multiplication or composition operators on some classical spaces such as the
Hardy or Bergman spaces of the disk, the properties such as injectivity, surjectivity,
or invertibility have already been understood and are relatively simple. However, for
a weighted composition operator characterizing such properties does not follow auto-
matically from these earlier results and some hard work is required. It is actually even
possible to have a weighted composition operator which is bounded, surjective, and
invertible (and even more) and whose individual components (the multiplication and
the composition operator) are both unbounded operators, as our Example 4 in Section
6.2.2 shows.

We define the composition operator with symbol ϕ, Cϕ, as Cϕf = f ◦ ϕ, with f
analytic on the unit disk. The composition operators appear for the first time in an
implicit form in 1871, in the work of Schröder ([104]). He was interested in the solutions
of the spectral problem: the functions f and the constants λ such that

f ◦ ϕ = λf.

Koenigs ([81]), in 1884, solved this problem in the case when the domain is the unit
disk, ϕ has a fixed point in D and its derivative at that point has modulus smaller than
one. Further work with functions ϕ with no fixed points in D was made by Valiron in
[122] in the 30’s.

The composition operators appear also implicitly in Littlewood’s Subordination
Theorem [85] in 1925, and in Ryff’s work [102] of 1966. The study of the general
spectral properties of the composition operators began in 1968, in Nordgren’s work
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Introduction

([93]), where he determined the spectra of composition operators when the symbol is
an automorphism. The theory was futher developed by Schwartz in his thesis [105]
that contains some results on compactness, bounds of the norm, and spectra.

Since then, the composition operators have become a rich field on the borderline
between analytic function theory and operator theory. The most frequent goal is to
study the properties of the operator Cϕ such as boundedness, compactness, norm,
spectra... in terms of the function theory and geometric properties of the symbol ϕ.
They have also played a key role in de Branges’ proof of the Bieberbach conjecture,
since he recognized that the Robertson and Milin conjectures (that imply Bieberbach’s)
can be interpreted as norm inequalities involving composition operators (see [103, page
20]).

Given two vector (or Banach) spaces X and Y , an analytic function φ is a pointwise
multiplier from X to Y if φX ⊂ Y ; that is, if φf ∈ Y for any f ∈ X. We denote
by M(X,Y ) the space of all multipliers from X to Y, and by M(X) when Y = X.
Given φ ∈ M(X,Y ), we define the pointwise multiplication operator with symbol φ,
Mφ : X → Y, as Mφf = φf.

The pointwise multiplication operators are among the most classical operators. In
the Hardy spaces they are a special case of Toeplitz operators defined, for a function
φ ∈ L∞(T), as

Tφf = P (φf),

where P is the Szegö or Riesz projection from Lp(T) onto Hp. It can be defined similarly
in other spaces of analytic functions. If the function φ is analytic, then the Toeplitz
operator is simply the multiplication operator Mφ. These operators became one of the
most popular topics in the theory of operators on spaces of analytic functions in the
20th century, as the number of monographies shows, including [19], [36], [35], [92], [131].

The pointwise multiplication operators have been also studied by many authors and
in different contexts, especially in the study of their boundedness, see [17], [18], [62],
[87], [125], and [130].

The earliest references to the systematic study of weighted composition operators
appear to be [79] and [80], in the 70’s, although examples of this kind of operators
appeared before. For instance, the weighted composition operators are related to the
isometries of the Hardy space Hp, 1 ≤ p < ∞, p 6= 2, and other spaces. Note that
we need to dismiss the Hilbert case H2, since in Hilbert spaces there are many more
isometries. For instance, permutations of the elements of the orthonormal basis are
isometries. In 1960, deLeeuw proved that, if T is an onto isometry of H1, then T =
Tλϕ′,ϕ, where ϕ is an automorphism of the disk and |λ| = 1 (see [75, page 148]). Forelli
in [65] extended this result to the Hardy spaces 1 < p < ∞, p 6= 2, proving that if T
is an onto isometry of Hp, then T = Tλ(ϕ′)1/p,ϕ, with ϕ an automorphism and |λ| = 1.
The isometries of the weighted Bergman spaces are also weighted composition operators
of this type: if T is an onto isometry of Apα, then T = Tλ(ϕ′)(2+α)/p,ϕ, as Kolaski proved
(see [82]).

The weighted composition operators have also proved useful in the study of classical
operators, like the Hilbert matrix operator. Let f be an analytic function on the unit
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Introduction

disk, f(z) =
∑∞

n=0 anz
n, then the Hilbert matrix operator is defined as

Hf(z) =

∫ 1

0

f(t)

1− tz
dt =

∞∑
n=0

( ∞∑
k=0

ak
n+ k + 1

)
zn.

Diamantopoulos and Siskakis proved in [53] that the Hilbert matrix operator can be
written as

Hf(z) =

∫ 1

0
TFt,ϕtf(z)dt,

where

Ft(z) =
1

(t− 1)z + 1
and ϕt(z) =

t

(t− 1)z + 1
,

and used the fact that, for 0 < t < 1, the weighted composition operators TFt,ϕt are
bounded on Hp, 1 ≤ p ≤ ∞, to prove that the Hilbert matrix operator is bounded on
Hp, 2 ≤ p < ∞. This result was completed by Dostanić, Jevtić and Vukotić in [56],
who computed the norm of the operator and extended the results to the context of
Bergman spaces, using different techniques.

In 1974 Singh gave another application to the study of weighted composition oper-
ators. He proved in [113] that the composition operator Cψ is bounded on the Hardy
space of the half-plane

Π = {w ∈ C : Im w > 0}

if and only if the weighted composition operator TF,ϕ is bounded on Hp, with ϕ =
γ−1 ◦ ψ ◦ γ,

F (z) =

(
1− ϕ(z)

1− z

)1/p

, and γ(z) = i
1 + z

1− z
.

The weighted composition operators are also related with Brennan’s conjecture
which states that, for all simply connected planar domains G and all conformal maps
g of G onto the unit disk, the integral∫

G
|g′|pdA

is finite for 4/3 < p < 4. The conjecture can be formulated for univalent maps of D
writing τ = g−1.

Brennan proved in 1978 that the conjecture is true for 4/3 < p < 3 + δ for some
number δ > 0, see [39], and several authors afterwards were able to extend the interval,
but the conjecture is still open. At the beginning of the XXI century, Shimorin and
Smith related the conjecture to the study of a weighted composition operator. Shimorin
proved in [112] that the conjecture is equivalent to the property that all weighted
composition operators T(ϕ′)b,ϕ are bounded on A2 for ϕ conformal self-maps of the
disk and b ∈ (−1, 0). Smith in [119] considered the weighted composition operator

Tp,ϕf =

(
τ ′(ϕ(z))

τ ′(z)

)p
f(ϕ(z)),
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where τ = g−1, and proved that Brennan’s conjecture is true if and only if there exists
an analytic self-map of the disk ϕ such that Tp,ϕ is compact on A2 for −1/3 < p < 1.

Related to the weighted composition operators are the semigroups of operators.
Given a family of bounded operators {T (t)} on a Banach space X of analytic functions
depending on a positive parameter t, such family is a semigroup of operators if T (0) is
the identity operator and the family has the semigroup property, that is,

T (t+ s) = T (t) ◦ T (s).

The semigroup is called strongly continuous or C0 if for every f ∈ X we have T (t)f ∈ X
for all t ≥ 0 and

lim
t→0+

‖T (t)f − f‖X = 0,

and uniformly continuous if

lim
t→0+

‖T (t)− I‖X = 0

with I the identity operator. The theory of semigroups of bounded operators began
in 1948 with the independent works of Hille [74] and Yosida [128]. They investigated
the problem of determining the most general bounded linear operator T (t), t ≥ 0, such
that

T (t+ s) = T (t) ◦ T (s) and T (0) = I,

thus generalizing the exponential functions in infinite dimensional function spaces.

In spaces of analytic functions, the most frequently studied semigroups of operators
are the semigroups of composition operators. A family {ϕt} of analytic self-maps of
the disk is a semigroup of analytic functions if ϕ0 is the identity in D, ϕt+s = ϕt ◦ ϕs,
for all t, s ≥ 0, and ϕt → ϕ0 as t → 0 uniformly on compact sets of D. If for every
t ≥ 0 the composition operators Cϕt are bounded, then the family {Cϕt = Ct} is
a semigroup of operators. This is a particular case of the semigroups of weighted
composition operators. Given an analytic function w : D → C, consider for t ≥ 0 the
weighted composition operator

Ttf(z) =
w(ϕt(z))

w(z)
f(ϕt(z)).

If every Tt is bounded, then the family {Tt} is a semigroup. Choosing w ≡ 1, we
recover the semigroup of composition operators.

The semigroups of analytic functions {ϕt} were studied by Berkson and Porta in
[25]. They found many interesting analytic properties of the semigroup, like the fol-
lowing facts:

1. The function

G(z) := lim
t→0+

ϕt(z)− z
t

, z ∈ D,

called the infinitesimal generator of the semigroup, characterizes it uniquely.
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2. If the semigroup is not formed by automorphisms of the disk with fixed point in
D, there exists a point b in the closed disk, called the Denjoy-Wolff point of {ϕt},
such that ϕn → b (choosing the subsequence of {ϕt} with t ∈ N) or

lim
r→1

ϕt(rb) = b

if b ∈ T.

3. The infinitesimal generator can be written in terms of this point and a positive
real-part function as

G(z) = (bz − 1)(z − b)P (z), z ∈ D.

There are close connections between the semigroup of analytic functions {ϕt} and
the semigroup of operators {Ct} and {Tt}. The theory of semigroups studies spectral
properties, operator ideal properties or dynamical properties of the semigroup of opera-
tors in terms of the theory of functions. It has also been useful in proving properties of
operators on spaces of analytic functions. For instance, an application of semigroups of
composition operators to finding the full spectrum of some composition operators can
be found in [50, Thm. 7.41]. In the case of weighted compostion operators, Siskakis
proved in [117] the boundedness and spectral properties of the operator

Jf(z) =
1

1− z

∫ z

1

f(ζ)

1 + ζ
dζ

on the Hardy space. To do this, he compares this operator with the resolvent of the
semigroup of weighted composition operators

Ttf(z) =
1− ϕt(z)

1− z
f(ϕt(z)), where ϕt(z) =

(1 + et)z + et − 1

(et − 1)z + 1 + et
,

z ∈ D, t ≥ 0. The operator J is related to the classical Cesàro operator that, for an
analytic function in the unit disk f(z) =

∑∞
n=0 anz

n, is defined as

Cf(z) =
1

z

∫ z

0

f(ζ)

1− ζ
dζ =

∞∑
n=0

(
1

n+ 1

n∑
k=0

ak

)
zn.

Like the Hilbert matrix operator, the Cesàro operator can also be written as an average
of weighted composition operators, see [46].

On the other hand, transformations that preserve classes of analytic functions have
applications to variational methods for solving non-linear extremal problems in geomet-
ric function theory, see [58, Chapter 2] for a partial list of transformations that preserve
the class S of normalized univalent functions, and for applications like the proof of the
Area and Distortion Theorems. Another application for the transformations that pre-
serve a class of functions is that it could indicate the degree of rigidity when trying
to produce new functions in the class from the given ones. Some of the natural ex-
amples of transformations are the rotations e−iθf(eiθz), 0 ≤ θ < 2π, z ∈ D, and the

xiii



Introduction

dilations f(rz)/r, 0 < r < 1, z ∈ D, which are particular cases of weighted composition
transformations, so a natural question would be to characterize all the weighted compo-
sition transformations that preserve a specific class. Many classes of analytic functions
have a geometric interpretation, which in turn may help us understand better such
transformations and the role of the symbols.

Brief description of the thesis

This thesis studies the weighted composition operators and transformations between
spaces and classes of analytic functions from different points of view. First, we will
introduce in Chapter 1 the classical spaces and classes that will appear afterwards.

The second chapter also has an introductory purpose, and will present the operators
that this thesis focuses on: composition, multiplication, and weighted composition op-
erators, keeping our attention to results on boundedness on the classical spaces studied
in the first chapter, instead of a complete history of the theory. We will also present
some related topics, such as the angular derivative and the iteration theory, two issues
of geometric function theory related to the study of composition operators and that
we will need later on, and the integral or Volterra operators, linked to the study of
semigroups of operators. The last section of Chapter 2 introduces the semigroups of
operators, starting with the general theory of semigroups of bounded operators ini-
tiated by Hille and Yosida in 1948, and then presenting the theory of semigroups of
composition operators.

The third chapter is devoted to the characterization of weighted composition trans-
formations that preserve Carathéodory’s Class P. This is the class of analytic functions
f on the unit disk with positive real part and normalized so that f(0) = 1. It can be
seen that every function f ∈ P can be written as ` ◦ ω, where ω is some Schwarz-
type function (that is, |ω(z)| ≤ 1 for every z ∈ D and ω(0) = 0), and `(z) = 1+z

1−z ,
z ∈ D , is the conformal map of the disk onto the right half-plane. We will denote
by L = {`λ : |λ| = 1} the set of rotations of the half-plane function. The main theo-
rem of the chapter is the following result that characterizes the weighted composition
transformations that preserve P.

Theorem 3.2. Let ϕ be a Schwarz-type function, F ∈ P, and denote by ω the Schwarz-
type function for which F = ` ◦ ω. Then the following conditions are equivalent:

(a) TF,ϕ(P) ⊂ P.

(b) TF,ϕ(L) ⊂ P.

(c) The inequality

4|ϕ(z)| · |Imω(z)| < (1− |ω(z)|2)(1− |ϕ(z)|2) (1)

holds for all z in D. In other words,

2|ϕ(z)| ·
∣∣∣∣ ImF (z)

ReF (z)

∣∣∣∣ < 1− |ϕ(z)|2 , for all z ∈ D . (2)
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(d) The inequality

| argF (z)| < π

2
− arcsin

2|ϕ(z)|
1 + |ϕ(z)|2

(3)

holds for all z in D. Note also that

π

2
− arcsin

2|ϕ(z)|
1 + |ϕ(z)|2

=
π

2
− arctan

2|ϕ(z)|
1− |ϕ(z)|2

= arctan
1− |ϕ(z)|2

2|ϕ(z)|
, (4)

where in the case when ϕ(0) = 0 the last equality should be understood as the limit
arctan(+∞) = π

2 .

In the second part of the chapter we will try to understand better this theorem
by giving examples of the counterbalance between the range of ϕ and of F. In Section
3.2.1 we will see that, if one of the symbols is “big”, in the sense that the image of the
disk under one of the functions ϕ or ω covers most of the unit disk, then the other has
to be small. In Section 3.2.2 we take the other route to show what range must one of
the symbols have if the other one has small range. We end the section by proving a
result on the boundary behavior of both symbols, showing that, if ϕ has radial limit of
modulus one at a point of the torus, then ω cannot have angular derivative at that point.
The last part of the chapter characterizes the fixed points of the weighted composition
transformation.

The fourth chapter presents some new results on the study of the mixed norm
spaces, a family of spaces related to the Hardy and Bergman spaces. For p, q, α > 0, an
analytic function on the unit disk f is said to belong to the mixed norm space H(p, q, α)
if and only if

αq

∫ 1

0
(1− r)αq−1

(∫ 2π

0
|f(reiθ)|p dθ

2π

)q/p
dr <∞

if q <∞, and

sup
0≤r<1

(1− r)α
(∫ 2π

0
|f(reiθ)|p dθ

2π

)1/p

<∞

if q = ∞. Since the spaces H(p,∞, α) are non-separable, we also define the closure of
the polynomials in this space, the space H0(p,∞, α), that is, the space of the functions
in H(p,∞, α) such that

lim
r→1

(1− r)α
(∫ 2π

0
|f(reiθ)|p dθ

2π

)1/p

= 0.

We introduce some results on pointwise growth of functions in these spaces, including
the approximation of the norm of the point evaluation functional that will be very
useful in the following chapters. The main theorem is the complete characterization of
the inclusions between spaces of the family, depending on the three parameters.

Theorem 4.12. If p ≥ u, then

H(p, q, α) ⊆ H(u, v, β)⇔

{
α < β or

α = β and q ≤ v.
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Theorem 4.13. If p < u, then

H(p, q, α) ⊆ H(u, v, β)⇔

{
α+ 1

p < β + 1
u or

α+ 1
p = β + 1

u and q ≤ v.

This chapter may be of interest by itself and it will also provide an important class
of examples of spaces relevant for the last chapter.

The fifth chapter deals with the strong continuity of semigroups of composition
operators in several spaces of analytic functions, especially in the mixed norm spaces
defined on Chapter 4. We already know that, if {ϕt} is a semigroup of analytic func-
tions, then the family of operators {Ct = Cϕt} is a semigroup of composition operators
on a Banach space of analytic functions X, as long as Ct are bounded for every t ≥ 0 on
X. Therefore, we first characterize the self-maps of the unit disk that induce bounded
composition operators on H(p, q, α).

Proposition 5.1. Suppose 0 < p, q ≤ ∞ and 0 < α < ∞, and let ϕ : D → D be an
analytic function. Then Cϕ is bounded on H(p, q, α) and on H0(p,∞, α). Moreover, it
holds that

‖Cϕ‖ .
(
‖ϕ‖∞ + |ϕ(0)|
‖ϕ‖∞ − |ϕ(0)|

)α+ 1
p

.

If, in addition, ϕ(0) = 0, then ‖Cϕ‖ = 1.

This result will probably not surprise the experts in the area, given the similarity
of the mixed norm spaces to the Hardy and Bergman spaces, but it will also be of
help in the last chapter. Once we know that every semigroup of analytic functions
induces a semigroup of bounded composition operators, we are ready to characterize
those semigroups that are strongly continuous, that is,

lim
t→0+

‖Ctf − f‖p,q,α = 0

for every f ∈ H(p, q, α), in terms of {ϕt}. In Section 5.2 we give a general result, in the
spirit of the axiomatic results of the final chapter.

Proposition 5.2. Let {ϕt} be a semigroup of analytic functions in the unit disk and
let X be a Banach space of analytic functions such that

(i) Polynomials are dense in X;

(ii) There is a constant C > 0 such that if f and g belong to X and |f | ≤ |g|, then
‖f‖X ≤ C‖g‖X ;

(iii) M := lim supt→0+ ||Ct|| < +∞;

(iv) limt→0+ ||ϕt − ϕ0||X = 0.

Then the semigroup of operators {Ct} is strongly continuous on X.
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We will use this proposition to prove that any semigroup of analytic functions
induces a strongly continuous semigroup of composition operators in several separable
spaces of analytic functions such as the Hardy spaces Hp for p < ∞, the Bergman
spaces, and the mixed norm spaces H(p, q, α) that are separable, that is, where q <∞.
Clearly, we cannot apply this result to the spaces H(p,∞, α), and actually we know a
similar result will not be true, since we have the following example.

Proposition 4.2. For 0 ≤ r < 1, let fr(z) = f(rz), z ∈ D.

• If f ∈ H(p, q, α), 0 < p ≤ ∞, 0 < q, α <∞, then ‖fr − f‖p,q,α → 0, as r → 1.

• If f ∈ H0(p,∞, α), 0 < p ≤ ∞, 0 < α <∞, then ‖fr − f‖p,∞,α → 0, as r → 1.

Moreover, if f ∈ H(p,∞, α) and ‖fr − f‖p,∞,α → 0, as r → 1, then f ∈ H0(p,∞, α).

In other words, let ϕt(z) = e−tz, for all t ≥ 0 and z ∈ D, then fr = Cϕtf for
t = log r, and therefore the semigroup {ϕt} induces a strongly continuous semigroup of
composition operators on H(p, q, α) for q <∞, but not for H(p,∞, α).

In a similar context, that is, the study of the semigroups of composition operators
on the non-separable space BMOA, the authors of [29] define the maximal subspace of
X such that the semigroup {ϕt} generates a strongly continuous semigroup of operators
on it, denoted by [ϕt, X], that is,

[ϕt, X] = {f ∈ X : ‖f ◦ ϕt − f‖X → 0 as t→ 0}.

In this notation, the second part of Proposition 4.2 becomes

[ϕt, H(p,∞, α)] = H0(p,∞, α),

with ϕt(z) = e−tz.
In [29] the authors proved that, if X contains the constant functions and the oper-

ators {Tt} are uniformly bounded, then

[ϕt, X] = {f ∈ X : Gf ′ ∈ X},

where G is the infinitesimal generator of {ϕt}. With this characterization they were
able to relate this subspace with the boundedness of an integral operator on the space.
We devote Section 5.3 to study the integral operators on the mixed norm spaces and
find, using the characterization of the maximal subspace, that the example with the
dilations ϕt(z) = e−tz is the model for any semigroup of analytic functions, that is,
they are never strongly continuous on the whole space H(p,∞, α).

Theorem 5.14. No nontrivial semigroup induces a strongly continuous semigroup of
operators on H(p,∞, α). In other words,

[ϕt, H(p,∞, α)] ( H(p,∞, α)

for every semigroup of analytic functions {ϕt}.
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We are also able to characterize the semigroups {ϕt} with Denjoy-Wolff point inside
the disk (in other words, with fixed point in D), for which the biggest subspace where
the semigroup {Ct} is strongly continuous is H0(p,∞, α), in terms of the generator of
{ϕt}. Recall that the generator G of {ϕt} can be written as

G(z) = (bz − 1)(z − b)P (z), z ∈ D,

with b the Denjoy-Wolff point and P a function with positive real part.

Theorem 5.16. Let {ϕt} be a semigroup with Denjoy-Wolff point b ∈ D. Then

H0(p,∞, α) = [ϕt, H(p,∞, α)]⇔ 1

P
∈ H0(∞,∞, 1).

Moreover, if 1
P 6∈ H0(∞,∞, 1) then the space [ϕt, H(p,∞, α)] contains a subspace iso-

morphic to `∞.

This theorem leads to characterizations of H0(p,∞, α) in terms of the strong con-
tinuity of semigroups satisfying the hypothesis above, in the spirit of Proposition 4.2.

The final result proves that, if the Denjoy-Wolff point of the semigroup is on the
circle, then the largest subspace where the semigroup {Ct} is strongly continuous is
much bigger than H0(p,∞, α), since it contains a non-separable subspace.

Theorem 5.17. For every semigroup of analytic functions with Denjoy-Wolff point
b ∈ T the maximal subspace [ϕt, H(p,∞, α)] contains a subspace isomorphic to `∞.
Consequently, [ϕt, H(p,∞, α)] ) H0(p,∞, α).

In the sixth chapter we study the weighted composition operators as transformations
acting on spaces of analytic functions defined by a handful of axioms. The spaces we
consider will be Banach spaces of analytic functions on D or on a bounded domain
Ω where the pointwise evaluation functionals are bounded, and suppose that they
satisfy some natural axioms, such as the boundedness of the shift operator (that is, the
multiplication by the identity) or the density of polynomials. Then, we obtain several
results on boundedness of the multiplication operator, characterization of the bounded
operators that are weighted composition operators, and their invertibility. We also
give several examples of spaces that do not satisfy one of the axioms, to emphasize its
necessity.

Our first theorem is the following.

Theorem 6.2. Let X ⊂ H(Ω) be a Banach space in which the point evaluations are
bounded. Then the following conditions are equivalent:

(a) H∞(Ω) = M(X).

(b) There is a universal constant C > 0 such that if f ∈ H(Ω), g ∈ X and |f(z)| ≤
|g(z)| holds for all z ∈ D, then f ∈ X and ‖f‖X ≤ C‖g‖X .

Moreover, the least constant possible in the inequality that defines the property (DP) is
C = ‖J‖, where J is the correspondence operator J : H∞ →M(X), J(F ) = MF .
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It is easy to see that the Hardy, Bergman and weighted Banach spaces satisfy (b),
while the Bloch and Dirichlet spaces do not.

In Section 6.2 we consider Banach spaces of analytic functions on D that satisfy the
following set of axioms:

Ax1 All point evaluation functionals Λz are bounded on X.

Ax2 The set of all algebraic polynomials of z is contained in X and dense in it (in
‖ · ‖X).

Ax3 The shift operator S = Mz is bounded on X.

Ax4 lim supn→∞ ‖zn‖1/n = 1.

Ax5 Every disk automorphism induces a bounded composition operators on X.

These axioms are quite natural and are satisfied by many of the spaces defined
in Chapter 1 (see the discussion after the definition of the axioms in Section 6.2.1).
With these axioms we are able to generalize two well-known characterizations of the
multiplication and composition operators on H2: a bounded operator T on H2 is a
multiplication operator if and only if it commutes with the shift operator, while T is a
composition operator if it is multiplicative in the sense that T (fg) = Tf · Tg for all f ,
g ∈ H2 such that also fg ∈ H2.

Theorem 6.4. Let X ⊂ H(D) be a functional Banach space in which the axioms
[Ax1] - [Ax4] are fulfilled. Let T be a continuous operator on X with the property
that Tz 6= λ · T1 for every unimodular number λ. Then the following conditions are
equivalent:

(a) T is a weighted composition operator;

(b) There exists ϕ ∈ H(D) such that ϕ(D) ⊂ D and MϕT = TS;

(c) There exists ϕ, meromorphic in D, such that MϕT = TS;

(d) There exists ϕ, meromorphic in D, such that MϕnT = TSn for all integers n ≥ 0;

(e) There exists ϕ, meromorphic in D, such that ϕn · T1 = T (zn) for all integers
n ≥ 0;

(f) There exists ϕ ∈ H(D) such that ϕ(D) ⊂ D and ϕn · T1 = T (zn) for all integers
n ≥ 0;

(g) T1 · T (fg) = Tf · Tg holds for all functions f , g ∈ X for which fg ∈ X as well.

Whenever any of the conditions (a)–(g) is fulfilled, then ϕ = Tz/(T1) is the composition
symbol of T .
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To show the necessity of Axioms [Ax2] and [Ax4] we give two examples of spaces
of analytic functions not satisfying one of those axioms and where the theorem is false.
In the same context of the previous theorem we can study the invertibility of a bounded
operator on a space satisfying the Axioms [Ax1] - [Ax5].

Theorem 6.8. Let X ⊂ H(D) be a functional Banach space in which the axioms [Ax1]
- [Ax4] are satisfied and suppose that a weighted composition operator TF,ϕ is bounded
in X.

(a) If TF,ϕ is invertible in X then its composition symbol ϕ is an automorphism of
D, the multiplication symbol F does not vanish in the disk, and the inverse operator
T−1
F,ϕ is another weighted composition operator TG,ψ, whose symbols are:

G =
1

F ◦ ϕ−1
, ψ = ϕ−1 .

(b) Assuming that Axiom [Ax5] also holds, we have the following characterization.

The weighted composition operator TF,ϕ is invertible on X if and only if its compo-
sition symbol ϕ is an automorphism of D, the multiplication symbol F does not vanish
in the disk, and 1/F ∈M(X). If this is the case, then F is also a self-multiplier of X
and the inverse operator is TG,ψ, with G and ψ as above.

We then give an example of a space that fails to satisfy [Ax2] and [Ax5], and
therefore, part (b) of Theorem 6.8 does not hold. We are able to find two functions F and
ϕ such that the multiplier and composition operators induced by them are unbounded
in the space, but the weighted composition operator TF,ϕ is not only bounded but also
invertible and an involution.

In the last part of the chapter, we consider the more general setting of Banach
spaces of analytic functions in a bounded domain Ω. To study these spaces, we define
the new set of axioms

A1 All point evaluation functionals Λz are bounded on X.

A2 f0 ∈ X, where f0(z) ≡ 1.

A3 The shift operator is bounded on X.

A4 For every function f ∈ X we have
|f(z)|
‖Λz‖

→ 0 as dist (z, ∂Ω)→ 0.

A5 Each automorphism of Ω induces a bounded composition operator in X.

We obtain a similar result on invertibility of the weighted composition operators.

Theorem 6.11. Let X ⊂ H(Ω) be a Banach space which satisfies the set of ax-
ioms (A1) - (A4) and suppose that the weighted composition operator TF,ϕ is bounded
in X.

(a) If TF,ϕ is invertible in X then its composition symbol ϕ is an automorphism of
Ω and the multiplication symbol F does not vanish in Ω.
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(b) If, in addition to the axioms listed, the space X also satisfies Axiom (A5) we
have the following characterization.

The weighted composition operator TF,ϕ is invertible on X if and only if its compo-
sition symbol ϕ is an automorphism of Ω, the multiplication symbol F does not vanish
in Ω, and 1/F ∈ M(X). If this is the case, then F is also a self-multiplier of X and
the inverse operator is TG,ψ, with the symbols

G =
1

F ◦ ϕ−1
, ψ = ϕ−1 .

The example after Theorem 6.8 shows the necessity of (A4) in this context.
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Chapter 1

Spaces and classes of analytic
functions

In this chapter we introduce some classical spaces and classes of analytic functions that
will appear later in the present work.

In the case of the spaces of analytic functions, one of the properties we will be
interested in, given the nature of the operators this work focuses on, is the pointwise
growth of the functions in these spaces. Recall that for a Banach space X the point
evaluation functional is defined as

Λz : X → C, Λz(f) = f(z).

In all the spaces listed below the point evaluation functional is bounded, that is,
for every z ∈ D there exists a constant C(z) such that for every f ∈ X

|Λzf | = |f(z)| ≤ ‖f‖XC(z).

Therefore,

‖Λz‖ := sup
f∈X,
f 6≡0

|f(z)|
‖f‖X

<∞

for every z ∈ D.
Another interesting property is the conformal invariance. Let

Aut(D) = {λσa : a ∈ D, |λ| = 1}.

It is well known that the set of all disk automorphisms is Aut(D), where σa are the
automorphisms which are involutions, σa(z) = a−z

1−az . Following [9], a space X of analytic
functions in D, defined via a semi-norm ρ, is conformally invariant or Möbius invariant
if whenever f ∈ X, then also f ◦ ϕ ∈ X for any ϕ ∈ Aut(D), and moreover, ρ(f ◦ ϕ) ≤
Cρ(f) for some positive constant C and all f ∈ X.
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Chapter 1. Spaces and classes of analytic functions

1.1 Hardy Spaces

The Hardy spaces are among the most important spaces of analytic functions. Their
study began in 1915 when G. H. Hardy [71] proved, answering a question by Bohr and
Landau, that for any analytic function f on D, its integral mean

Mp(r, f) =

(
1

2π

∫ 2π

0
|f(reiθ)|pdθ

)1/p

, for 0 < p <∞,

and
M∞(r, f) = max

0≤θ<2π
|f(reiθ)|

is an increasing function on r (see [57, Chapter 1]).
The Hardy space Hp is the space of analytic functions on the unit disk for which

the integral means Mp(r, f) are bounded uniformly in r. For every p, 0 < p < ∞, the
polynomials are dense in Hp, and if 1 ≤ p ≤ ∞, the space Hp is a Banach space with
the norm

‖f‖Hp = lim
r→1

(
1

2π

∫ 2π

0
|f(reiθ)|pdθ

)1/p

, when 1 ≤ p <∞,

and
‖f‖H∞ = sup

z∈D
|f(z)|.

Moreover, H∞ is a Banach algebra and H2 is a Hilbert space with the inner product

〈f, g〉H2 = lim
r→1

1

2π

∫ 2π

0
f(reiθ)g(reiθ)dθ.

Using polar coordinates one can prove that, if f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n,

〈f, g〉H2 =
∞∑
n=0

anbn.

In particular,

‖f‖2H2 =

∞∑
n=0

|an|2. (1.1)

The theory of Hardy spaces was developed in the 1920s and 1930s by Hardy, Little-
wood, Paley, Privalov, the Riesz brothers, the Nevanlinna brothers and many others.
Important contributions were later given by Hoffman, Shapiro, Carleson, Flett, Shields,
Duren, Khavinson, Rudin and others. There are several monographs on Hardy spaces,
to note, for instance, [57], [68], [75] and [83].

One of the differential characteristics that Hardy spaces have is the boundary be-
havior of their functions.

Theorem 1.1 (Fatou’s Theorem). If f ∈ Hp, 0 < p ≤ ∞, the radial limit

f̃(θ) = lim
r→1−

f(reiθ)

exists for almost every θ ∈ [0, 2π).

2



1.1. Hardy Spaces

Moreover, the existence of the limit can be extended to any region called Stolz
angle, a non-tangential region associated to any point θ0 where the radial limit exists.
Thus the functions in Hp have non-tangential limits almost everywhere. By Fatou’s
Theorem, the norm in Hp can be rewritten as

‖f‖Hp =

(
1

2π

∫ 2π

0
|f̃(θ)|pdθ

)1/p

= ‖f̃‖Lp(T) (1.2)

and the inner product in H2 as

〈f, g〉H2 =
1

2π

∫ 2π

0
f̃(θ)g̃(θ)dθ =

〈
f̃ , g̃
〉
L2(T)

.

Therefore there exists a correspondence between the Hardy space Hp of analytic func-
tions on the unit disk and the space

H̃p = {f̃ ∈ Lp(T, dθ) : f̃(n) = 0 for any n < 0},

where f̃(n) is the n−th Fourier coefficient of f̃ .
The Hardy spaces, being Lp− type spaces with respect to a finite measure, the

inclusions

H∞ ⊂ Hp ⊂ Hq for 0 < q < p ≤ ∞

are satisfied. The proof is a direct application of Hölder’s inequality.
Another important property of Hardy spaces is the canonical factorization, initiated

by Riesz and fully developed by Smirnov. It states that every function f ∈ Hp, 0 <
p ≤ ∞, can be written as a product of three unique functions: a Blaschke product, a
singular inner function and an outer function. This is a consequence of the behavior of
the zeroes of functions in the Hardy space and Fatou’s Theorem.

Let k be a non-negative number and {an} a sequence of complex numbers such
that

∑
(1− |an|) <∞ (this is called the Blaschke property). A Blaschke product is an

analytic function on the unit disk of the form

B(z) = zk
∞∏
n=1

|an|
an

an − z
1− anz

,

z ∈ D. It satisfies |B(eiθ)| = 1 for almost every eiθ ∈ T. A singular inner function is a
function of the form

S(z) = exp

{
−
∫ 2π

0

eit + z

eit − z
dµ(t)

}
,

with µ a non-decreasing bounded function with µ′(t) = 0 at almost every t ∈ [0, 2π),
and satisfies |S(z)| < 1 if |z| < 1 and |S(eit)| = 1 at almost every t ∈ [0, 2π) with
respect to the measure dt

2π . An outer function in Hp is a function of the form

F (z) = eiγ exp

{
1

2π

∫ 2π

0

eit + z

eit − z
logψ(t)dt

}
,

3



Chapter 1. Spaces and classes of analytic functions

with logψ ∈ L1 and ψ ∈ Lp.
It can be proved that the zeroes of any Hardy function satisfy the Blaschke property.

The canonical factorization of a function f ∈ Hp will be formed by the Blaschke product
constructed with the zeroes {an} of f , the outer function F with respect to the Lp

function f̃(eit), and a singular inner function, see [57].
Moreover, an inner function is a function f such that |f(z)| < 1 if |z| < 1 and

|f̃(eit)| = 1 in almost every t ∈ [0, 2π) with respect to the measure dt
2π . They can be

factored as f = eiγBS. The names of the functions in the canonical factorization appear
for the first time in Beurling’s work [26] on invariant subspaces for the shift operator
on `2, see also [57, Chapter 2].

The Blaschke products are related not only to the zeroes and canonical characteri-
zation of functions in Hp, but also to the unit sphere of H∞, via Marshall’s Theorem,
see [83, Chapter VII B].

Theorem 1.2 (Marshall’s Theorem). The unit sphere in H∞ is the norm-closed convex
hull of the set of Blaschke products.

The functions in Hp satisfy the following sharp growth estimate ([57, Exercise 8.4]):

Proposition 1.3. If f ∈ Hp and z ∈ D, then

|f(z)| ≤
‖f‖Hp

(1− |z|2)
1
p

.

Given any number ζ ∈ D, the equality is attained at ζ only for multiples of the function

fζ(z) =

(
1− |ζ|2

(1− ζz)2

) 1
p

which satisfies ‖fζ‖Hp = 1.

This means that the point evaluation functionals Λz are bounded for every z ∈ D
and

‖Λz‖ =
1

(1− |z|2)
1
p

.

Moreover, it can be proved using the subharmonicity of |f(reiθ)|p that, for every f ∈ Hp,

|f(z)| = o(1− |z|)
1
p

as |z| → 1.

1.2 Bergman Spaces

The Bergman space Ap, 0 < p <∞, is the space of analytic functions on the unit disk
such that ∫

D
|f(z)|pdA(z) <∞,

4



1.2. Bergman Spaces

where dA is the normalized Lebesgue area measure. That is, Ap is the subspace of
Lp(D, dA) whose elements are analytic functions.

The Bergman spaces were probably studied explicitly (as spaces of analytic func-
tions) for the first time in the works of Djrbashian (see [54], [55]), although the integral
expression for analytic functions first appeared in the work of Hardy and Littlewood
[72] on properties of the integral means. Djrbashian defined the spaces and gave the
integral representation of functions in Ap. However, the development of the theory of
reproducing kernels and other important properties of the spaces began with the work
of Bergman. See his book [24]. He focused on the Hilbert case A2 in planar domains
Ω with the inner product

〈f, g〉A2 =

∫
Ω
f(z)g(z)dA(z).

If Ω = D, and f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n belong to A2, a computa-
tion in polar coordinates shows that

〈f, g〉A2 =
∞∑
n=0

anbn
n+ 1

.

In particular, the norm in A2 can be written as

‖f‖A2 =

( ∞∑
n=0

|an|2

n+ 1

)1/2

.

In general, for any 0 < p < ∞, the Bergman space Ap is a complete space of analytic
functions on the unit disk where polynomials are dense. It becomes a Banach space for
1 ≤ p <∞ with the norm

‖f‖Ap =

(∫
D
|f(z)|pdz

)1/p

.

Being subspaces of Lp with finite measure, the spaces Ap satisfy the inclusions if p < q,
then Aq ⊂ Ap.

The Bergman spaces are closely related to the Hardy spaces. Rewriting the area
integral as

1

π

∫ 1

0

∫ 2π

0
|f(reiθ)|prdθdr = 2

∫ 1

0
Mp
p (r, f)rdr

it is clear that every function in the Hardy space Hp belongs also to the Bergman
space Ap. Moreover, Hardy and Littlewood proved Hp ⊆ A2p (see also [89], [126]).
Nevertheless, the functions in the Bergman spaces are quite different from those in
the Hardy space since they may have a wild boundary behavior. Also, many well-
known techniques known for Hardy spaces concerning zero-sets, invariant subspaces,
interpolation problems or canonical divisors failed in the Bergman space. In the 90’s
there were many important advances in the theory of Bergman spaces concerning these
topics. The references [59] and [73] discuss this theory.
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Chapter 1. Spaces and classes of analytic functions

A natural generalization of theses spaces is the weighted version of this theory. Let
w be a weight, that is, a non-negative integrable function. The weighted Bergman space
with weight w, Apw, is the space of analytic functions on the unit disk such that

‖f‖Apw =

(∫
D
|f(z)|pw(z)dA(z)

)1/p

<∞.

Although Apw is a subspace of the space Lp(w dA), it is not complete in general. For
instance, Apw is not complete if w(z) = 0 in some annulus R < |z| < 1. In fact, it is
an open problem to characterize the weights w for which the space Apw is complete.
Nevertheless, it is known that the standard radial weights

wα(z) = (α+ 1)(1− |z|2)α

with α > −1 give rise to spaces Apα that are complete. Notice that the case α = 0 is
the classical Bergman space Ap.

The point evaluation functionals are bounded in these spaces, as the following the-
orem, proved in the context of the unit ball of Cn in [123], shows.

Theorem 1.4. If f ∈ Apα, 0 < p <∞, and z ∈ D, then

|f(z)| ≤
‖f‖Apα

(1− |z|2)
2+α
p

.

Given any number ζ ∈ D, the equality is attained at ζ only for multiples of the function

fζ(z) =

(
1− |ζ|2

(1− ζz)2

) 2+α
p

that satisfy ‖fζ‖Ap = 1.

Therefore, for every z ∈ D

‖Λz‖ =
1

(1− |z|2)
2+α
p

.

Besides the well-known “big-Oh” growth estimate, we have the estimate

|f(z)| = o(1− |z|)
2+α
p

as |z| → 1 for every f ∈ Apα. This is a consequence of the subharmonicity of |f |p which
yields the inequality∫

D(a,r)
|f(z)|p dA(z) ≤

∫
D
|f(z)|p dA(z) = ‖f‖pAp

for a ∈ D and r < 1, applying the Lebesgue Dominated Convergence Theorem (see [59,
Page 7]).
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1.3. Dirichlet Space

1.3 Dirichlet Space

The Dirichlet space is considered one of the classical spaces of analytic functions on the
unit disk, together with the Hardy and Bergman spaces. The definition can be traced
back to Beurling’s thesis of 1933, and the explicit name of the space to two articles of
Beurling and Deny in 1958 and 1959. It is called Dirichlet space in reference to the
Dirichlet integral in the method for solving Laplace’s equation.

The Dirichlet space D is the space of analytic functions on the unit disk satisfying∫
D
|f ′(z)|2dA(z) <∞,

where dA is the normalized area measure, that is, the analytic functions on the unit
disk whose derivative is in the Bergman space A2. It is a Hilbert space with inner
product

〈f, g〉D = f(0)g(0) +

∫
D
f ′(z)g′(z)dA(z), (1.3)

inducing the norm

‖f‖2D = |f(0)|2 +

∫
D
|f ′(z)|2dA(z).

In terms of its Taylor coefficients, if f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n, then

〈f, g〉D = a0b0 +
∞∑
n=1

nanbn

and

‖f‖2D = |a0|2 +

∞∑
n=1

n|an|2.

From this formula it is easy to see that polynomials are dense in D.
Recalling that the norm in H2 of a function f in terms of its Taylor coefficients is

‖f‖2H2 =

∞∑
n=0

|an|2,

it is clear that ‖f‖H2 ≤ ‖f‖D , and therefore D ⊂ H2. Nevertheless, there is no inclusion
relationship between the Dirichlet space and the H∞ space. The Dirichlet integral∫

D
|f ′(z)|2dA(z)

has a very natural geometric interpretation, since it is exactly the area of the image
of the unit disk under f , counted according to multiplicity. Therefore, the univalent
(analytic and injective) functions contained in the Dirichlet space are those for which
the area of f(D) is finite. Thanks to the Riemman Mapping Theorem it is possible to
construct an unbounded function in D, and thus D 6⊂ H∞. Likewise, taking an infinite

7



Chapter 1. Spaces and classes of analytic functions

Blaschke product B (that takes each value an infinite number of times), its H∞ norm
is clearly one, while we have, after the change of variables w = B(z), that∫

D
|B′(z)|2dA(z) =

∫
B(D)

nB(w)dA(w) =∞,

where

nB(w) = |{w ∈ D : B(w) = z}|

is the Nevanlinna counting function. Therefore H∞ 6⊂ D.
The previous discussion shows that the Dirichlet space has interesting geometric

properties. For instance, it was proved in [8] that it is the only (in some sense) Hilbert
conformally invariant space. It is also closely related to logarithmic potential theory
(see [61], [10]). Moreover, the Dirichlet space is a reproducing kernel Hilbert space.
That means that for every z ∈ D there exists a kernel kz ∈ D such that for any f ∈ D,

f(z) = 〈f, kz〉

(therefore the kernel reproduces the values of the functions of the space). Namely,

kz(w) = 1 + log
1

1− zw

is the kernel for the inner product defined by (1.3). Using the Cauchy-Schwarz inequal-
ity we obtain the next result.

Proposition 1.5. If f ∈ D and |z| < 1, then

|f(z)− f(0)| ≤ ‖f‖D
(

log
1

1− |z|2

)1/2

.

Once again, as in the results stated in the Hardy and Bergman cases, one can show
that in fact

|f(z)| = o

(
log

1

1− |z|2

)1/2

as |z| → 1 for every f ∈ D (see [61, Cor. 1.2.2]).

Like in the Bergman spaces, we can define the weighted Dirichlet spaces with stan-
dard radial weight Dα, α > −1, as the space of analytic functions in the unit disk such
that ∫

D
|f ′(z)|2(1− |z|2)αdA(z) <∞.

It is clear that D0 is the classical Dirichlet space. Littlewood-Paley’s identity (see [50,
p. 34]) can be used to prove that D1 = H2, and by a well-known norm equivalence,
D2 = A2.

8
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1.4 Weighted Hilbert spaces

For a sequence {β(n)} of positive numbers with β(0) = 1, the weighted Hilbert spaces
H2
β consist of all analytic functions in D with the Taylor series f(z) =

∑∞
n=0 anz

n in D
and such that

‖f‖2β =

∞∑
n=0

β(n)2|an|2.

Since the function

f(z) =

∞∑
n=0

zn

nβ(n)

belongs to the space H2
β, we have that the sequence {β(n)} must satisfy

lim sup
n→∞

1
n
√
β(n)

≤ 1.

The spacesH2
β are equipped with the following inner product: for f(z) =

∑∞
n=0 anz

n

and g(z) =
∑∞

n=0 bnz
n in D,

〈f, g〉 =

∞∑
n=0

anbnβ(n)2.

In these spaces polynomials are dense, since the Taylor polynomial of each function
converges to the same function in the norm.

They are reproducing kernel Hilbert spaces, with the kernel

kz(w) =
∞∑
n=0

zn

β(n)2
wn,

w ∈ D, and therefore the point evaluation functionals are bounded, with norm

‖Λz‖ = ‖kz‖β =
∞∑
n=0

|z|2n

β(n)2
.

As in the Hardy, Bergman, and Dirichlet case, we also have a “little-oh” growth con-
dition, which in this case depends on the sequence {β(n)}.

Theorem 1.6. In a weighted Hilbert space H2
β for which the series

∞∑
n=0

1

β(n)2

diverges, we have that, for every f ∈ H2
β,

|f(z)| = o (‖Λz‖)

as |z| → 1.

9



Chapter 1. Spaces and classes of analytic functions

Theorem 1.6 is obtained by combining the conclusions of Theorem 2.10 and Theorem
2.17 from [50].

This family of spaces was introduced by Shields in 1974 [109], see also [50]. A
frequent example of such weighted Hilbert spaces is given by the sequences {(n+ 1)γ},
γ < 1. We recover the Hardy space H2 with γ = 0, the Bergman space A2 with
γ = −1/2, the Dirichlet space D with γ = 1/2, and, in general, it can be proved (as
was done in [134] and can also be deduced by the work in [41]) that the weighted
Dirichlet space Dα is a weighted Hilbert space of this family with γ = (1− α)/2.

Notice that, as mentioned above, the Dirichlet space D is the same space as the
weighted Hilbert space H2

β, with β(n) = (n+ 1)1/2, but with the norm

‖f‖2β =
∞∑
n=0

(n+ 1)|an|2

and the reproducing kernel

kz(w) =

{
1, zw = 0,

1
zw log 1

1−zw , zw 6= 0.

1.5 Analytic Besov spaces

For 1 < p < ∞, the analytic Besov space Bp is the space of analytic functions in
the unit disk whose invariant derivative belongs to the Lp space with respect to the
hyperbolic area measure, that is, the space of analytic functions f on the unit disk D
satisfying

(p− 1)

∫
D
|f ′(z)|p(1− |z|2)p

dA(z)

(1− |z|2)2
<∞.

Equivalently, f ∈ Bp if and only if f ′ ∈ App−2. The Bp space is a Banach space with
the norm

‖f‖Bp =

(
|f(0)|p + (p− 1)

∫
D

(1− |z|2)p−2|f ′(z)|pdA(z)

) 1
p

.

The case p = 2 is the Dirichlet space.

The space B1 must be defined in a different fashion, since

(1− |z|2)−1f ′(z) ∈ L1(D, dA)

if and only if f is constant. It is usually defined in terms of the automorphisms of
the disk σa (|a| < 1) given by σa(z) = a−z

1−az . Specifically, B1 is the space of analytic
functions f on D that can be written as

f(z) =
∞∑
n=1

λnσan(z),

10
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for two sequences {λn} in `1 and {an} in D. It is a Banach space with the norm

‖f‖B1 = inf

{ ∞∑
n=1

|λn| : f(z) =
∞∑
n=1

λnσan(z)

}
.

It can also be shown that f ∈ B1 if and only if ‖f ′′‖A1 < ∞, see [9, Thm. 8].
The Besov spaces are important examples of conformally invariant spaces, since it

was proved in [9] that B1 is minimal among the “natural” conformally invariant spaces.
These spaces are also important in view of their relationship with the Bergman projec-
tion, since they arise as the images under the Bergman projection of Lebesgue spaces
of the disk with respect to the invariant measure dA(z)

(1−|z|2)2
, and the Hankel operators on

Bergman spaces.
This family of spaces does not satisfy the typical chain of inclusions that the Lp

spaces with finite measure satisfy since,
∫
D

dA(z)
(1−|z|2)2

=∞, but it can be proved that the

following inclusions hold
Bp ⊂ Bq if 1 ≤ p < q <∞.

The pointwise growth of the functions in the analytic Besov space is also known
(see [132]).

Proposition 1.7. If f ∈ Bp, 1 < p <∞, and z ∈ D, then

|f(z)− f(0)| ≤ C ‖f‖Bp
(

log
2

1− |z|2

)1− 1
p

.

In [76], the authors prove the following estimate.

Theorem 1.8. If f ∈ Bp, 1 < p <∞, then

|f(z)| = o

(
log

1

1− |z|

)1− 1
p

,

as |z| → 1.

1.6 Bloch Space

The Bloch space B is the space of analytic functions on D such that (1− |z|2)|f ′(z)| is
bounded in D. We can define a seminorm in this space as ρB(f) = supz∈D(1−|z|2)|f ′(z)|.
The norm

‖f‖B = |f(0)|+ ρB(f)

makes the Bloch space into a Banach space.
The quantity (1 − |z|2)|f ′(z)| was first explicitly studied in [106] by Seidel and

Walsh while studying the radius df (z) of the largest disk that lies on a single sheet of
the Riemann image of f and is centered at the point f(z), whenever z is not a branch
point, that is, if f ′(z) 6= 0. They showed that

df (z) ≤ (1− |z|2)|f ′(z)|.

11



Chapter 1. Spaces and classes of analytic functions

The name of the Bloch function comes from the Bloch constant, that is

1

B
= sup |f ′(0)|,

where the supremum is taken over all the analytic functions such that f(0) = 0 and
df (z) ≤ 1. Bloch proved in 1925 ([31]) that B ≥ 1/72, but the best possible bound is
still unknown, in spite of the efforts of authors such as Landau, Ahlfors, and Grunsky.
In 1970 ([96]) Pommerenke used the term “Bloch functions” for the first time, and in
1974, in [6], the Bloch space was probably defined for the first time.

In [101] the authors prove that the Bloch space is the biggest “natural” conformally
invariant space.

It can be proved that any bounded function belongs to the Bloch space, while the
function f(z) = log(1−z), with the branch of the logarithm appropriately chosen, shows
that B 6⊂ H∞. Moreover, B 6⊂ Hp for any 0 < p ≤ ∞ since we can find Bloch functions
with no boundary limits. Nevertheless, B ⊂ Ap for any p, in view of the logarithmic
growth of Bloch functions. The Bloch space is strongly related to the Bergman spaces
since the dual space of A1 can be identified with the Bloch space (see, for instance, [59,
page 48]).

Once again we find that the point evaluation functionals are bounded on B.

Proposition 1.9. If f ∈ B, then for any z ∈ D

|f(z)− f(0)| ≤ 1

2
ρB(f) log

1 + |z|
1− |z|

.

This result cannot be improved to a “little-oh” estimate, since the function f(z) =
log(1− z), satisfies

|f(z)| 6= o

(
log

1 + |z|
1− |z|

)
.

This behavior seems linked to the fact that the Bloch seminorm is defined as a “big-Oh”
condition on the growth of the derivative of f . Related to the Bloch space is the little
Bloch space B0, the closed subspace of the functions f in B such that

lim
|z|→1

(1− |z|2)|f ′(z)| = 0.

The Bloch and little Bloch spaces are different in several ways. For instance, the
little Bloch space does not contain every bounded function. Nevertheless, the functions
in the little Bloch space are characterized by the fact that can be approximated by
their dilations.

Theorem 1.10. Let f ∈ B. For r ∈ (0, 1), let fr(z) = f(rz), |z| < 1. Then f ∈ B0 if
and only if ‖fr − f‖B → 0 as r → 1−.

The previous result shows also that, unlike the Bloch space, the little Bloch space
is separable.

Corollary 1.11. The space B0 is the closure of polynomials in B.

12
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The non-separability of the Bloch space can be proved using the family of functions

fλ(z) = λ
2 log

(
1+λz
1−λz

)
, z ∈ D, with |λ| = 1. It is easy to see that the distance between

two functions of the family is
‖fλ − fµ‖B ≥ 1.

1.7 Weighted Banach Spaces H∞v

In this specific context, a function v : D→ R+ will be called a weight if it is a bounded
continuous positive function. The weighted Banach spaces with weight v are the spaces

H∞v = {f ∈ H(D) : sup
z∈D

v(z)|f(z)| <∞}

and
H0
v = {f ∈ H∞v : lim

|z|→1
v(z)|f(z)| = 0}.

These spaces appear naturally in the study of the growth of analytic functions, see, for
instance, [100], [110], [111], [7]. They are Banach with respect to the norm

‖f‖v = sup
z∈D

v(z)|f(z)|.

If lim sup|z|→1 v(z) > 0 we have that H∞v = H∞ and H0
v = {0}. Therefore, we

will only be interested in what it is called a typical weight, that is, a weight with
lim|z|→1 v(z) = 0. The spaces induced by these typical weights satisfy that (H0

v )∗∗ =
H∞v , and polynomials are dense in H0

v .
To each weight (radial or not) there is an associated growth condition. Let

Bv =

{
f ∈ H(D) : |f | ≤ 1

v
in D

}
be the unit ball of H∞v . Then the associated weight ṽ : D→ R+ is defined by

ṽ(z) =
1

sup{|f(z)| : f ∈ Bv}
,

z ∈ D. In other words, ṽ is the inverse of the norm of the point evaluation functional
in H∞v . In [27] the authors prove the following result,

Proposition 1.12. For each z ∈ D there exists a fz ∈ Bv such that |fz(z)| = 1
ṽ(z) .

Unlike the Hardy and Bergman spaces, the estimate

|f(z)|
‖Λz‖

→ 0

as |z| → 1 does not hold for every f ∈ H∞v , since the function fz ∈ Bv such that
|fz(z)| = 1

ṽ(z) satisfies

|fz(z)|
‖Λz‖

= |fz(z)|ṽ(z) ≥ 1.

13



Chapter 1. Spaces and classes of analytic functions

Nevertheless, it is true for functions in the “little-oh” space H0
v , just like in the Bloch

spaces. Moreover, we also have the following result, similar to the behavior of Bloch
functions.

Theorem 1.13. Let f ∈ H∞v . For r ∈ (0, 1), let fr(z) = f(rz), |z| < 1. Then f ∈ H0
v

if and only if ‖fr − f‖H∞v → 0 as r → 1−.

Therefore, H0
v is the closure of polynomials in H∞v .

1.8 Caratheodory’s Class P
Carathéodory’s class P is the class of analytic functions in the unit disk with positive
real part and normalized in such way that f(0) = 1. It was studied for the first time
in [43] by Carathéodory. Unlike the spaces defined above, P has no linear structure.
Nevertheless, the transformations that preserve this class have been useful in the proofs
of several theorems (see [58, Chapter 2]).

Every function f in the class P can be written as a Poisson-Stieltjes integral

f(z) =

∫ 2π

0

eit + z

eit − z
dµ(t),

where dµ ≥ 0 and
∫
dµ(t) = 1, thanks to the Herglotz Representation Theorem [58,

Chapter 1]. An important example of a function in this class is the so-called half-plane
mapping ` given by

`(z) =
1 + z

1− z
, z ∈ D ,

the conformal map of the disk onto the right half-plane. Actually, via the subordination
principle we have that every function f in P is of the form ` ◦ ω, where ω is some
Schwarz-type function (that is, |ω(z)| ≤ 1 for every z ∈ D and ω(0) = 0). Since every
Schwarz-type function has radial limits almost everywhere on the unit circle T with
respect to the normalized arc length measure dm = dθ/(2π), so does every f in P. In
the particular case when ω(z) = λz with |λ| = 1, we will use the symbol `λ to denote
the functions ` ◦ ω, that is, `λ(z) = (1 + λz)/(1 − λz). The Herglotz Representation
Theorem can be used to prove that the class P equals co (L), the closed convex hull of
the collection L = {`λ : |λ| = 1} in the topology of uniform convergence on compact
subsets of D.

As a consequence of the subordination principle, we have the growth theorem for
the functions in the class: for z ∈ D

`(−|z|) =
1− |z|
1 + |z|

≤ |f(z)| ≤ 1 + |z|
1− |z|

= `(|z|) . (1.4)

Carathéodory’s class is closely related to the class S of normalized univalent (in-
jective and analytic) functions, see for instance [58, Chapter 2] for results linking the
subclasses of starlike and convex functions to the class P. Part of the theory related to
the celebrated Bieberbach’s conjecture is linked to this class.

The following lemma, due to Carathéodory and proved around 1911, allows us to
control the behavior of the coefficients of the functions in the class P.
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1.8. Carathéodory’s Class P

Lemma 1.14. If f ∈ P and

f(z) = 1 +
∞∑
n=1

cnz
n

then |cn| ≤ 2, n = 1, 2, . . . This inequality is sharp for each n.
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Chapter 2

Operators and transformations
on spaces and classes of analytic
functions

In this second introductory chapter we define some concepts related to operators that
we will need later. The chapter begins with a review on boundedness of composition
operators and the geometric theory that we need in the study of such operators. The
second part is devoted to the pointwise multipliers and their boundedness on classical
spaces of analytic functions. The review of characterizations of boundedness of weighted
composition operators on several spaces of analytic functions is the third part. In a
short fourth subsection we define the integral operators, related with the semigroups
of operators, that form the final part of the chapter.

This chapter does not intend to give a complete history of the theory of weighted
composition operators, but just to present some results on boundedness of the different
operators on the spaces defined in Chapter 1.

2.1 Composition operators and geometric function theory

2.1.1 Composition operators

For a self-map of the disk ϕ, that is, an analytic function on the unit disk such that
ϕ(D) ⊂ D, we define the composition operator with symbol ϕ, Cϕ, as Cϕf = f ◦ϕ, with
f analytic on the unit disk. Since compositions of analytic functions are still analytic,
it is clearly a transformation from the algebra of analytic functions to itself. Moreover,
it is a linear operator.

One of the first results on the boundedness of composition operators is Littlewood’s
Subordination Theorem, of 1925 (see [85] or [57, Section 1.5]).

Theorem 2.1. Let f, ω ∈ H(D) with ω(D) ⊂ D and ω(0) = 0. Then, for every p ∈
(0,∞] and for every r ∈ (0, 1),

Mp(r, f ◦ ω) ≤Mp(r, f).
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Chapter 2. Operators and transformations

This theorem is key to prove that every self map of the disk (not only the ones that
fix the origin) induces a bounded composition operator on the Hardy spaces.

Corollary 2.2. If f ∈ Hp, 0 < p <∞, and ϕ ∈ H(D) satisfies ϕ(D) ⊂ D, then(
1

1− |ϕ(0)|2

) 1
p

‖f‖Hp ≤ ‖f ◦ ϕ‖Hp ≤
(

1 + |ϕ(0)|
1− |ϕ(0)|

) 1
p

‖f‖Hp .

The proof of both results is based on the subharmonicity of |f |p. Littlewood’s Sub-
ordination Theorem can also be used to prove an analogous upper bound for the norm
of the composition operator on Bergman spaces, while the lower bound was proved in
[127].

Theorem 2.3. If f ∈ Apα, 0 < p <∞, and ϕ ∈ H(D) satisfies ϕ(D) ⊂ D, then(
1

1− |ϕ(0)|2

)α+2
p

‖f‖Apα ≤ ‖f ◦ ϕ‖Apα ≤
(

1 + |ϕ(0)|
1− |ϕ(0)|

)α+2
p

‖f‖Apα .

The boundedness of every composition operator on the Bloch space is a consequence
of the Schwarz-Pick Lemma. On the other hand, we have already seen that H∞ 6⊂ D,
therefore, since the identity function belongs to the Dirichlet space, there are self-maps
of the disk that do not induce bounded composition operators on D. The characteriza-
tion of the self-maps of the disk ϕ such that Cϕ is bounded on D was proved in [9], via
Carleson measures. Such measures were defined by Lennart Carleson to characterize
the interpolating sequences of H∞, and to prove the Corona Theorem (see [57], [68]).
A Borel measure µ in a normed space X of analytic functions in D is a (X, p)-Carleson
measure if and only if ∫

D

|f(z)|pdµ(z) ≤ C ‖f‖pX ,

for every function f ∈ X. In other words, the embedding

I : X → Lp(µ)

is continuous. There are different characterizations of the Carleson measures in terms
of test functions or comparison with the Lebesgue measure.

The Carleson measures have become a standard technique in the study of the bound-
edness of linear operators, in particular of the composition operators. To study the
compactness, many authors have used the vanishing Carleson measures, that is, the
Borel measures that make the embedding above a compact operator.

In the case of the Dirichlet space, the characterization of the boundedness of the
composition operator is the following.

Theorem 2.4. Let ϕ ∈ H(D). The composition operator Cϕ is bounded on D if and
only if the measure dµ(w) = nϕ(w)dA(w) is an (A2, 2)-Carleson measure, where nϕ(w)
is the number of zeroes of the function ϕ− w, w ∈ D.
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2.1. Composition operators and geometric function theory

On the Besov spaces the characterization is similar to what we have on the Dirichlet
space. It can be found in [121].

Theorem 2.5. Let ϕ be a holomorphic function on D. Then Cϕ is a bounded operator
on Bp (1 < p <∞) if and only if Np(w,ϕ)dA(w) is a (Bp, p)-Carleson measure, where

Np(w,ϕ) =
∑

ϕ(z)=w

(
|ϕ′(z)|(1− |z|2)

)p−2

is the counting function for the p−Besov space.

The weighted Banach spaces are another example of a family of spaces in which
not every admissible symbol induces a bounded composition operator. The following
characterization can be found, in a more general form, in [32].

Theorem 2.6. Let v be a weight and ϕ a self-map of the disk. Then the operator Cϕ

is bounded on H∞v if and only if

sup
z∈D

ṽ(z)

ṽ(ϕ(z))
<∞ (2.1)

If v satisfies lim|z|→1− v(z) = 0, then 2.1 is equivalent to the operator Cϕ being bounded
on H0

v .

Recall that ṽ is the inverse of the norm of the point evaluation functional on H∞v . An

example of an unbounded composition operator is also given in [32]. If v(z) = e
− 1

1−|z|

and ϕ(z) = 1+z
2 , z ∈ D, then ṽ(z) = v(z) and

ṽ(r)

ṽ(ϕ(r))
= e

1
1−r →∞

as r → 1, and therefore the composition operator Cϕ is not bounded. Actually, in this
space the automorphisms of the disk do not induce bounded composition operators in
general. For example, taking ϕ(z) = σ 1

2
, we get

ṽ(r)

ṽ
(
σ 1

2
(r)
) =

e−
1

1−r

e
− 1

1− 1−2r
2−r

= e
1−4r+r2

1−r2 →∞

as r → 1, and therefore the composition operator Cσ 1
2

is not bounded on H∞v .

Another family of spaces of analytic functions for which not every automorphism
of the disk induces a bounded composition operator comes from the weighted Hilbert
spaces. For instance, let X be the weighted Hilbert space of analytic functions f(z) =∑∞

n=0 anz
n, z ∈ D, such that

∞∑
n=0

4n|an|2 <∞.
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Chapter 2. Operators and transformations

Since every function in X is analytic in the disk of radius 2, there are automorphisms
of the disk that do not belong to X and therefore do not induce bounded composition
operators on X. Nevertheless, for the family of weighted Hilbert spaces given by the
sequences {(n + 1)γ}, n ≥ 0, γ < 2, which are exactly the weighted Dirichlet spaces
D1−γ , every composition operator whose symbol is an automorphism of the disk is
bounded, as the following theorem proves (see [50, Theorem 3.5]).

Theorem 2.7. Let ν be a positive function on the unit interval with
∫
D ν(1−|z|2) dA(z) <

∞ such that, for each q > 1, there is a constant κ = κ(q) satisfying

ν(s) ≤ κν(t) whenever s ≤ qt.

For 1 ≤ p < ∞, suppose X is the Banach space of all analytic functions on the unit
disk for which the norm given by

‖f‖p = |f(0)|p +

∫
D
|f ′(z)|pν(1− |z|2)

dA(z)

π

is finite. If ϕ is an automorphism of the unit disk, then Cϕ is a bounded operator on
X.

We just need to apply this theorem with p = 2 and ν(t) = t1−γ .
The theory of composition operators is extremely rich in content, with many papers

produced in the area. More information about boundedness, compactness, spectra, and
other topics in theory of composition operators, can be found in the monographs [50]
and [108].

2.1.2 Geometric function theory

The theory of composition operators has made use of developments in geometric func-
tion theory. For instance, the compactness of the composition operator in several spaces
is given in terms of the angular derivative of the symbol, and the dynamics and the
spectra of the operator are related to the iteration theory.

Angular derivative

An analytic self-map ϕ of D is said to have an angular derivative ϕ′(ζ) (in the restricted
sense of Carathéodory [44, § 298-299]) at a point ζ on the unit circle T if it satisfies the
following two conditions:

(a) the non-tangential limit of ϕ at ζ has modulus one, and
(b) ϕ′(z) has a finite non tangential limit as z → ζ.

The following theorem, due to Julia and Carathéodory, gives an analytic character-
ization of existence of the angular derivative (see [50] or [108]).

Theorem 2.8 (Julia-Carathéodory). Suppose ϕ is a holomorphic self-map of the disk,
and ζ ∈ T. Then the following three statements are equivalent:

(1) lim infz→ζ
1−|ϕ(z)|

1−|z| = δ <∞,

20



2.1. Composition operators and geometric function theory

(2) ∠ limz→ζ
η−ϕ(z)
ζ−z exists for some η ∈ T,

(3) ∠ limz→ζ ϕ
′(z) exists, and ∠ limz→ζ ϕ(z) = η ∈ T.

Moreover,

1. δ > 0,

2. the boundary points η in (2) and (3) are the same,

3. the limit of the difference quotient coincides with that of the derivative, with both
equal to ζηδ.

It can also be proved that if ϕ has angular derivative at a point ζ, then ϕ is univalent
in some Stolz angle with vertex at ζ (see [97, p. 291]). Moreover, ϕ is conformal and
therefore the angles between curves contained in the Stolz angle are preserved.

Examples of functions with angular derivatives are the self-maps of the unit disk
that map the disk onto a horodisk, that is, a disk that is tangent to the boundary
of D, for instance the function ϕ(z) = 1+z

2 , z ∈ D, that maps the unit disk to the
disk centered at 1/2 and tangent to T at the point 1. Examples of functions that have
non-tangential limit of modulus one but do not have angular derivatives are the lens
maps. For 0 < α < 1 we will denote by λα the standard lens map given by the formula

λα(z) = (`−1 ◦ `α)(z) =
`α(z)− 1

`α(z) + 1
, z ∈ D ,

where ` is the half-plane mapping.
The lens λα is a conformal map of the unit disk onto a lens-shaped region Lα

bounded by two circular arcs (symmetric with respect to the real axis) that intersect at
the points ±1, forming an angle of opening πα at each of these points; see [108, p. 27].

The half-plane map ` is bijective between a lens-shaped region Lα and an angle
with vertex at the origin and maps in a one-to-one fashion the largest disk contained
in the lens-shaped region onto a disk tangent to the legs of the angle.

πα

Figure 2.1: Images of Lα, the angle, and the tangent disks
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Chapter 2. Operators and transformations

Another characterization of the existence of the angular derivative of a function
is given, in terms of the boundary of the image of ϕ, by the next theorem (see [108,
p. 72]).

Theorem 2.9 (Tsuji-Warschawski). Suppose Ω is a Jordan subdomain of D whose
boundary curve in a neighborhood of 1 has polar equation 1 − r = γ(|θ|), where γ :
[0, ζ] → [0, 1] is a continuous, increasing function with γ(0) = 0. Let ϕ be a univalent
map of D onto Ω, with ϕ(1) = 1. Then ϕ has an angular derivative at 1 if and only if∫ ζ

0

γ(θ)

θ2
dθ <∞.

Even though the angular derivative of ϕ need not exist anywhere on T as a finite
number, the function |ϕ′| : T → [0,∞] is well defined in this extended sense; being
lower semicontinuous ([38], Lemma 2.5), it attains its minimum on T (cf. also [50,
Proposition 2.46]).

One ought to keep in mind that the function |ϕ′| on T as above, in general, does not
coincide at all with the modulus of the boundary values of ϕ′ (if those exist). The most
obvious example is the linear map ϕ(z) = az+ b onto a disk compactly contained in D,
which happens precisely when |a|+ |b| < 1. Its usual derivative is constant everywhere,
while the angular derivative does not exist at any point on the boundary; in this case,
we interpret that |ϕ′(ζ)| =∞ for every point ζ on the unit circle.

The concept of angular derivative is fundamental in the study of compactness of
composition operators on Hardy and Bergman spaces, as well as in the iteration of
analytic self-maps of the unit disk.

Iteration Theory

If ϕ is a holomorphic self-map of D and n is a positive integer, then the n-th iterate of
ϕ is the n-fold composition of ϕ with itself, denoted by

ϕn = ϕ ◦ ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
n times

,

with ϕ0 the identity. The iterates of a self-map of the disk are related to the dynamics
of the composition operator that it induces, since

Cn
ϕ = Cϕn .

The behavior of the family {ϕn} as n→∞ is determined by its fixed points, as the
following theorem shows, see [108, Chapter 5].

Theorem 2.10 (Denjoy-Wolff). Suppose ϕ is a self-map of the disk that is not an
automorphism with a fixed point in D. Then there is a point b in the closed unit disk
such that ϕn → b uniformly on compact subsets of D.
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2.2. Pointwise Multipliers

Such a point b is called the Denjoy-Wolff point of ϕ. If b ∈ D, then it is a fixed
point of ϕ, while if b ∈ ∂D then it is a boundary fixed point in the sense that

lim
r→1

ϕ(rb) = b.

If ϕ is an elliptic automorphism of the disk, then the iterates never converge to the
fixed point (think of b = 0 and ϕ a rotation).

2.2 Pointwise Multipliers

Let X and Y be two Banach spaces of analytic functions on D. An analytic function
φ is a pointwise multiplier from X to Y if φX ⊂ Y ; that is, if φf ∈ Y for any f ∈ X.
We denote by M(X,Y ) the space of all multipliers from X to Y, and by M(X) when
Y = X. Given φ ∈ M(X,Y ), we define the pointwise multiplication operator with
symbol φ, Mφ : X → Y, as Mφf = φf.

Using the boundedness of the point evaluation functionals we can prove a necessary
condition for a function to multiply a Banach space to itself, see [3].

Proposition 2.11. Let X be a non-trivial Banach space of analytic functions on the
unit disk where the point evaluation functionals are bounded. If φ ∈ M(X), then
φ ∈ H∞ and ‖φ‖∞ ≤ ‖Mφ‖.

Therefore, if a function induces a bounded multiplier from such Banach space into
itself, the symbol must be bounded. There are several spaces in which this property
is also sufficient, like the Hardy, Bergman, and weighted Banach spaces. Nevertheless,
there are bounded functions that do not multiply the Bloch space into itself. The
following theorem, from [40], characterizes the space M(B).

Theorem 2.12. The function φ is a multiplier from B into itself if and only if φ ∈ H∞
and

|φ′(z)| = O

(
1

(1− |z|) log(1/1− |z|)

)
, |z| → 1. (2.2)

Therefore, φ is not only bounded, but also belongs to a smaller space called the
logarithmic Bloch space. In the Dirichlet space the space of multipliers is also strictly
contained in the space of bounded functions, as the following theorem of Stegenga, from
[120], shows.

Theorem 2.13. An analytic function φ is a multiplier from D to itself if and only if
φ is bounded and there exists a constant A such that

∫∫
∪S(Ij)

|φ′|2 dx dy ≤ ACap

 n⋃
j=1

Ij

 ,

for any finite disjoint collection of arcs I1, I2, . . . , In of the unit circle, where Cap is
the logarithmic capacity and S(Ij) is the Carleson square of Ij , j = 1, 2, . . . , n.
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Chapter 2. Operators and transformations

This result is based on the logarithmic capacity (see [69, Chapter III] for more
information on Potential Theory) and on Carleson measures of D. The multipliers of
Besov spaces can be characterized using Carleson measures too, but in [135] and [67]
the authors find a more manageable result. Here ∆(w, r) denotes the pseudo-hyperbolic
disk of center w and radius r,

∆(w, r) =

{
z ∈ D :

∣∣∣∣ z − w1− wz

∣∣∣∣ < r

}
.

Theorem 2.14.

(a) If φ ∈ H∞ ∩M(Bp), 1 < p <∞ and 0 < r < 1, then

sup
w∈D

∫
∆(w,r)

(1− |z|2)p−2|φ′(z)|p
(

log
2

1− |z|2

)p−1

dA(z) <∞.

(b) If 1 < p <∞, φ ∈ H∞ and∫
D

(1− |z|2)p−2|φ′(z)|p
(

log
2

1− |z|2

)p−1

dA(z) <∞,

then φ ∈M(Bp).

In the last chapter we will see how the space of multipliers depends on the form of
the norm of X.

2.3 Weighted Composition Operators

A natural generalization of both the composition and the multiplication operators is the
weighted composition operators. For an analytic function F and an analytic self-map
ϕ the weighted composition operator with symbols F and ϕ, TF,ϕ is the operator

TF,ϕf = F (f ◦ ϕ).

Therefore, TF,ϕ = MFCϕ. Clearly, if both the multiplication and the composition
operator are bounded then the weighted composition operator is bounded too, but the
converse is not true. We will later see in the last chapter an example of a bounded
weighted composition operator whose multiplication and composition components are
both unbounded operators.

We can find bounded weighted composition operators where the multiplier symbol
is not a bounded function.

As noted in the introduction, the weighted composition operators are related to
many other operators in spaces of analytic functions, such as the isometries of the
Hardy and Bergman spaces, the Hilbert matrix, and the composition operators on the
Hardy space of the half-plane, and are in the basis of an interesting new technique
in the study of Brennan’s conjecture. Their applications and the fact that they are
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2.3. Weighted Composition Operators

a natural generalization to composition operators and pointwise multipliers have led
to the beginning of the theory of weighted composition operator and the study of
classical concepts in operator theory such as its boundedness, compactness, invertibility,
spectra,...

In 2001, Contreras and Hernández–Dı́az studied in [49] the boundedness, compact-
ness, weak compactness, and complete continuity of weighted composition operators on
Hardy spaces Hp, 1 ≤ p <∞. The theorem that characterizes the boundedness of the
weighted composition operators is the following.

Theorem 2.15. Let F ∈ Hp and ϕ ∈ H(D) with ϕ(D) ⊆ D and

µϕ,F,p(E) =

∫
ϕ−1(E)∩T

|F |pdm,

where E is a measurable subset of the closed unit disk. Then the weighted composition
operator TF,ϕ is bounded on Hp, 1 ≤ p <∞, if and only if µϕ,F,p is a (Hp, p)-Carleson
measure on D.

In 2004, in [51], Čučkovic and Zhao characterized the boundedness of the weighted
composition operators on Bergman spaces in terms of the ϕ-Berezin transform, that
for a function v ∈ L1(D) is defined as

Bϕv(a) =

∫
D

(1− |a|2)2v(z)

|1− aϕ(z)|4
dA(z).

Theorem 2.16. Let F,ϕ ∈ H(D) with ϕ(D) ⊆ D. The weighted composition operator
TF,ϕ is bounded on A2 if and only if Bϕ(|F |2) ∈ L∞(D).

They generalized this result to different Bergman spaces using a generalized Berezin
transform in 2007 in [52]. The boundedness of the weighted composition operators on
the Dirichlet and Besov spaces was also given in terms of the Berezin transform by
Kumar and Singh [84].

Theorem 2.17. Let F,ϕ ∈ H(D) with ϕ(D) ⊆ D, and suppose that the measure ν, with

ν(E) =

∫
ϕ−1(E)

|F ′(z)|p(1− |z|2)p−2dA(z),

where E is a measurable subset of the unit disk, is a vanishing (Bp, p)-Carleson measure.
Then TF,ϕ is a bounded operator on Bp if and only if

sup
a∈D

∫
D

(
1− |a|2

|1− aw|

)p
dµ(w) <∞,

where

µ =

∫
ϕ−1(E)

|F (z)ϕ′(z)|p(1− |z|2)p−2dA(z).

25
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The boundedness of the weighted composition operator on Bloch spaces was given
by Ohno and Zhao in [94].

Theorem 2.18. Let F,ϕ ∈ H(D) with ϕ(D) ⊆ D. The weighted composition operator
TF,ϕ is bounded on B if and only if the following conditions are satisfied:

sup
z∈D

(1− |z|2)|F ′(z)| log
2

1− |ϕ(z)|2
<∞, and

sup
z∈D

1− |z|2

1− |ϕ(z)|2
|F (z)ϕ′(z)| <∞.

In the weighted Banach spaces H∞v the boundedness was characterized also by
Contreras and Hernández–Dı́az, in [48].

Theorem 2.19. Let v be a weight and F,ϕ ∈ H(D) with ϕ(D) ⊆ D. The weighted
composition operator TF,ϕ is bounded on H∞v if and only if

sup
z∈D
|F (z)| ṽ(z)

ṽ(ϕ(z))
<∞.

There is a vast literature on weighted composition operators, regarding not only
boundedness of the operator between different spaces of analytic functions, but also
compactness, weak compactness, essential norm, dynamics... Among the numerous
more recent references, we mention [15], [33], [34], [60] and [47].

2.4 Integral operators

Let g be an analytic function on the unit disk and Vg the integral operator or generalized
Volterra operator induced by it, namely,

Vg(f)(z) =

∫ z

0
f(ζ)g′(ζ) dζ, f ∈ H(D)

for any z ∈ D. In the case g(z) = z, the integral operator Vg is the classical Volterra
operator, V, that is,

V (f)(z) =

∫ z

0
f(ζ) dζ, f ∈ H(D).

This operator was first considered by Pommerenke on the Hardy space H2 (see [98]),
while studying the properties that an analytic function f must satisfy so its exponential
ef belongs to the Hardy space. In the 90’s, Aleman and Siskakis developed the theory
on Hardy and Bergman spaces. See for example the papers [4], [5]. The following
theorem, from [5], gives information on the symbol of bounded and compact integral
operators in a general setting.

Theorem 2.20. Let X a Banach space of analytic functions such that

1. the point evaluation functionals Λz are bounded in X for every z ∈ D,
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2. for every λ ∈ T the rotation operator Uλf(z) = f(λz), z ∈ D, is bounded and
supλ∈T ‖Uλ‖X < ∞, and

3. for some s ∈ (0, 1) the composition operator Cψf = f ◦ψs with ψs(z) = sz+1−s,
z ∈ D, is bounded on X.

Let g be an analytic function on the unit disk.

(a) If Vg : X → X is bounded then g ∈ B and there is a constant C (which does not
depend on g) such that ‖g‖B ≤ C‖Vg‖.

(b) Moreover, if the multiplication operator Mzf(z) = zf(z) is bounded on X and,
for some fixed t ∈ (0, 1), it is satisfied that limn→∞ ‖(tz+ 1− t)nf(z)‖ = 0 for all
f ∈ X, then the compactness of Vg on X implies g ∈ B0.

Much more information on integral operators, including a review of the results on
Hardy and Bergman spaces and the motivation related to the Cesàro operators, can
be found in Aleman’s lecture notes [2]. In the next section we will present the relation
between integral operators and semigroups of composition operators.

2.5 Semigroups of operators and functions

2.5.1 Semigroups of bounded operators

Let X be a Banach space of analytic functions on the unit disk D. A family {T (t)}t≥0

of bounded operators on X forms a semigroup if it satisfies the following

1. T (0) = I, where I is the identity in the space of bounded operators on X,

2. T (t+ s) = T (t) ◦ T (s), for all t, s ≥ 0.

Such a family of bounded operators {T (t)} is called strongly continuous or C0 if for
every f ∈ X

lim
t→0+

‖T (t)f − f‖X = 0,

and uniformly continuous if

lim
t→0+

‖T (t)− I‖X = 0.

Thanks to the strong continuity the semigroup of bounded operators satisfies

‖T (t)‖ ≤Meβt

for 0 ≤ t < ∞ and for some constants M > 0 and β < ∞. Therefore, the semigroup
{e−βtT (t)} is an equibounded strongly continuous semigroup,

‖e−βtT (t)‖ ≤M
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for 0 ≤ t <∞. The strong continuity is also a natural condition for the applications in
physical systems such as the heat equation, to avoid breakdown in time due to small
measurement errors in the initial state. Other applications of this theory appear in
stochastic processes and integration of the evolution equations, such as diffusion, wave,
and Schrödinger equations, see also [129, Chapter IX].

The infinitesimal generator of the semigroup is a linear operator that summarizes
the properties of the semigroup and that characterizes it univocally. It is defined as

Af = lim
t→0

T (t)f − f
t

=
∂T (t)f

∂t

∣∣∣∣
t=0

on the set

D(A) =

{
f ∈ X : lim

t→0

T (t)f − f
t

exists

}
,

called the domain of A. Observe that this is a straightforward generalization of the
model for semigroups of bounded operators, the case T (t) = eAt, since

T ′(t) = AeAt = AT (t).

The domain is always dense in X, and it is all of X if and only if the semigroup is
uniformly continuous. In that case, the operator A is a bounded operator in X and
T (t) = eAt, recovering the semigroup from the infinitesimal generator. If T (t) is strongly
but not uniformly continuous, then it can be proved that A can be approximated by
infinitesimal generators Aλ of uniformly continuous semigroups (this is called the Yosida
Approximation) and therefore

T (t) = lim
λ→∞

eAλt,

recovering T (t) from A, see [95, Section 1.3].

2.5.2 Semigroups of self-maps of the disk and of composition opera-
tors

A family {ϕt : t ≥ 0} of analytic self-maps of the disk D is a (one-parameter) semigroup
of analytic functions if it satisfies the following three conditions:

1. ϕ0 is the identity in D,

2. ϕt+s = ϕt ◦ ϕs, for all t, s ≥ 0,

3. ϕt → ϕ0 as t→ 0 uniformly on compact sets of D.

The semigroups of analytic functions can be understood as fractional iterations of
ϕ, thus generalizing the usual discrete iterations ϕn. Some examples of such semigroups
are the following:
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1. Rotations and dilations: for a constant c with Re c ≥ 0, the family

ϕt(z) = e−ctz

is a semigroup. Notice that the images of ϕt(D) are disks centered at the origin,
and if Re c = 0, then it is a family of rotations.

2. Horodisks: the semigroup

ϕt(z) = e−tz + 1− e−t

maps the disk to horodisks tangent to the unit circle at 1.

3. Smaller disks: the family

ϕt(z) =
e−tz

(e−t − 1)z + 1

is a semigroup in which every self-map of the disk fixes the points 0 and 1. The
image of D is a shrinking tangent disk to D at 1.

For t ≥ 0 we can define the composition operators Ct, that is, Ctf = f ◦ ϕt for
f ∈ H(D). Let X be a Banach space of analytic functions on the unit disk, then
if the operator Ct is bounded on X, the family {Ct} is an algebraic semigroup of
bounded operators on X. The aim of the theory of semigroups of composition operators
is to understand operator-theoretic properties, such as strong and uniform continuity,
spectrum, ideals or dynamics of the semigroup of composition operators, in terms of
geometric function theory.

The study of composition semigroups was started by E. Berkson and H. Porta in
1978. In [25] they found several properties of the semigroups of analytic functions and
later applied them to the study of the strong and uniform continuity of semigroups of
composition operators in the Hardy spaces. Some of the properties they found are the
following.

• If {ϕt} is a semigroup, then each map ϕt is univalent.

• The infinitesimal generator (or simply generator) of {ϕt} is the function

G(z) := lim
t→0+

ϕt(z)− z
t

, z ∈ D.

This convergence holds uniformly on compact subsets of D, so G ∈ H(D). The
generator satisfies

G(ϕt(z)) =
∂ϕt(z)

∂t
= G(z)

∂ϕt(z)

∂z

and characterizes the semigroup uniquely.

29



Chapter 2. Operators and transformations

• As a consequence of the Denjoy-Wolff Theorem 2.10, if the semigroup is not
formed by automorphisms of the disk with fixed point in D there exists a point b
in the closed disk, called the Denjoy-Wolff point of {ϕt}, such that ϕn → b (here
we chose the subsequence of {ϕt} with t ∈ N). If b is in the interior then it is a
fixed point of ϕt, while if b is on the boundary, then it is an attractive fixed point,
since

lim
r→1

ϕt(rb) = b.

• If {ϕt} is non-trivial, that is, if not every self-map in the semigroup is the identity
function, the generator G has a unique representation

G(z) = (bz − 1)(z − b)P (z), z ∈ D,

where P ∈ H(D) with ReP ≥ 0 in D and b ∈ D is the Denjoy-Wolff point of
the semigroup. The trivial semigroup ϕt(z) = z for every t ≥ 0 and z ∈ D has
generator G ≡ 0.

• If {ϕt} is non-trivial, there exists a unique univalent function h : D → C, called
the Koenigs function of {ϕt} such that:

– If b ∈ D then h(b) = 0, h′(b) = 1,

h(ϕt(z)) = eG
′(b)th(z), z ∈ D

for t ≥ 0, and
h′(z)G(z) = G′(b)h(z), z ∈ D.

– If b ∈ T then h(0) = 0,

h(ϕt(z)) = h(z) + t, z ∈ D

for t ≥ 0, and
h′(z)G(z) = 1, z ∈ D.

In the examples above, we have that:

1. the only fixed point of the semigroup is the origin, and therefore the Denjoy-Wolff
point is b = 0. The infinitesimal generator is

G(z) = −cz,

2. the semigroup has a unique fixed point in the boundary, that is also the Denjoy-
Wolff point, b = 1. The generator is

G(z) = 1− z,

3. the semigroup has two fixed points, and the Denjoy-Wolff point is the interior
one, b = 0. The generator is

G(z) = −z(1− z).
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With the properties above, Berkson and Porta were able to prove that every semi-
group of composition operators is strongly continuous on Hp, 1 ≤ p < ∞, that the
infinitesimal generator of Ct is related with the infinitesimal generator of the semi-
group of analytic functions as Af(z) = G(z)f ′(z), and that no nontrivial semigroup of
analytic functions induces a uniformly continuous semigroup of composition operators
on Hp. Similar results were found on Bergman and Dirichlet spaces by Siskakis in [114]
and [115]. See also his excelent survey [116]. Nevertheless, on H∞ the only strongly
continuous semigroup of composition operators is the trivial one. This is a consequence
of Lotz’ Theorems 3.5 and 3.6 in [86] that prove that in a class of spaces that includes
H∞ every strongly continuous semigroup is also uniformly continuous.

Other spaces where not every semigroup of analytic functions induces a strongly
continuous semigroup of composition operators are BMOA (see [30] and [29]), the Bloch
space (see [29]), and the weighted Banach space (see [22]). In [29] the authors study the
strong continuity of semigroups of composition operators on a general Banach space of
analytic functions X. They define the maximal closed linear subspace of X such that the
semigroup {ϕt} generates a strongly continuous semigroup of operators on it, denoted
by [ϕt, X], that is,

[ϕt, X] = {f ∈ X : ‖f ◦ ϕt − f‖X → 0 as t→ 0}.

They are able to characterize this subspace in terms of the generator of the semigroup
of analytic functions, as the following theorem shows.

Theorem 2.21. Let {ϕt} be a semigroup with generator G and X a Banach space of an-
alytic functions which contains the constant functions and such that supt∈[0,1] ‖Ct‖X < ∞.
Then,

[ϕt, X] = {f ∈ X : Gf ′ ∈ X}.

Therefore, in order to prove that the semigroup {ϕt} with generator G induces a
strongly continuous semigroup of composition operators on X we need only see that

{f ∈ X : Gf ′ ∈ X} = X.

Based on this observation, they give another characterization of [ϕt, X] via the integral
operator. Given a semigroup {ϕt} with generator G and Denjoy-Wolff point b, we
define the function γ : D→ C, called the associated g-symbol of {ϕt}, as

γ(z) =

∫ z

b

ζ − b
G(ζ)

dζ

for b ∈ D and

γ(z) =

∫ z

0

1

G(ζ)
dζ

for b ∈ ∂D.

Proposition 2.22. Let {ϕt} be a semigroup with associated g-symbol γ. Let X be a
Banach space of analytic functions with the properties:
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Chapter 2. Operators and transformations

(i) X contains the constant functions;

(ii) For each b ∈ D, f ∈ X ⇔ f(z)−f(b)
z−b ∈ X;

(iii) If {Ct} is the induced semigroup on X then supt∈[0,1] ‖Ct‖ <∞.

Then
[ϕt, X] = X ∩ (Vγ(X)⊕ C),

where Vγ is the Volterra operator with associated g-symbol defined above.

Since we can write the generator function G as G(z) = (bz − 1)(z − b)P (z), z ∈ D,
with Re P ≥ 0, and by composition with an automorphism of the disk, if b ∈ D we can
assume b = 0, we may write

γ(z) =

∫ z

0

ζ

G(ζ)
dζ = −

∫ z

0

1

P (ζ)
dζ.

If b ∈ ∂D, without loss of generality we can take b = 1, so G(z) = (1− z)2P (z) and

γ(z) =

∫ z

0

1

(1− ζ)2P (ζ)
dζ.

Therefore, to study the strong continuity of a semigroup of composition operators,
we need only study the image of an integral operator (possibly unbounded, as on the
Bloch space).

Finally, the authors of [29] are also able to generalize the relation of the infinitesimal
generator of the semigroup of composition operators with the infinitesimal generator
of the semigroup of analytic functions present in the theory of semigroups on Hardy,
Bergman and Dirichlet spaces.

Theorem 2.23. Let {ϕt} be a semigroup with generator G and X a Banach space of
analytic functions such that {Ct} is strongly continuous on X. Then the infinitesimal
generator A of {Ct} is given by A(f)(z) = G(z)f ′(z) with domain

D(A) = {f ∈ X : Gf ′ ∈ X}.
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Chapter 3

Characterizations of weighted
compositions transformations
preserving the class P

As indicated in the two previous chapters, the class P is the class of analytic functions
on the unit disk f with positive real part such that f(0) = 1, while we denote by TF,ϕ

the weighted composition transformation, that is, for f ∈ H(D)

TF,ϕf = F (f ◦ ϕ).

The aim of this chapter is to characterize and understand the weighted composition
transformations that preserve the class P. Transformations that preserve classes of
analytic functions have proved useful in the proofs of extremal problems for those
classes, see [58, Chapter 2]. The class P has also a clear geometric interpretation.
Considering the principal branch of the argument function with values in (−π, π] we
have that for any function f in P, the function arg f takes on the values only in
(−π/2, π/2) and is a continuous function in the disk. Moreover, the argument of the
product of two such functions f and g in P, with values in (−π, π), is still continuous
and the formula

arg (fg) = arg f + arg g

holds throughout D. This fact will allow us to understand the counterbalance between
the images of F and of f ◦ ϕ, and therefore the behavior of ϕ.

This chapter is based on the reference [13].

3.1 Multipliers, composition and weighted composition
transformations

First we will understand the simplest cases of weighted composition transformations,
the multipliers and composition transformations. The following proposition shows that
the only multipliers that preserve the class P are the trivial ones.
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Chapter 3. Characterizations of weighted compositions transformations

Proposition 3.1. If F f ∈ P for all f in P then F ≡ 1.

Proof. Since Ff ∈ P, by the growth theorem for the functions in P we have

|F (z)| · |f(z)| ≤ 1 + |z|
1− |z|

for all z in D. Also, for any fixed z we may choose f to be a suitable rotation of the
half-plane function for which

|f(z)| = 1 + |z|
1− |z|

.

It follows that |F (z)| ≤ 1 for all z ∈ D. Since F (0) = 1, the maximum modulus
principle implies that F is identically constant, hence F ≡ 1.

To characterize the composition transformations that preserve Carathéodory’s class,
recall that every function f ∈ P can be written as f = ` ◦ ω, where ` is the half-plane
mapping

`(z) =
1 + z

1− z
and ω is a Schwarz-type function, that is ω(D) ⊆ D and ω(0) = 0. Now, it is easy to
see that f ◦ ϕ ∈ P for every f ∈ P if and only if ϕ is a Schwarz-type function as well.

Before characterizing the weighted composition transformations that preserve the
class P, we will see the necessary conditions that the symbols F and ϕ must satisfy to
make the inclusion TF,ϕ(P) ⊂ P possible. First, since the function f ≡ 1 belongs to
P, we have that F (f ◦ ϕ) = F ∈ P. Moreover, choosing f(z) = 1 + z, another function
obviously in P, we get

1 = F (0)f(ϕ(0)) = 1 + ϕ(0) ,

hence ϕ(0) = 0. Thus, from now on we shall always work assuming these hypotheses:
F ∈ P and ϕ is a Schwarz-type function.

We now characterize all admissible ordered pairs (F,ϕ) for which the weighted
composition transformation TF,ϕ preserves the class P. Recall that L = {`λ : |λ| = 1}
is the set of all rotations of the half-plane function `(z) = 1+z

1−z .

Theorem 3.2. Let ϕ be a Schwarz-type function, F ∈ P, and denote by ω the Schwarz-
type function for which F = `◦ω. Consider the argument function defined earlier. Then
the following conditions are equivalent:

(a) TF,ϕ(P) ⊂ P.

(b) TF,ϕ(L) ⊂ P.

(c) The inequality

4|ϕ(z)| · |Imω(z)| < (1− |ω(z)|2)(1− |ϕ(z)|2) (3.1)

holds for all z in D. In other words,

2|ϕ(z)| ·
∣∣∣∣ ImF (z)

ReF (z)

∣∣∣∣ < 1− |ϕ(z)|2 , for all z ∈ D . (3.2)
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3.1. Multipliers, composition and w.c. transformations

(d) The inequality

| argF (z)| < π

2
− arcsin

2|ϕ(z)|
1 + |ϕ(z)|2

(3.3)

holds for all z in D. Note also that

π

2
− arcsin

2|ϕ(z)|
1 + |ϕ(z)|2

=
π

2
− arctan

2|ϕ(z)|
1− |ϕ(z)|2

= arctan
1− |ϕ(z)|2

2|ϕ(z)|
, (3.4)

where in the case when ϕ(0) = 0 the last equality should be understood as the limit
arctan(+∞) = π

2 .

Note that condition (b) simply states that it suffices to test the action of TF,ϕ on the
set L. Condition (c) gives an effective analytic way of testing if a symbol is admissible
or not while (d) provides conditions of geometric type.

It should be also noted that in the above result the inequalities in conditions (c)
and (d) are both invariant under rotations of ϕ but not under the rotations in ω (or
under the appropriate changes in F ).

Proof. We will show that (a) ⇔ (b), (b) ⇔ (c), and (c) ⇔ (d).

(a) ⇔ (b) . The implication (a)⇒ (b) is obvious so we only have to see that (b)⇒
(a). Recall that, by the Herglotz Representation Theorem, P equals co (L), the closed
convex hull of the collection L in the topology of uniform convergence on compact
subsets of D. Thus, we need only prove that TF,ϕ(P) = TF,ϕ(co (L)) ⊂ P as long as
TF,ϕ(L) ⊂ P.

First, if TF,ϕ(L) ⊂ P we also have that TF,ϕ(co (L)) = co TF,ϕ(L) ⊂ P as the
class P is clearly convex. Moreover, if fn → f uniformly on compact subsets of D,
then also F (fn ◦ ϕ)→ F (f ◦ ϕ) in the same topology. Since P is a compact family (in
the classical terminology, meaning a closed set in the compact-open topology), we get
TF,ϕ(P) = TF,ϕ(co (L)) = TF,ϕ(co (L)) ⊂ P.

(b) ⇔ (c) . To verify that (3.1) is equivalent to (3.2), one easily checks that if

F = ` ◦ ω then

F =
1 + ω

1− ω
=

1 + 2iImω − |ω|2

1− 2Reω + |ω|2

and ∣∣∣∣ ImF (z)

ReF (z)

∣∣∣∣ = 2
|Imω(z)|

1− |ω(z)|2
.

To see that (b) ⇒ (c), suppose that F (f ◦ ϕ) ∈ P for all f in L. In other words,
F (`λ ◦ ϕ) ∈ P for all λ of modulus one and therefore also

F (`λ ◦ ϕ) =
1 + ωλ
1− ωλ

for the Schwarz-type functions ωλ depending on each λ. This leads to the equation

1 + ω

1− ω
1 + λϕ

1− λϕ
=

1 + ωλ
1− ωλ
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Chapter 3. Characterizations of weighted compositions transformations

which holds in the entire unit disk. Solving for ωλ, we get

ωλ =
λϕ+ ω

1 + λϕω
.

The condition |ωλ| < 1 in D is equivalent to

|λϕ+ ω|2 < |1 + λϕω|2

which amounts to the inequality

|ϕ|2 + |ω|2 + 2Re {λϕω} < 1 + |ϕω|2 + 2Re {λϕω} . (3.5)

Grouping the terms in (3.5) we obtain

2Re {λϕ(z)(ω(z)− ω(z))} < (1− |ω(z)|2)(1− |ϕ(z)|2)

for each z in D and for arbitrary λ with |λ| = 1. For each point z we can choose the
argument of λ appropriately so as to get

2Re {λϕ(z)(ω(z)− ω(z))} = 4|ϕ(z)| · |Imω(z)| .

Since this is valid at every point z in the disk, the statement (3.1) follows.

To see that (c) ⇒ (b), it suffices to observe that

2Re {λϕ(z)(ω(z)− ω(z))} ≤ 4|ϕ(z)| · |Imω(z)|

and it is now easy to reverse the steps in the above proof.

(c) ⇔ (d) . Since F ∈ P, we know that | argF | < π/2. Thus, inequality (3.2) is

clearly equivalent to

2|ϕ(z)| · | tan(argF (z))| < 1− |ϕ(z)|2 , z ∈ D ,

which is the same as

| tan(argF (z))| < 1− |ϕ(z)|2

2|ϕ(z)|
, z ∈ D ,

understanding the right-hand side as +∞ when ϕ(z) = 0. The inverse tangent function
is odd so this is the same as

| argF (z)| < arctan
1− |ϕ(z)|2

2|ϕ(z)|
, z ∈ D .

Equalities (3.4) follow by elementary trigonometry, so the proof is complete.
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3.2 Some consequences and discussions

In this section we will apply Theorem 3.2 to specific examples of symbols to understand
the relation between the range of F and of ϕ. In the first subsection we will see what
happens when one of the symbols is “big”, in the sense that the image of either ϕ
or ω covers most of the unit disk. In the second subsection we will have one of the
symbols bounded, and we will check what conditions must the other symbol satisfy in
order to have the transformation preserve P. In the last subsection we will compare
the boundary behavior of the symbols.

3.2.1 Some rigidity principles

Recall that, as we saw in Section 1.1, functions in H∞ have radial limits ϕ(ζ) =
limr→1 ϕ(rζ) for almost every point ζ on the unit circle T with respect to the normalized
Lebesgue arc length measure, and that a function is inner if |ϕ(z)| ≤ 1 for all z in D
(equivalently, ‖ϕ‖∞ ≤ 1) and also |ϕ(ζ)| = 1 almost everywhere on T. The following
result generalizes our Proposition 3.1.

Proposition 3.3. Let F ∈ P and let ϕ be inner. Then TF,ϕ(P) ⊂ P if and only if
F ≡ 1.

Proof. The bounded functions ϕ and ω have radial limits almost everywhere on the
circle. Thus, for almost every ζ ∈ T we may pass to the limit as z → ζ in inequality
(3.1) to conclude that Imω(ζ) = 0 almost everywhere on T. To see that this implies
that ω is zero, let g be the analytic function g = exp{iω}, then it has boundary values
on the circle have modulus one almost everywhere, and thus ‖g‖∞ = 1. Moreover, since
g(0) = 1 it follows that g ≡ 1, and from here ω ≡ 0 (that is, F ≡ 1).

Here is the counterpart of this statement with assumptions on ω.

Proposition 3.4. Let F = ` ◦ ω, where ω is an inner function. Then TF,ϕ(P) ⊂ P if
and only if ϕ ≡ 0.

In the proof we will need the following classical fact that follows from the theorems of
Fatou and Nevanlinna [57, Theorem 2.2]: each function in H∞ has radial limits almost
everywhere, and log |f(eiθ)| is integrable unless f ≡ 0. In particular, if f ∈ Hp satisfies
f = 0 in a set of positive measure of the boundary, then f ≡ 0 because log |f(eiθ)| is
not integrable.

Proof. After passing to the radial limits in (3.1) we get that ϕ Imω = 0 almost every-
where on the unit circle.

If ϕ = 0 only on a set of measure zero on the circle, then Imω = 0 almost everywhere
on the circle. From the proof of the previous theorem we know that ω ≡ 0, which
contradicts our initial assumption. Hence ϕ = 0 on a set of positive measure. It follows
that ϕ ≡ 0.

It is easily seen from Theorem 3.2 that any admissible multiplication symbol F can
only carry a very small portion of the boundary of the unit disk to the imaginary axis.

37



Chapter 3. Characterizations of weighted compositions transformations

Proposition 3.5. Let F ∈ P, let ϕ and ω be two Schwarz-type functions, ϕ 6≡ 0, and
suppose that F = ` ◦ ω and TF,ϕ preserves P as before. Denote the radial limits of F
again by F and let

A = {ζ ∈ T : ReF (ζ) = 0} = {ζ ∈ T : |ω(ζ)| = 1, ω(ζ) 6= 1} .

Then m(A) = 0.

Proof. Suppose m(A) > 0. After passing on to the radial limits in (3.1), we obtain

4|ϕ(ζ)| · |Imω(ζ)| ≤ (1− |ω(ζ)|2)(1− |ϕ(ζ)|2)

for almost all ζ with |ζ| = 1. If ζ ∈ A then |ω(ζ)| = 1 and therefore ϕImω = 0 holds
at almost every point of A (note that ϕ may not have radial limits at some subset of
A of total measure zero). Since the measure of A is positive and ϕ 6≡ 0, we must have
Imω(ζ) = 0, that is, either ω = 1 or ω = −1 on a set of positive measure in A. The
first case is excluded by the definition of A and the second case implies that ω ≡ −1
in D, which is impossible in view of the assumption that ω(0) = 0. This shows that
m(A) = 0.

In the context of (linear) weighted composition transformations the case in which
F = φ′ is often important. However, in our context it should be noted that in this case
we only obtain another rigidity situation. Namely, assuming that Tφ′,φ(P) ⊂ P and
choosing f ≡ 1 we get φ′ ∈ P hence φ′(0) = 1. The case of equality in the Schwarz
lemma forces φ(z) = z, hence F = φ′ ≡ 1, so our transformation Tφ′,φ reduces to the
identity map.

3.2.2 Cases where one of the symbols has small range

Many non-trivial examples of weighted composition transformations that preserve class
P are possible when ϕ(D) is compactly contained in D or F (D) is contained in a sector,
as the following results show.

Proposition 3.6. Let F ∈ P and let ϕ be a Schwarz-type function such that ‖ϕ‖∞ =
R < 1. Then whenever the function F satisfies

| argF (z)| < π

2
− arcsin

2R

1 +R2

for all z in D, we have that TF,ϕ(P) ⊂ P.

Proof. Follows from criterion (d) of Theorem 3.2 and the fact that the function 2x/(1+
x2) is increasing in the interval (0, 1).

Example 1. An explicit example is ϕ(z) = Rz, 0 < R < 1, and

F (z) =

(
1 + z

1− z

)ε
, 0 < ε < 1− 2

π
arcsin

2R

1 +R2
,

a conformal map of the unit disk onto an angular sector with vertex at the origin.
Condition (3.3) is clearly satisfied.
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Proposition 3.7. Let F ∈ P and K = supz∈D | argF (z)| < π
2 . Write K = arcsin 2R

1+R2 ,
0 ≤ R < 1. If ϕ is a Schwarz-type function such that

‖ϕ‖∞ ≤
1−R
1 +R

then TF,ϕ(P) ⊂ P.

Proof. By assumption,

| argF (z)| ≤ K = arcsin
2R

1 +R2
, z ∈ D .

In view of condition (3.3) from Theorem 3.2 it suffices to check that

arcsin
2R

1 +R2
<
π

2
− arcsin

2|ϕ(z)|
1 + |ϕ(z)|2

holds for all z in D. Equivalently,

2|ϕ(z)|
1 + |ϕ(z)|2

< sin

(
π

2
− arcsin

2R

1 +R2

)
= cos

(
arcsin

2R

1 +R2

)
must hold throughout D. This will certainly be satisfied if

2‖ϕ‖∞
1 + ‖ϕ‖2∞

≤ cos

(
arcsin

2R

1 +R2

)
(3.6)

in view of monotonicity of the function u(x) = 2x
1+x2

in [0, 1). But (3.6) is clearly
equivalent to

2‖ϕ‖∞
1 + ‖ϕ‖2∞

≤ cos

(
arcsin

2R

1 +R2

)
=

√
1−

(
2R

1 +R2

)2

=
1−R2

1 +R2
.

This yields an elementary quadratic inequality in ‖ϕ‖∞ which is easily seen to be
satisfied whenever

0 ≤ ‖ϕ‖∞ ≤
1−R
1 +R

.

This proves the statement.

We now formulate a counterpart of Proposition 3.6 with similar hypotheses on ω
instead of ϕ which follows from our previous result.

Corollary 3.8. Let F = ` ◦ ω ∈ P, where ω is a Schwarz-type function. If ‖ω‖∞ < 1
and ϕ is a Schwarz-type function such that

‖ϕ‖∞ <
1− ‖ω‖∞
1 + ‖ω‖∞

then TF,ϕ(P) ⊂ P.
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Proof. Let R = ‖ω‖∞ < 1. Then the function F is clearly subordinated to the function

`R(z) =
1 +Rz

1−Rz

in the usual sense that F = `R ◦
(
ω
R

)
. Thus, F (D) ⊂ `R(D). To prove the result, we

will use Proposition 3.7, and therefore we need to bound the argument of F. By the
subordination, it is enough to bound the argument of `R. It is plain that `R(D) is the
disk whose diameter has endpoints

`R(−1) =
1−R
1 +R

, `R(1) =
1 +R

1−R
,

hence its center and radius are respectively

C =
1 +R2

1−R2
, ρ =

2R

1−R2
.

Let us denote by CR = {z ∈ C : |z − C| = ρ} the boundary of this disk. Let a be
the point of intersection of the circle CR with its tangent from the origin in the upper
half-plane. By looking at the right triangle determined by the origin and the points a
and C, we infer that

arg a = arcsin
ρ

C
= arcsin

2R

1 +R2
.

1
1−R
1+R

ρ
=

2R1−
R

2
1+R
1−R

a

C = 1+R2

1−R2

Figure 3.1: The circle CR

One argues similarly for the point of tangent in the lower half-plane and obtains
that, for every z in D,

| argF (z)| < arcsin
2R

1 +R2
.

The conclusion now follows from Proposition 3.7.

Notice that the fact that F (D) is contained in a sector means that, for every z ∈ D,

| tan(argF (z))| = 2
|Imω(z)|

1− |ω(z)|2
≤ tan

απ

2
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with α ∈ (0, 1). In terms of the Schwarz-type function ω, this means that

2|Imω(z)| ≤ tan
απ

2
(1− |ω(z)|2).

Since the image of
2

C
|y| ≤ 1− x2 − y2,

with C <∞ and x+ iy ∈ D is the intersection of two disks of radius 1+ 1
C2 and centers

i
C and −iC , F (D) contained in a sector means that ω(D) is contained in a lens-shaped
region. Our next result essentially shows that when ω fills the region, that is, when the
multiplication symbol is obtained by composing the half-plane map with a lens map,
the statements of Proposition 3.6 and Proposition 3.7 can be unified into a single “if
and only if” statement.

Proposition 3.9. Let F = `◦λα, where λα is a lens map, and let ϕ be a Schwarz-type
function. Then TF,ϕ(P) ⊂ P if and only if

‖ϕ‖∞ ≤
1−R
1 +R

,

where 2R
1+R2 = sin απ

2 .

Proof. Suppose first that ‖ϕ‖∞ ≤ 1−R
1+R . Then, since

sup
z∈D
| arg F (z)| = απ

2
= K = arcsin

2R

1 +R2
,

by Proposition 3.7 it follows that TF,ϕ(P) ⊂ P. Now, if TF,ϕ(P) ⊂ P, by condition
(3.3) of Theorem 3.2 we have

| arg F (z)|+ arcsin
2|ϕ(z)|

1 + |ϕ(z)|2
<
π

2
.

Therefore, for almost every ζ ∈ T,

arcsin
2|ϕ(ζ)|

1 + |ϕ(ζ)|2
≤ π

2
− απ

2
=
π

2
− arcsin

2R

1 +R2
.

Then, as in the proof of Proposition 3.7,

2‖ϕ‖∞
1 + ‖ϕ‖2∞

≤ sin

(
π

2
− arcsin

2R

1 +R2

)
=

1−R2

1 +R2
,

and from here,

‖ϕ‖∞ ≤
1−R
1 +R

.
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3.2.3 Composition symbols with radial limits of modulus one and/or
angular derivatives

Our next result shows that if ϕ possesses even a mildly reasonable boundary behavior
at a point on the unit circle then ω automatically cannot be “too good” at the same
point.

Theorem 3.10. Let F ∈ P, let ϕ and ω be two Schwarz-type functions, ϕ 6≡ 0, F = `◦ω
and suppose that at some point ζ on the unit circle the function ϕ has radial limit of
modulus one. Then if the transformation TF,ϕ preserves P, the function ω cannot have
angular derivative at ζ.

Proof. Note that TF,φ preserves P if and only if the transformation TFλ,φλ preserves P,
where Fλ(z) = F (λz) and φλ(z) = φ(λz), whenever |λ| = 1. Hence, we may assume
without loss of generality that ζ = 1.

Suppose that ω has angular derivative at ζ = 1. Then the radial limit ω(1) exists and
|ω(1)| = 1. Taking the angular limit as z → 1 in (3.1), we conclude that Im {ω(1)} = 0.
Thus, either ω(1) = −1 or ω(1) = 1.

Let us first consider the case ω(1) = −1. Since at ζ = 1 the angular derivative of
ω is neither 0 nor ∞, we know (see Section 2.1.2) that it is actually univalent in some
Stolz domain with vertex at z = 1:

∆ = {z : | arg (1− z)| < θ, r < |z| < 1}

for suitable r ∈ (0, 1) and θ > 0. Also, as is also noted in Section 2.1.2, the function ω
preserves angles between curves contained in ∆ ∪ {1} that meet at z = 1. This shows
that there exists a curve γ : [0, 1]→ ∆ ∪ {1} with γ(1) = 1 and which is mapped by ω
onto some non-horizontal segment

S = {−1 + seiα0 : 0 ≤ s ≤ s0} , 0 < |α0| <
π

2
,

for an appropriate value of s0. (To see this, it suffices to look at the image under ω
of the suitable Stolz domain mentioned earlier with vertex at 1, which will contain
another Stolz domain with vertex at −1, and to select α0 and s0 so that the segment S
is contained in this new Stolz angle and is not contained in the real axis). Keeping in
mind that F = `◦ω and ` is a Möbius transformation which maps the diameter (−1, 1)
to the positive semi-axis, we see that

arg F (γ(t)) = arg `(ω(γ(t)))→ α0 , as t→ 1− .

Therefore, taking the limit as z → 1 along γ in (3.3), we obtain |α0| ≤ 0, which is
contrary to our construction of the segment S. This completes the proof in the case
when ω(1) = −1.

By (3.1), TF,φ preserves P if and only if TG,φ with G = (1− ω)/(1 + ω) does, so we
can argue as above in the case when ω(1) = 1 to get a contradiction again.
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There are two ways in which the function ω can fail to have angular derivative:
either it does not have a radial limit of modulus one or it does but the differential
quotient fails to have a limit at the point in question. Here is an example of the first
kind. It deals with the map ϕ such that ϕ(D) has a tangential contact with the unit
circle. The price we pay for this is that ω is a dilated self-map of the disk (hence, in
this example ω(D) is compactly contained in D).

Example 2. For K ≥ 3/2, let

ϕ(z) =
z(1 + z)

2
, ω(z) =

z(2− z)
2K

.

Both are clearly Schwarz-type functions. Obviously, ϕ(1) = 1 and ϕ is conformal at
z = 1 since ϕ′(1) 6= 0. For a sufficiently large value of K (which will be determined
below) one can also check that our condition (3.1) is satisfied, hence TF,ϕ(P) ⊂ P.
Indeed, it is immediate that

Imω(z) =
y(1− x)

K
, z = x+ iy .

Checking our condition (3.1) in this case reduces to verifying that

2 |z(1 + z)y| (1− x)

K
<

(
1−

∣∣∣∣z(1 + z)

2

∣∣∣∣2
)(

1−
∣∣∣∣z(2− z)2K

∣∣∣∣2
)

holds for all z in D. (Note that as z → 1, both sides tend to zero but the strict inequality
is maintained). Since x2 + y2 = |z|2 < 1, it is clear that

2 |z(1 + z)y| (1− x)

K
<

4(1− x)

K

while the right-hand side can be estimated from below as follows:(
1−

∣∣∣∣z(1 + z)

2

∣∣∣∣2
)(

1−
∣∣∣∣z(2− z)2K

∣∣∣∣2
)

>

(
1− |1 + z|2

4

)(
1− 9

4K2

)
=

(
1− (1 + x)2 + y2

4

)(
1− 9

4K2

)
≥

(
1− 2 + 2x

4

)(
1− 9

4K2

)
=

1− x
2

(
1− 9

4K2

)
so it is only left to check that

4(1− x)

K
<

1− x
2

(
1− 9

4K2

)

for K large enough and |x| < 1, which is clear. The inequality holds for all K > 4+

√
73

2
.

43



Chapter 3. Characterizations of weighted compositions transformations

The natural question arises as to whether it is possible to have an example where
both ϕ and ω can have radial limits of modulus one at the same point (obviously, with-
out having an angular derivative at the point in question) but the weighted composition
TF,ϕ still preserves P. The following example, illustrated by the figure below, gives an
affirmative answer.

Example 3. Consider the planar domain

Ω = {x+ iy : 4|y|
√
x2 + y2 < (1− x2 − y2)2} ,

clearly symmetric with respect to both the real and imaginary axes. Let ω be a con-
formal map of D onto Ω which fixes the origin. Starting with the subdomain of Ω in
the upper half-plane and using the Schwarz reflection principle, one can also choose ω
in such a fashion that it fixes the diameter (−1, 1) and ω(1) = 1 in the sense of a radial
limit. Let ϕ = ω. It can now easily be checked that our condition (3.1) is satisfied,
hence TF,ϕ(P) ⊂ P.

Figure 3.2: The boundary of the leaf-shaped region Ω.

Note, however, in relation to this “leaf-shaped” region that our mapping ω = ϕ has
boundary contact with the unit circle but does not have angular derivative at z = 1.
The intuitive reason for this is that the corners at −1 and 1 are contained in lens-shaped
regions and lens maps do not have angular derivatives. A rigorous proof of this fact can
be given by using subordination, or by noting that, if ω had angular derivative at the
point 1, then it would preserve angles in a Stolz domain with vertex at 1 (see Section
2.1.2), but the shape of the image of D by ω prevents this behaviour.

Alternatively, one can write the equation of the boundary of Ω in polar coordinates:

4r2| sin θ| = (1− r2)2 .
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3.3. Fixed points of weighted composition transformations

Solving for r, one obtains

1− r2(θ) = 2

(√
sin |θ|+ sin2 |θ| − sin |θ|

)
.

Let 1− r(θ) = γ(|θ|), with γ : [0, π]→ [0, 1]. Then for a fixed 1 > ε > 0 we have∫ π

0

γ(|θ|)
θ2

dθ ≥
∫ ε

0

γ(|θ|)
θ2

dθ =

∫ ε

0

1− r2(θ)

θ2(1 + r(θ))
dθ

≥
∫ ε

0

2
(√

sin θ + sin2 θ − sin θ
)

2θ2
dθ

≥
∫ ε

0

√
sin θ + sin2 θ − θ

θ2
dθ ≥

∫ ε

0

√
sin θ − θ
θ2

dθ

≈
∫ ε

0

√
θ(1−

√
θ)

θ2
dθ ≥

∫ ε

0

1−
√
ε

θ3/2
dθ =∞

Thus, by the Tsuji-Warschawski Theorem 2.9 the function ϕ has no angular derivative
at 1.

3.3 Fixed points of weighted composition transformations
that preserve P

In the last section of this chapter, we find the fixed points of the weighted composition
transformations in P. Even though we are working in a non-linear context, it is possible
to adapt the arguments typical for such situations, see [108, Sect. 6.1].

Theorem 3.11. Let TF,ϕ be a weighted composition transformation such that TF,ϕ(P) ⊂
P, where F = `◦ω, ϕ and ω are Schwarz-type functions, and ϕ is not a rotation. Then
TF,ϕ has a unique fixed point which is obtained by iterating TF,ϕ applied to arbitrary f
in P.

In the case when ϕ is inner but not a rotation, the unique fixed point is the constant
function one.

Proof. We first show that the limit of iterates of TF,ϕ applied to an arbitrary function
f in P is a fixed point of the transformation. Recall that the n-th iterations of ϕ were
defined in Section 2.1.2 as ϕn+1 = ϕn ◦ ϕ, n ≥ 0, with ϕ0 the identity function. Let
f ∈ P. It is easy to see by induction that

F (F ◦ ϕ) . . . (F ◦ ϕn−1)(f ◦ ϕn) = Tn
F,ϕf ∈ P

for any integer n ≥ 1. By our assumptions on ϕ, the origin is its only fixed point in
D. Since ϕ is not a disk automorphism, it follows that ϕn → 0 uniformly on compact
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Chapter 3. Characterizations of weighted compositions transformations

subsets of D by the Denjoy-Wolff Theorem 2.10, and therefore, f ◦ ϕn → 1 uniformly
on compact subsets as n→∞. On the other hand,

n−1∏
k=0

(F ◦ ϕk) =
n−1∏
k=0

1 + ω ◦ ϕk
1− ω ◦ ϕk

,

so proving the uniform convergence on compact subsets of the infinite product

∞∏
k=0

(F ◦ ϕk)

is equivalent to proving the convergence on compact subsets of D of the sums

n−1∑
k=0

∣∣∣∣1− 1 + ω ◦ ϕk
1− ω ◦ ϕk

∣∣∣∣ = 2

n−1∑
k=0

∣∣∣∣ ω ◦ ϕk
1− ω ◦ ϕk

∣∣∣∣ .
For r ∈ (0, 1) fixed, letm(r) = max|z|≤r |ϕ(z)|. Let δ = m(r)/r. Clearly, δ < 1 since ϕ is
not a rotation. Applying the Schwarz lemma to ϕ(rw)/m(r), we get |ϕ(rw)|/m(r) ≤ |w|
for any w ∈ D, and from here

|ϕ(z)| ≤ m(r)

r
|z| = δ|z|

whenever |z| ≤ r. Iterating this inequality, we get

|ϕk(z)| ≤ δ|ϕk−1(z)| ≤ . . . ≤ δk|z|

for |z| ≤ r. Using the fact that ω is a Schwarz-type function, we obtain∣∣∣∣1− 1 + ω ◦ ϕk
1− ω ◦ ϕk

∣∣∣∣ = 2

∣∣∣∣ ω ◦ ϕk
1− ω ◦ ϕk

∣∣∣∣ ≤ 2
|ω ◦ ϕk|

1− |ω ◦ ϕk|
≤ 2

|ϕk|
1− |ϕk|

≤ 2
δkr

1− δkr
≤ 2r

1− r
δk

in the disk {z : |z| ≤ r}. Thus, the series

∞∑
k=0

∣∣∣∣1− 1 + ω ◦ ϕk
1− ω ◦ ϕk

∣∣∣∣
converges uniformly on compact subsets of the disk and the infinite product

∏∞
k=0(F ◦

ϕk) is uniformly convergent on compact subsets to some function G analytic in D.
Moreover, since P is a compact class, G ∈ P. Combining both limits, we obtain

Tn
F,ϕf = F (F ◦ ϕ) . . . (F ◦ ϕn−1)(f ◦ ϕn)→ G

uniformly on compact subsets as n → ∞ for any f ∈ P. Now we can see that G is a
fixed point of the transformation. Applying TF,ϕ to G we have

TF,ϕG = F (G ◦ ϕ) = F

(
lim
n→∞

n−1∏
k=0

(F ◦ ϕk)

)
◦ ϕ = F

(
lim
n→∞

n−1∏
k=0

(F ◦ ϕk+1)

)

= F

(
lim
n→∞

n∏
k=1

(F ◦ ϕk)

)
= lim

n→∞

n∏
k=0

(F ◦ ϕk) = G .
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3.3. Fixed points of weighted composition transformations

Note that G as constructed above does not depend on the initial choice of the function
f in P. Now it is clear that this G is the only fixed point of TF,ϕ, because if g ∈ P
satisfies TF,ϕg = g, iterating the transformation we get

g = Tn
F,ϕg → G

uniformly on compact subsets of D.
It is only left to check our final comment in the statement of the theorem. Since ϕ

is an inner function, by Proposition 3.3 we have F ≡ 1, so the equation for the fixed
point, f ◦ ϕ = f, is the classical Schröder’s equation for the composition operator Cϕ

corresponding to the eigenvalue λ = 1. The only solution f for this equation is the
constant, since, if f satisfies f ◦ ϕ = f, then iterating we have

f = f ◦ ϕ = f ◦ ϕ ◦ ϕ = . . . = f ◦ ϕn.

Again, as ϕn → 0 uniformly on compact subsets of the unit disk as n→∞, this means
that f = f ◦ ϕn → f(0) = 1 uniformly on compact subsets of the unit disk as n→∞,
and therefore f ≡ 1.

The case when ϕ is a rotation leads to the well-known case of fixed points from the
theory of composition operators, describing a trichotomy: the identity map, a rational
rotation or an irrational rotation.

Proposition 3.12. Let TF,ϕ be a weighted composition transformation that preserves
P, where F = ` ◦ ω, ω is a Schwarz-type functions, and ϕ is a rotation. Then the set
of all fixed points of TF,ϕ is as follows:

(a) all of P, if ϕ(z) ≡ z;
(b) the functions with n-fold symmetry: f(z) = g(zn), g ∈ P, whenever ϕ(z) = λz,

where λn = 1 for some n > 1;
(c) only the constant function one, if ϕ(z) = λz, where |λ| = 1 and λn 6= 1 for all

n ∈ N.

Proof. Since ϕ is an inner function, Proposition 3.3 forces F ≡ 1, hence TF,ϕf = f ◦ϕ.
Part (a) now follows trivially.

Parts (b) and (c) follow readily by comparing the Taylor series of both sides of the
equality f(λz) = f(z) in the disk.
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Chapter 4

Mixed norm spaces

In this chapter we introduce the mixed norm spaces, a family of spaces related to the
Hardy, Bergman and weighted Banach spaces. They have an interesting dual behavior
depending on one of the parameters. If the parameter is finite, the norm is given by an
integral, and the behavior is similar to the Bergman spaces, while if the parameter is
infinite, the norm is given by a supremum, and therefore they are closer to the weighted
Banach spaces.

After an introductory section to define these spaces, we will give pointwise and
mean estimates in Section 2, and then we will characterize the inclusions between the
different spaces.

This chapter is based on the paper [11].

4.1 Definition

The mixed norm space H(p, q, α), p, q, α > 0, is the space of analytic functions on the
unit disk such that ∫ 1

0
(1− r)αq−1M q

p (r, f) dr <∞,

for q <∞, and
sup

0≤r<1
(1− r)αMp(r, f) <∞

for q =∞.
Like in the Bergman spaces case, this expression first appears in Hardy and Little-

wood’s paper on properties of the integral mean [72], in the following theorem relating
the mixed norm spaces and the Hardy spaces.

Theorem 4.1 (Hardy, Littlewood, 1932). If f ∈ Ht, 0 < t < p and q ≥ t, then∫ 1

0
(1− r)q

(
1
t
− 1
p

)
−1
M q
p (r, f) dr ≤ C‖f‖Ht .

They were explicitly defined in Flett’s works [63], [64]. Since then, these spaces
have been studied by many authors (see [1], [28], [41], [66], [118]). Recently, the mixed
norm spaces are mentioned in the works [20], [21], [11], and the monograph [78].
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Chapter 4. Mixed norm spaces

For any 0 < p, q ≤ ∞, 0 < α <∞ the space H(p, q, α) is a complete subspace of the
space L(p, q, α) of measurable functions in D (see [23]), and for q ≥ 1 they are Banach
spaces with the norm

‖f‖p,q,α =

(
αq

∫ 1

0
(1− r)αq−1M q

p (r, f) dr

)1/q

,

for q <∞, and

‖f‖p,∞,α = sup
0≤r<1

(1− r)αMp(r, f).

As in the case of the Bloch and Weighted Banach spaces, we have a Banach space
given by a supremum. We define the “little-oh” space H0(p,∞, α) as the space of the
functions f in H(p,∞, α) such that

lim
r→1

(1− r)αMp(r, f) = 0.

We have the following results for these spaces [78, Proposition 7.1.3.]:

Proposition 4.2. For 0 ≤ r < 1, let fr(z) = f(rz), z ∈ D.

• If f ∈ H(p, q, α), 0 < p ≤ ∞, 0 < q, α <∞, then ‖fr − f‖p,q,α → 0, as r → 1.

• If f ∈ H0(p,∞, α), 0 < p ≤ ∞, 0 < α <∞, then ‖fr − f‖p,∞,α → 0, as r → 1.

Moreover, if f ∈ H(p,∞, α) and ‖fr − f‖p,∞,α → 0, as r → 1, then f ∈ H0(p,∞, α).

A first consequence of Proposition 4.2 is that polynomials are dense in H(p, q, α),
0 < p ≤ ∞, 0 < q, α < ∞ and H0(p,∞, α), 0 < p ≤ ∞, 0 < α < ∞. The closure in
H(p,∞, α) of the set of all analytic polynomials is H0(p,∞, α).

This result was also proved by Lusky in [88] in a more general setting. He also
proved the following theorem.

Theorem 4.3. The space H(p, q, α) is reflexive for 1 < q <∞ and

H0(p,∞, α)∗∗ = H(p,∞, α).

These spaces are closely related to the spaces already studied in the first chapter,
since we can identify the weighted Bergman space Apα, 0 < p < ∞, α > −1, with the

space H
(
p, p, α+1

p

)
and the Hardy space Hp with the limit case H(p,∞, 0). They are

also related to other spaces of analytic functions, such as Besov and Lipschitz spaces,
via fractional derivatives (see [78, Chapter 7]), and, for q = ∞, with the Weighted
Banach spaces H∞v with weight v(r) = (1− r)α.

Familiar examples of analytic functions on the unit disk are the functions of type
(1 − z)−γ , with γ a real constant. It is well known that such function is in the Hardy
space Hp if and only if γ < 1/p and in the Bergman space Ap if and only if γ < 2/p.
The following lemma determines when these functions belong to H(p, q, α) (see [20]).
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4.1. Definition

Lemma 4.4. Let 0 < p ≤ ∞, 0 < α < ∞. The functions f(z) = 1
(1−z)γ belong to

H(p, q, α), 0 < q < ∞, if and only if γ < α + 1/p, and to H(p,∞, α) if and only if
γ ≤ α+ 1/p.

Starting with these examples we can search for functions with faster growth for
z ∈ R, 0 < z < 1. The following lemma gives us examples of functions which attain the
critical exponent shown in the last lemma, but still belong to the space (see [20]).

Lemma 4.5. Let 0 < p ≤ ∞, 0 < α <∞. The functions

f(z) =
1

(1− z)α+1/p

(
log

e

1− z

)−c
belong to H(p, q, α) if and only if c > 1/q for q <∞, and c ≥ 0 for q =∞.

Another well-known class of analytic functions is the class of lacunary series. By a
classical theorem of Paley [78, Theorem 6.2.2], such series belongs to the Hardy space
Hp if and only if the sequence formed by its coefficients belongs to the `2 space. In that
case (and only then) the function has radial limits almost everywhere, and otherwise,
has radial limits almost nowhere. The following result appears in [78, Thm. 8.1.1],
based on [90].

Lemma 4.6. Let f(z) =
∑∞

n=1 an z
2n−1

and 0 < p, q ≤ ∞, 0 < α < ∞. Then f ∈
H(p, q, α) if and only if {2−nαan} ∈ `q.

In particular, there are functions with radial limits almost nowhere in eachH(p, q, α)
with α > 0 (for instance, the lacunary series with coefficients equal to 1 satisfies∑∞

n=0 2−nαq|an|q < ∞ for every 0 < p, q ≤ ∞, 0 < α < ∞, but
∑∞

n=0 |an|2 = ∞).
Therefore, the Hardy space does not contain any H(p, q, α) with α > 0.

Other examples of functions in the mixed norm spaces can be found via derivatives.
The following lemma, based on a theorem by Hardy and Littlewood (see [57, Thm. 5.5]),
characterizes the inclusion of derivatives of functions in a mixed norm space to a space
of the same family.

Lemma 4.7. For 0 < p ≤ ∞ and α > 0,

(1) Mp(r, f) = O(1 − r)−α ⇔ Mp(r, f
′) = O(1 − r)−(α+1) (that is, f ∈ H(p,∞, α) if

and only if f ′ ∈ H(p,∞, α+ 1)).

(2) Mp(r, f) = o(1 − r)−α ⇔ Mp(r, f
′) = o(1 − r)−(α+1) (that is, f ∈ H0(p,∞, α) if

and only if f ′ ∈ H0(p,∞, α+ 1)).

In particular, the differentiation operator D, given by Df(z) = f ′(z), z ∈ D, is
bounded from H(p,∞, α) (resp. H0(p,∞, α)) to H(p,∞, α+1) (resp. H0(p,∞, α+1)).
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4.2 Pointwise and mean estimates

If f is a function in H(p, q, α), we have the following estimate for its integral means.

Lemma 4.8. If f ∈ H(p, q, α), 0 < p ≤ ∞, 0 < q, α <∞, then

Mp(r, f) = o
(
(1− r)−α

)
as r → 1.

Proof. Since the integral

αq

∫ r

0
(1− ρ)αq−1M q

p (ρ, f) dρ

converges to ‖f‖qp,q,α as r → 1, then for every ε > 0 there exists r0 such that

αq

∫ 1

r
(1− ρ)αq−1M q

p (ρ, f) dρ < ε (4.1)

for every r > r0. Therefore, since the integral means are increasing as functions of r,
we get

(1− r)αqM q
p (r, f) = αq

∫ 1

r
(1− ρ)αq−1M q

p (r, f) dρ

≤ αq
∫ 1

r
(1− ρ)αq−1M q

p (ρ, f) dρ < ε.

Moreover, it follows from the proof that if f ∈ H(p, q, α), then

Mp(r, f) ≤ ‖f‖p,q,α
(1− r)α

(4.2)

since we can bound the integral in (4.1) by the norm of f instead of ε. Notice that,
taking supremum over r, we get

‖f‖p,∞,α ≤ ‖f‖p,q,α, (4.3)

and therefore H(p, q, α) ⊆ H(p,∞, α) for every 0 < p, q ≤ ∞, 0 < α <∞.
Although the result in Lemma 4.8 fails for q =∞ as the function f(z) = (1− z)−α−1/p

shows, the above bound for the integral mean still holds since

‖f‖p,∞,α = sup
0≤ρ<1

(1− ρ)αMp(ρ, f) ≥ (1− r)αMp(r, f)

for any r, 0 < r < 1, and therefore

Mp(r, f) ≤ ‖f‖p,∞,α
(1− r)α

(4.4)

for f ∈ H(p,∞, α).
We can obtain an analogous result to the little-oh estimation in Hardy and Bergman

spaces if q <∞.
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Proposition 4.9. If f ∈ H(p, q, α), 0 < p ≤ ∞, 0 < q, α <∞, then

|f(z)| = o
(

(1− |z|)α+1/p
)

as |z| → 1.

In the proof we will use the following identity.

Lemma 4.10. For 0 < p, q, α <∞ and z ∈ D,∫ 1

|z|
(1− ρ)αq−1(ρ− |z|)q/p dρ = B(αq, q/p+ 1) (1− |z|)αq+q/p,

where B(a, b) =
∫ 1

0 (1− x)a−1xb−1 dx, a, b > 0, is the Beta function.

Proof. With the change of variables x = ρ−|z|
1−|z| ,∫ 1

|z|
(1− ρ)αq−1(ρ− |z|)q/p dρ =

∫ 1

0
(1− x)αq−1(1− |z|)αq−1xq/p(1− |z|)q/p(1− |z|) dx

= (1− |z|)αq+q/p
∫ 1

0
(1− x)αq−1xq/p dx.

Next, we prove Proposition 4.9.

Proof of Proposition 4.9. If p =∞, it is easy to see that, for r close enough to 1 (as in
Lemma 4.8),

|f(reiθ)|q(1− r)αq = αq |f(reiθ)|q
∫ 1

r
(1− ρ)αq−1 dρ (4.5)

≤ αq
∫ 1

r
(1− ρ)αq−1M q

∞(ρ, f) dρ < ε.

If 0 < p < ∞, we estimate the integral mean Mp(r, f) using the Poisson integral:
Let ρ ∈ (0, 1) and define fρ(z) = f(ρz), for f ∈ H(D) and z ∈ D. Since fρ ∈ H∞ for
any f ∈ H(p, q, α) and r < ρ we have, as in [66],

|f(reiθ)|p ≤ 1

2π

∫ 2π

0
|f(ρeit)|p ρ2 − r2

|ρ− rei(θ−t)|2
dt ≤ 1

2π

∫ 2π

0
|f(ρeit)|p ρ

2 − r2

(ρ− r)2
dt

≤ 2

ρ− r
1

2π

∫ 2π

0
|f(ρeit)|p dt =

2

ρ− r
Mp
p (ρ, f).

Hence,

|f(reiθ)|(ρ− r)1/p ≤ 21/pMp(ρ, f). (4.6)
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Let ε > 0, then for r close to 1 we have, using the above estimate and Lemma 4.10, as
in (4.1),

αq

2q/p
B(αq, q/p+ 1) |f(reiθ)|q(1− r)αq+q/p (4.7)

=
αq

2q/p
|f(reiθ)|q

∫ 1

r
(1− ρ)αq−1(ρ− r)q/p dρ

≤ αq
∫ 1

r
(1− ρ)αq−1M q

p (ρ, f) dρ < ε.

From the above proof, the following known pointwise estimate also follows: if we
bound the integral in (4.7) by ‖f‖p,q,α, then

|f(z)| ≤ m ‖f‖p,q,α
(1− |z|)α+1/p

, (4.8)

with

m =


21/p

(αq B(αq, q/p+ 1))1/q
if p <∞

1 if p =∞.

(4.9)

One should notice that, once again, this proposition does not hold for q = ∞, as
the function f(z) = (1 − z)−α−1/p shows. However, the pointwise estimation is still
true (see [78, Prop. 7.1.1]).

Note also that the norm of the point evaluation functional Λz can be estimated as
follows:

‖Λz‖ ≤
m

(1− |z|)α+ 1
p

, (4.10)

with m as in (4.9).
Now, for a given z in D, we will find a function fz in H(p, q, α) with pointwise

growth of maximal order, that is, ‖fz‖ ≈ 1 and

|fz(z)| ≈ ‖Λz‖ ≈
1

(1− |z|)α+1/p
.

Here we give a general version of a well-known fact for Bergman spaces.

Proposition 4.11. For z ∈ D, 0 < p, q ≤ ∞, 0 < α <∞ and s > 0, the functions

fz(w) =
(1− |z|2)s

(1− z̄w)
α+ 1

p
+s

satisfy |fz(z)| ≈ ‖Λz‖ and ‖fz‖p,q,α ≈ 1.
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4.2. Pointwise and mean estimates

Proof. First we check that fz belongs to H(p, q, α) and estimate its norm:
If w = reiθ, then, as in [57, page 65],

Mp
p (r, fz) =

∫ 2π

0

(1− |z|2)ps

|1− z̄reiθ|p(α+ 1
p

+s)

dθ

2π
≈ (1− |z|2)ps

(1− r|z|)p(α+ 1
p

+s)−1
=

(1− |z|2)ps

(1− r|z|)(α+s)p
,

for p <∞ and

M∞(r, fz) ≈
(1− |z|2)s

(1− r|z|)α+s
.

Therefore, if q <∞ and 0 < p ≤ ∞,

‖fz‖qp,q,α = αq

∫ 1

0
(1− r)αq−1M q

p (r, fz) dr

≈ αq (1− |z|)sq
∫ 1

0
(1− r)αq−1 1

(1− r|z|)(α+s)q
dr.

Now, on the one hand,

‖fz‖qp,q,α ≈ αq (1− |z|)sq
∫ 1

0
(1− r)αq−1 1

(1− r|z|)(α+s)q
dr

≥ αq (1− |z|)sq
∫ 1

|z|
(1− r)αq−1 1

(1− r|z|)(α+s)q
dr

≥ αq (1− |z|)sq

(1− |z|2)(α+s)q

∫ 1

|z|
(1− r)αq−1 dr

≈ 1

(1− |z|)αq
(1− |z|)αq = 1

and, on the other hand, integrating by parts and using (1− r)αq ≤ (1− r|z|)αq,

‖fz‖qp,q,α ≈ (1− |z|)sq
∫ 1

0
αq (1− r)αq−1 1

(1− r|z|)(α+s)q
dr

= (1− |z|)sq
(

1− (α+ s)q |z|
∫ 1

0
(1− r)αq 1

(1− r|z|)(α+s)q+1
dr

)
≤ (1− |z|)sq

(
1− (α+ s)q |z|

∫ 1

0
(1− r|z|)−(sq+1) dr

)
= (1− |z|)sq

(
1− α+ s

s

(
(1− |z|)−sq − 1

))
=

(
1 +

α+ s

s

)
(1− |z|)sq − α+ s

s
≈ 1.

If q =∞,

‖fz‖p,∞,α = sup
0≤r<1

(1− r)αMp(r, fz) ≈ sup
0≤r<1

(1− r)α (1− |z|)s

(1− r|z|)α+s
.
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Since 1− r ≤ 1− r|z| and 1− |z| ≤ 1− r|z|, we have

‖fz‖p,∞,α ≈ sup
0≤r<1

(1− r)α (1− |z|)s

(1− r|z|)α+s
≤ sup

0≤r<1
(1− r|z|)α (1− r|z|)s

(1− r|z|)α+s
= 1

and

‖fz‖p,∞,α ≥ sup
|z|<r<1

(1− r)α (1− |z|)s

(1− r|z|)α+s
≥ (1− |z|)s

(1− |z|2)α+s
sup
|z|<r<1

(1− r)α

=
(1− |z|)s(1− |z|)α

(1− |z|2)α+s
≈ 1.

Now that we know that fz ∈ H(p, q, α), we see easily that

|fz(z)| =
(1− |z|2)s

(1− |z|2)
α+ 1

p
+s

=
1

(1− |z|2)
α+ 1

p

≈ 1

(1− |z|)α+ 1
p

and from here

‖Λz‖ ≈ ‖Λz‖‖fz‖p,q,α ≥ |fz(z)| ≈
1

(1− |z|)α+ 1
p

.

With (4.10), we get

|fz(z)| ≈ ‖Λz‖ ≈
1

(1− |z|)α+ 1
p

.

4.3 Inclusions between mixed norm spaces

In this section, we determine the inclusions between different mixed norm spaces de-
pending on the three parameters. The main theorems are the following. To avoid
repetitions, we recall here that we are assuming our parameters to be 0 < α, β < ∞
and 0 < p, q, u, v ≤ ∞.

Theorem 4.12. If p ≥ u, then

H(p, q, α) ⊆ H(u, v, β)⇔

{
α < β or

α = β and q ≤ v.

Theorem 4.13. If p < u, then

H(p, q, α) ⊆ H(u, v, β)⇔

{
α+ 1

p < β + 1
u or

α+ 1
p = β + 1

u and q ≤ v.

It is worth noticing that we need α to be greater than zero as we stated when these
spaces were defined. In the limit case α = 0, by a theorem by Hardy and Littlewood
(related to the Isoperimetric Inequality, see [89], [126]), we have Hp ⊆ A2p. That is,
H(p,∞, 0) ⊆ H(2p, 2p, 1/2p), although these parameters do not satisfy Theorem 4.13.
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4.3. Inclusions between mixed norm spaces

Notice also that it is only to be expected that the relation between the spaces would
depend on the relation between the parameters p and u, since, ultimately, in order to
compare the different spaces we need to compare the sizes of the integral means. In
turn, the integral means relate in a different fashion according to the parameters p and
u.

Therefore, in order to prove these theorems we will need the following estimates of
the integral means, which can be found in the literature (see [57, Thm. 5.9], [72]).

Lemma 4.14. If f ∈ H(p, q, α) and q ≤ v <∞, then

Mv
p (r, f) ≤ ‖f‖v−qp,q,α (1− r)−α(v−q)M q

p (r, f).

Proof. If f ∈ H(p, q, α), by the bound on the integral mean (4.2)

Mp(r, f) ≤ ‖f‖p,q,α (1− r)−α,

and since q ≤ v <∞,

Mv
p (r, f) = Mv−q

p (r, f)M q
p (r, f) ≤ ‖f‖v−qp,q,α (1− r)−α(v−q)M q

p (r, f).

If f belongs to H(p, q, α) and u > p we have the following bound for Mu(r, f).

Lemma 4.15. If f ∈ H(p, q, α) and p < u, then

Mu(r, f) ≤ m1− p
u ‖f‖p,q,α (1− r)−α+ 1

u
− 1
p ,

where

m =
21/p

(αq B(αq, q/p+ 1))1/q
.

Proof. The pointwise inequality (4.8)

M∞(r, f) ≤ m ‖f‖p,q,α (1− r)−α−
1
p

is the case u =∞. Now if u <∞,

Mu(r, f) =

(∫ 2π

0
|f(reiθ)|u−p|f(reiθ)|p dθ

2π

)1/u

≤M1− p
u∞ (r, f)M

p
u
p (r, f) (4.11)

≤ m1− p
u ‖f‖1−

p
u

p,q,α (1− r)(1− p
u

)(−α− 1
p

)‖f‖
p
u
p,q,α (1− r)−α

p
u

= m1− p
u ‖f‖p,q,α (1− r)−α+ 1

u
− 1
p .

The growth property for the integral means is well known: for an analytic function
f on the disk, Mp(r, f) ≤Mu(r, f) when p ≤ u. Furthermore, if f belongs to H(p, q, α),
we also have the following property that quantifies how the integral means decrease.
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Chapter 4. Mixed norm spaces

Lemma 4.16 (Lemma 5, [16]). If 0 < p ≤ u ≤ ∞, then there exists a constant C > 0
such that, for every f ∈ H(D) and 0 < r < 1,

Mu(r, f) ≤ C(1− r)
1
u
− 1
pMp(r, f).

Now we can prove the theorems.

Proof of Theorem 4.12. Throughout this proof, we will assume that p ≥ u. The key to
proving the sufficiency is the inequality of the integral means: if p ≥ u, then Mu(r, f) ≤
Mp(r, f).

We suppose first that α < β. Then, since Mp(r, f) ≤ ‖f‖p,q,α(1− r)−α by (4.2), we
have that, if v is finite,

‖f‖vu,v,β = βv

∫ 1

0
(1− r)βv−1Mv

u(r, f) dr ≤ βv
∫ 1

0
(1− r)βv−1Mv

p (r, f) dr

≤ βv ‖f‖vp,q,α
∫ 1

0
(1− r)βv−1(1− r)−αv dr

= βv ‖f‖vp,q,α
∫ 1

0
(1− r)v(β−α)−1 dr =

β

β − α
‖f‖vp,q,α,

and, by (4.3),

‖f‖u,∞,β = sup
0≤r<1

(1− r)βMu(r, f) ≤ sup
0≤r<1

(1− r)αMp(r, f) = ‖f‖p,∞,α ≤ ‖f‖p,q,α.

Therefore, f ∈ H(u, v, β) for every f ∈ H(p, q, α).
Now, if α = β and q ≤ v, by Lemma 4.14,

‖f‖vu,v,β = βv

∫ 1

0
(1− r)βv−1Mv

u(r, f) dr ≤ βv
∫ 1

0
(1− r)βv−1Mv

p (r, f) dr

≤ βv ‖f‖v−qp,q,α

∫ 1

0
(1− r)βv−1(1− r)−α(v−q)M q

p (r, f) dr

= βv ‖f‖v−qp,q,α

∫ 1

0
(1− r)αq−1M q

p (r, f) dr

=
βv

αq
‖f‖v−qp,q,α ‖f‖qp,q,α =

v

q
‖f‖vp,q,α

if v <∞, and, again by (4.3),

‖f‖u,∞,β = sup
0≤r<1

(1− r)βMu(r, f) ≤ sup
0≤r<1

(1− r)αMp(r, f) = ‖f‖p,∞,α ≤ ‖f‖p,q,α.

Hence, in both cases H(p, q, α) ⊆ H(u, v, β), and the sufficiency is proven.
For the necessity, we need to see that H(p, q, α) 6⊆ H(u, v, β) when the parameters

do not relate as in the statement of the theorem. For this, consider a function of type
f(z) =

∑∞
n=1 an z

2n−1
as in Lemma 4.6. Recall that f belongs to H(p, q, α) if and only

if {2−αnan} ∈ `q.
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4.3. Inclusions between mixed norm spaces

If α > β, let f(z) =
∑∞

n=1 2nβ z2n−1
. Since

{ an
2αn

}
=

{
1

2n(α−β)

}
∈ `q,

the function f belongs to H(p, q, α), but{ an
2βn

}
= {1} 6∈ `v,

so this function does not belong to H(u, v, β), and therefore H(p, q, α) 6⊆ H(u, v, β) if
α > β.

If α = β and q > v, we take f(z) =
∑∞

n=1 2nα n−1/v z2n−1
. Similarly,

{ an
2αn

}
=

{
2nα n−1/v

2nα

}
=

{
1

n1/v

}
∈ `q,

and f ∈ H(p, q, α), but

{ an
2βn

}
=

{
2nα n−1/v

2βn

}
=

{
1

n1/v

}
6∈ `v,

so it does not belong to H(u, v, β), and hence H(p, q, α) 6⊆ H(u, v, β) if α = β and
q > v.

Proof of Theorem 4.13. As in the last proof, from now on we will assume p < u. Firstly
we shall see that if f ∈ H(p, q, α) and the parameters are ordered as in the statement,
then f ∈ H(u, v, β).

If α < β + 1
u −

1
p , by Lemma 4.15,

‖f‖vu,v,β = βv

∫ 1

0
(1− r)βv−1Mv

u(r, f) dr

≤ βvmv(1− p
u

) ‖f‖vp,q,α
∫ 1

0
(1− r)βv−1(1− r)v(−α+ 1

u
− 1
p

)
dr

= βvmv(1− p
u

) ‖f‖vp,q,α
∫ 1

0
(1− r)v(β−α+ 1

u
− 1
p

)−1
dr =

β mv(1− p
u

)

β − α+ 1
u −

1
p

‖f‖vp,q,α

for v <∞, and

‖f‖u,∞,β = sup
0≤r<1

(1− r)βMu(r, f)

≤ m1− p
u ‖f‖p,q,α sup

0≤r<1
(1− r)β(1− r)−α+ 1

u
− 1
p = m1− p

u ‖f‖p,q,α.
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Chapter 4. Mixed norm spaces

If α = β + 1
u −

1
p and q ≤ v, by Lemmas 4.16 and 4.14,

‖f‖vu,v,β = βv

∫ 1

0
(1− r)βv−1Mv

u(r, f) dr

≤ βv Cv
∫ 1

0
(1− r)βv−1(1− r)v( 1

u
− 1
p

)
Mv
p (r, f) dr

= βv Cv
∫ 1

r
(1− r)αv−1Mv

p (r, f) dr

≤ βv Cv ‖f‖v−qp,q,α

∫ 1

0
(1− r)αv−1(1− r)−α(v−q)M q

p (r, f) dr

=
βv

αq
Cv ‖f‖vp,q,α.

If v =∞, in a similar way,

‖f‖u,∞,β = sup
0≤r<1

(1− r)βMu(r, f) ≤ C sup
0≤r<1

(1− r)β(1− r)
1
u
− 1
pMp(r, f)

= C sup
0≤r<1

(1− r)αMp(r, f) = C ‖f‖p,∞,α ≤ C ‖f‖p,q,α.

Finally, we need to see that H(p, q, α) 6⊆ H(u, v, β) when the parameters are not as
in the assumptions of the statement. If α+ 1

p > β + 1
u , Lemma 4.4 tells us that

f(z) =
1

(1− z)β+1/u

belongs to H(p, q, α) but not H(u, v, β), and this proves that H(p, q, α) 6⊆ H(u, v, β)
when α+ 1

p > β + 1
u .

If α+ 1
p = β + 1

u and q > v, by Lemma 4.5 the function

f(z) =
1

(1− z)α+1/p

(
log

e

1− z

)−1/v

is an example of a function inH(p, q, α) which is not inH(u, v, β), and henceH(p, q, α) 6⊆
H(u, v, β) for α+ 1

p = β + 1
u and q > v.
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Chapter 5

Semigroups of composition
operators on mixed norm spaces

This chapter deals with the semigroups of composition operators on mixed norm spaces.
As we saw in Section 2.5.2, given a family of analytic self-maps of the disk D {ϕt}, t ≥ 0,
such that ϕ0 is the identity, ϕt+s = ϕt ◦ ϕs, for all t, s ≥ 0, and ϕt → ϕ0 as t → 0
uniformly on compact sets of D (that is, a semigroup of analytic functions) then, if
for every t ≥ 0 the composition operator Cϕt = Ct is bounded on H(p, q, α), then the
family {Ct} is a semigroup of composition operators. We are interested in the strong
and uniform continuity of the semigroup, that is, in knowing whether

lim
t→0+

‖Ctf − f‖p,q,α = 0

for every f ∈ H(p, q, α), or

lim
t→0+

‖Ct − I‖p,q,α = 0

where I is the identity operator.

We already saw an example of semigroup of composition operators on mixed norm
spaces.

Proposition 4.2. For 0 ≤ r < 1, let fr(z) = f(rz), z ∈ D.

• If f ∈ H(p, q, α), 0 < p ≤ ∞, 0 < q, α <∞, then ‖fr − f‖p,q,α → 0, as r → 1.

• If f ∈ H0(p,∞, α), 0 < p ≤ ∞, 0 < α <∞, then ‖fr − f‖p,∞,α → 0, as r → 1.

Moreover, if f ∈ H(p,∞, α) and ‖fr − f‖p,∞,α → 0, as r → 1, then f ∈ H0(p,∞, α).

This result can be also written in terms of semigroups of composition operators on
mixed norm spaces. If we define ϕt(z) = e−tz, for all t ≥ 0 and z ∈ D, then fr = Cϕtf
for t = log r, and therefore {ϕt} induces a strongly continuous semigroup of composition
operators on H(p, q, α) for q <∞ and

[ϕt, H(p,∞, α)] = H0(p,∞, α).
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Chapter 5. Semigroups of composition operators on mixed norm spaces

Recall that the maximal closed linear subspace [ϕt, X] of a Banach space X with respect
to the semigroup {ϕt}, defined in Section 2.5.2, is the subspace such that {ϕt} generates
a strongly continuous semigroup of operators on it, that is,

[ϕt, X] = {f ∈ X : ‖f ◦ ϕt − f‖X → 0 as t→ 0}.

In this chapter we will see that this is the expected behavior for every semigroup
of analytic functions: they induce strongly continuous semigroups of composition op-
erators on H(p, q, α) for q < ∞ and on H0(p,∞, α) (separable spaces), but not in
H(p,∞, α), a non-separable space. To do this, in the first section we will check that
every self-map of the disk induces a bounded composition operator, and therefore every
semigroup of analytic functions induces a semigroup of bounded composition operators.
In the second section we will deal with separable spaces and will give a general theorem
on strong continuity of semigroups of composition operators for separable spaces. To
study the non-separable cases, we will use the characterizations given in Section 2.5.2
in terms of an integral operator, so the third section is devoted to the study of the in-
tegral operators on H(p,∞, α). Finally, in the last section we will use the results from
the previous section to characterize the semigroups of analytic functions that induce
strongly continuous semigroups of composition operators.

The results in this chapter can be found in [12].

5.1 Composition operators on mixed norm spaces

For our study of semigroups of composition operators, the first thing we need to check
is that these operators are bounded on the mixed norm spaces and to find a bound on
the norm.

Proposition 5.1. Suppose 0 < p, q ≤ ∞ and 0 < α < ∞, and let ϕ : D → D be an
analytic function. Then Cϕ is bounded on H(p, q, α) and on H0(p,∞, α). Moreover, it
holds that

‖Cϕ‖ .
(
‖ϕ‖∞ + |ϕ(0)|
‖ϕ‖∞ − |ϕ(0)|

)α+ 1
p

.

If, in addition, ϕ(0) = 0, then ‖Cϕ‖ = 1.

Proof. If ϕ(0) = 0, then by Littlewood’s Subordination Theorem 2.1, Mp(r, f ◦ ϕ) ≤
Mp(r, f), and ‖Cϕ‖ ≤ 1. The constant function f(z) ≡ 1 shows the equality can hold.

If ϕ(0) 6= 0, we get the bound arguing as in [114, Lemma 1]. Assume firstly that
||ϕ||∞ = 1. Fix 0 < r < 1. Applying the Schwarz-Pick Lemma, we have

|ϕ(z)| ≤ |ϕ(0)|+ r

1 + |ϕ(0)|r
.

Now, since
|ϕ(0)|+ r

1 + |ϕ(0)|r
≤ (1− |ϕ(0)|)r + 2|ϕ(0)|

1 + |ϕ(0)|
= R
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we have |ϕ(z)| ≤ R for |z| ≤ r. From here clearly M∞(r, f ◦ ϕ) ≤ M∞(R, f). For
0 < p < ∞, let u be the harmonic majorant of |f |p on |z| ≤ R such that u = |f |p on
|z| = R. Then |f(z)|p ≤ u(z) on |z| ≤ R, and hence |f(ϕ(z))|p ≤ u(ϕ(z)) for |z| ≤ r.
Therefore,

Mp
p (r, f ◦ ϕ) =

∫ 2π

0
|f(ϕ(reiθ))|p dθ

2π
≤
∫ 2π

0
u(ϕ(reiθ))

dθ

2π
= u(ϕ(0)).

To simplify the notation, let us write

R+ |ϕ(0)|
R− |ϕ(0)|

= ψ(R).

Then, by Harnack’s inequality,

u(ϕ(0)) ≤ ψ(R)u(0) = ψ(R)

∫ 2π

0
|f(Reiθ)|p dθ

2π
.

Therefore,

Mp(r, f ◦ ϕ) ≤ ψ(R)
1
pMp(R, f)

for p <∞ and
M∞(r, f ◦ ϕ) ≤M∞(R, f).

Using that ψ is a decreasing function, we obtain

ψ(R) =
R+ |ϕ(0)|
R− |ϕ(0)|

≤ 3 + |ϕ(0)|
1− |ϕ(0)|

for R ∈
[

2|ϕ(0)|
1+|ϕ(0)| , 1

]
.

Now we can use these inequalities (assuming 1/∞ = 0 so ψ(R)
1
∞ = 1) to bound

the norm of f ◦ ϕ by the norm of f . For q <∞,

‖f ◦ ϕ‖qp,q,α = αq

∫ 1

0
(1− r)αq−1M q

p (r, f ◦ ϕ) dr ≤ αq
∫ 1

0
(1− r)αq−1 ψ(R)

q
pM q

p (R, f) dr.

Next we use the change of variables

t = R =
(1− |ϕ(0)|)r + 2|ϕ(0)|

1 + |ϕ(0)|
getting

1− r =
1 + |ϕ(0)|
1− |ϕ(0)|

(1− t) and dr =
1 + |ϕ(0)|
1− |ϕ(0)|

dt.

Hence, the norm of the composition operator can be bounded as follows

‖f ◦ ϕ‖qp,q,α ≤
(

1 + |ϕ(0)|
1− |ϕ(0)|

)αq
αq

∫ 1

2|ϕ(0)|
1+|ϕ(0)|

(1− t)αq−1 ψ(t)
q
pM q

p (t, f) dt

≤
(

1 + |ϕ(0)|
1− |ϕ(0)|

)αq (3 + |ϕ(0)|
1− |ϕ(0)|

) q
p

αq

∫ 1

0
(1− t)αq−1M q

p (t, f) dt

≤ C
(

1 + |ϕ(0)|
1− |ϕ(0)|

)αq+ q
p

‖f‖qp,q,α.
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And for H(p,∞, α), just like above,

‖f ◦ ϕ‖p,∞,α = sup
0<r<1

(1− r)αMp(r, f) ≤ sup
0<r<1

(1− r)αψ(R)
1
pMp(R, f)

=

(
1 + |ϕ(0)|
1− |ϕ(0)|

)α
sup

2|ϕ(0)|
1+|ϕ(0)|<t<1

(1− t)α
(
t+ |ϕ(0)|
t− |ϕ(0)|

) 1
p

Mp(t, f)

≤ C
(

1 + |ϕ(0)|
1− |ϕ(0)|

)α+ 1
p

‖f‖p,∞,α.

If ||ϕ||∞ < 1, writing U(z) = ||ϕ||∞z, then Cϕ = CU ◦ Cϕ/||ϕ||. Applying the
previous two cases, we conclude the result.

The proof for H0(p,∞, α) is analogous.

5.2 Semigroups of composition operators on separable mixed
norm spaces

Our first goal is to study the semigroups of composition operators on mixed norm
spaces for q < ∞. We will see that these spaces behave as the Hardy and Bergman
spaces studied in [25] and [114].

The next result will help us prove the strong continuity of semigroups of composition
operators on Banach spaces of analytic functions where polynomials are dense. The
ideas behind the next proposition are taken from [116].

Proposition 5.2. Let {ϕt} be a semigroup of analytic functions in the unit disk and
let X be a Banach space of analytic functions such that

(i) Polynomials are dense in X;

(ii) There is a constant C > 0 such that if f and g belong to X and |f | ≤ |g|, then
‖f‖X ≤ C‖g‖X ;

(iii) M := lim supt→0+ ||Ct|| < +∞;

(iv) limt→0+ ||ϕt − ϕ0||X = 0.

Then the semigroup of operators {Ct} is strongly continuous on X.

Proof. We have to prove that, given f ∈ X, it is satisfied that

‖f ◦ ϕt − f‖X → 0 as t→ 0.

Let us fix n ∈ N. We have that

ϕnt (z)− zn =

(
n−1∑
k=0

ϕkt (z)z
n−1−k

)
(ϕt(z)− z).
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Hence,

|ϕnt (z)− zn| ≤ n|ϕt(z)− z|.

By (ii) and (iv), we deduce that

‖ϕnt − ϕn0‖X ≤ nC‖ϕt − ϕ0‖X → 0 as t→ 0.

Then, for every polynomial p, we have that

‖p ◦ ϕt − p‖X → 0. (5.1)

Fix ε > 0. Since polynomials are dense in X (by (i)), for every f ∈ X there exists a
polynomial p such that ||p− f ||X < ε and

‖f ◦ ϕt − f‖X ≤ ‖f ◦ ϕt − p ◦ ϕt‖X + ‖p ◦ ϕt − p‖X + ‖p− f‖X
≤ (‖Ct‖+ 1)‖p− f‖X + ‖p ◦ ϕt − p‖X ≤ (‖Ct‖+ 1)ε+ ‖p ◦ ϕt − p‖X .

By (iii) and (5.1), we get lim supt→0+ ‖f ◦ ϕt − f‖X ≤ Mε. The arbitrariness of ε
implies that limt→0+ ‖f ◦ ϕt − f‖X = 0.

It is easy to see that, for q <∞, the mixed norm spaces H(p, q, α) satisfy the axioms
of Proposition 5.2.

Theorem 5.3. (a) Every semigroup of analytic functions generates a strongly contin-
uous semigroup of operators on H(p, q, α) for q <∞.

(b) No non-trivial semigroup of analytic functions induces a uniformly continuous
semigroup of composition operators on H(p, q, α) for q <∞.

Proof. a) Let {ϕt} be a semigroup of analytic functions in the unit disk. By Propo-
sition 5.1, we have that lim supt→0+ ||Ct|| < +∞. Moreover, since ϕt tends to ϕ0

uniformly on compact subsets of the unit disk, Mp(r, ϕt − ϕ0)→ 0, and by Lebesgue’s
Dominated Convergence Theorem, ‖ϕt − ϕ0‖p,q,α → 0. Thus, by Proposition 5.2, the
semigroup {Ct} is strongly continuous on H(p, q, α).

b) Let us recall that a semigroup of operators is uniformly continuous on X if its
infinitesimal generator, defined in Section 2.5.1, is a bounded operator on it. On the
other hand, given a semigroup {ϕt} with infinitesimal generator G, the infinitesimal
generator of {Ct} is given by A(f) = Gf ′. So, suppose that A is bounded on H(p, q, α).
Then

‖Af‖p,q,α = ‖Gf ′‖p,q,α ≤ ‖A‖‖f‖p,q,α

for every f ∈ H(p, q, α). In particular, for fn(z) = zn we have ‖A‖q‖fn‖qp,q,α ≥
nq‖Gfn−1‖qp,q,α. Now let δ ∈ (0, 1) be such that, for every n ∈ N,∫ 1

δ
(1− r)αq−1r(n−1)qdr ≥ 1

2

∫ 1

0
(1− r)αq−1r(n−1)qdr.
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Hence, since the integral means are increasing functions of r,

‖A‖q‖fn‖qp,q,α ≥ nq‖Gfn−1‖qp,q,α = αqnq
∫ 1

0
(1− r)αq−1r(n−1)qM q

p (r,G) dr

≥ αqnq
∫ 1

δ
(1− r)αq−1r(n−1)qM q

p (r,G) dr

≥ αqnqM q
p (δ,G)

∫ 1

δ
(1− r)αq−1r(n−1)qdr

≥ αqnq

2
M q
p (δ,G)

∫ 1

0
(1− r)αq−1r(n−1)qdr

≥ αqnq

2
M q
p (δ,G)

∫ 1

0
(1− r)αq−1rnqdr =

1

2
nq‖fn‖qp,q,αM q

p (δ,G).

From here,

nMp(δ,G) ≤ 2
1
q ‖A‖

for n ∈ N, therefore Mp(δ,G) = 0 and that means G ≡ 0.

The same result can be used to see that the separable spaces H0(p,∞, α) behave in
a similar way.

Proposition 5.4. Every semigroup of analytic functions generates a strongly contin-
uous semigroup of operators on H0(p,∞, α), but no non-trivial semigroup of analytic
functions induces a uniformly continuous semigroup of composition operators on it.

Proof. Let {ϕt} be a semigroup of analytic functions in the unit disk. By Propo-
sition 5.1, we have that lim supt→0+ ||Ct|| < +∞. Let ε > 0 and r0 < 1 such
that (1 − r0)α < ε/4. Since ϕt → ϕ0 uniformly on compact sets, in particular in
D(0, r0), if t is small enough then Mp(r, ϕt − ϕ0) < ε for r ≤ r0. Hence, using that
Mp(r, ϕt − ϕ0) ≤ 2(Mp(r, ϕt) +Mp(r, ϕ0)) ≤ 4, we have that

‖ϕt − ϕ0‖p,∞,α = sup
0≤r<1

(1− r)αMp(r, ϕt − ϕ0)

= max

{
sup

0≤r≤r0
(1− r)αMp(r, ϕt − ϕ0), sup

r0<r<1
(1− r)αMp(r, ϕt − ϕ0)

}
≤ max

{
ε sup

0≤r≤r0
(1− r)α, 4 sup

r0<r<1
(1− r)α

}
= ε.

Thus, by Proposition 5.2, the semigroup {Ct} is strongly continuous on H0(p,∞, α).
As in the proof of Theorem 5.3 we will show that the infinitesimal generator of {Ct},

A(f)(z) = G(z)f ′(z) with G the generator of the semigroup {ϕt}, is not a bounded
operator on H0(p,∞, α). For this, suppose ‖Af‖p,∞,α = ‖Gf ′‖p,∞,α ≤ ‖A‖‖f‖p,∞,α
for every f ∈ H0(p,∞, α). In particular, if fn(z) = zn, n ≥ 1, then ‖A‖‖fn‖p,∞,α ≥
n‖Gfn−1‖p,∞,α. Let δ ∈ (0, 1) be such that, for all n,

sup
δ<r<1

(1− r)αrn−1 ≥ 1

2
sup

0<r<1
(1− r)αrn.
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Hence, since the integral means are increasing functions of r,

‖A‖‖fn‖p,∞,α ≥ n‖Gfn−1‖p,∞,α = n sup
0<r<1

(1− r)αMp(r, fn−1G)

≥ n sup
δ<r<1

(1− r)αrn−1Mp(r,G) ≥ nMp(δ,G) sup
δ<r<1

(1− r)αrn−1

≥ n

2
Mp(δ,G) sup

0<r<1
(1− r)αrn =

n

2
Mp(δ,G)‖fn‖p,∞,α.

That is,

nMp(δ,G) ≤ 2‖A‖

for n ∈ N, thus Mp(δ,G) = 0 and G ≡ 0.

Nevertheless, we cannot apply the last theorem to H(p,∞, α) since polynomials are
not dense. In the following sections we will deal with this space.

5.3 Integral operators on mixed norm spaces

In Section 2.5.2 we defined the maximal closed linear subspace of X such that the
semigroup {ϕt} generates a strongly continuous semigroup of operators on it,

[ϕt, X] = {f ∈ X : ‖f ◦ ϕt − f‖X → 0 as t→ 0}

and gave several characterizations. The first one is in terms of the infinitesimal gener-
ator of the semigroup {ϕt},

[ϕt, X] = {f ∈ X : Gf ′ ∈ X},

(see Theorem 2.21), as long as X is a Banach space of analytic functions that contains
the constants and such that M = supt∈[0,1] ‖Ct‖X <∞. Clearly the mixed norm spaces
satisfy the conditions, by virtue of Theorem 5.1.

Another characterization is in terms of the integral operator Vg, which, for a holo-
morphic function g, is defined as

Vg(f)(z) =

∫ z

0
f(ζ)g′(ζ) dζ, f ∈ H(D)

for any z ∈ D. According to Proposition 2.22, if the space X satisfies the conditions
above and also that for each b ∈ D, f ∈ X ⇔ f(z)−f(b)

z−b ∈ X (a property that, again,
the mixed norm spaces satisfy), then

[ϕt, X] = X ∩ (Vγ(X)⊕ C),

where

γ(z) =

∫ z

0

ζ

G(ζ)
dζ = −

∫ z

0

1

P (ζ)
dζ
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if the Denjoy-Wolff point of the semigroup is inside the unit disk, and

γ(z) =

∫ z

0

1

(1− ζ)2P (ζ)
dζ

if it belongs to the boundary.

We will use the last characterization to find the maximal closed linear subspace
[ϕt, H(p,∞, α)], so first we will study the boundedness of the integral operator on
mixed norm spaces. For the sake of completeness, we start with the spaces H(p, q, α)
with q <∞.

Recall that we denote by V the Volterra operator

V (f)(z) =

∫ z

0
f(ζ) dζ.

Proposition 5.5. Let g be an analytic function on the unit disk, Vg the integral operator
induced by g, and 0 < p ≤ ∞, 0 < α, q <∞.

• Vg : H(p, q, α)→ H(p, q, α) is bounded if and only if g ∈ B.

• Vg : H(p, q, α)→ H(p, q, α) is compact if and only if g ∈ B0.

Proof. The sufficiency in both statements is given by Theorem 2.20.

If g ∈ B then the multiplication operator Mg′ is bounded from H(p, q, α) to
H(p, q, α+1) and (1) in Lemma 4.7 shows that V is a bounded operator from H(p, q, α+
1) to H(p, q, α), so Vg = V ◦Mg′ is bounded.

If g ∈ B0, using again that Vg = V ◦Mg′ , and that V is bounded, the result follows
from the compactness of the multiplication operator Mg′ : H(p, q, α)→ H(p, q, α+ 1).
Indeed, let {fn} be a sequence in the unit ball of H(p, q, α) that converges to zero
uniformly on compact subsets of the unit disk. We have to prove that ||Mg′fn||p,q,α → 0
as n → ∞. Since g ∈ B0, for ε > 0 there exists a R < 1 such that |g′(z)|(1 − |z|) < ε
for |z| ≥ R. Now, let N0 ∈ N be such that |fn(z)| ≤ ε/||g||B for n ≥ N0 and |z| ≤ R.
Then

‖g′fn‖qp,q,α+1 = (α+ 1)q

∫ 1

0
(1− r)(α+1)q−1M q

p (r, g′fn) dr

≤ (α+ 1)q

∫ 1

0
(1− r)(α+1)q−1

(
sup

θ∈[0,2π]
|g′(reiθ)|

)q
M q
p (r, fn) dr

≤ ‖g‖qB (α+ 1)q

∫ R

0
(1− r)αq−1M q

p (r, fn) dr

+ εq (α+ 1)q

∫ 1

R
(1− r)αq−1M q

p (r, fn) dr ≤ 2
α+ 1

α
εq.

Then ‖g′fn‖p,q,α → 0 and therefore Mg′ : H(p, q, α)→ H(p, q, α+1) is compact.

Now we prove directly the boundedness on H(p,∞, α) and H0(p,∞, α).
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5.3. Integral operators on mixed norm spaces

Proposition 5.6. Let g be an analytic function in the unit disk. The following are
equivalent:

(a) Vg : H(p,∞, α)→ H(p,∞, α) is bounded;

(b) Vg : H0(p,∞, α)→ H0(p,∞, α) is bounded;

(c) Vg : H0(p,∞, α)→ H(p,∞, α) is bounded;

(d) g ∈ B.

Proof. If g ∈ B and f ∈ H(p,∞, α), then

‖g′f‖p,∞,α+1 = sup
0≤r<1

(1− r)α+1Mp(r, g
′f)

≤ ||g||B sup
0≤r<1

(1− r)α+1

1− r
Mp(r, f) = ||g||B ‖f‖p,∞,α.

So, by Lemma 4.7, (d) implies (a) and (c). The same inequalities show that if f ∈ H0(p,∞, α),
then g′f ∈ H0(p,∞, α+ 1). Again, by Lemma 4.7, (d) implies (b).

On the other hand, suppose g′f ∈ H(p,∞, α + 1) for every f ∈ H0(p,∞, α). This
means that the operator Mg′ is bounded from H0(p,∞, α) into H(p,∞, α + 1). Let
us denote by M the norm of this operator. Then, by Proposition 4.9, there exists a
constant C > 0 such that, for every z ∈ D,

|g′(z)f(z)| ≤ C‖g′f‖p,∞,α+1

(1− |z|)α+1+ 1
p

≤ CM‖f‖p,∞,α
(1− |z|)α+1+ 1

p

.

Choosing fz ∈ H0(p,∞, α) as

fz(w) =
(1− |z|2)

α+ 1
p

(1− wz)2(α+ 1
p

)
,

a function that satisfies |fz(z)| = (1− |z|2)
−(α+ 1

p
)

and ‖fz‖p,∞,α ≈ 1, we get

|g′(z)fz(z)| =
|g′(z)|

(1− |z|2)
α+ 1

p

.
CM

(1− |z|)α+1+ 1
p

.

From here it is clear that g ∈ B. This argument shows that (b) or (c) implies (d).

The remaining case, that is, the boundedness of the integral operator from the
bigger space H(p,∞, α) to the smaller space H0(p,∞, α) will be of interest for us in
the study of semigroups of composition operators on H(p,∞, α). First, we will need
two lemmas. As is usual, given an analytic function f ∈ H(D), we denote by f̂(k) its
k’th Taylor coefficient.

Lemma 5.7. For every N ∈ N there exists a polynomial GN satisfying:
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Chapter 5. Semigroups of composition operators on mixed norm spaces

(a) ĜN (k) ≥ 0, for every k ∈ [N, 3N ],

(b) ĜN (k) = 0, for every k /∈ (N, 3N),

(c) ‖GN‖H1 = 1, and

(d) ‖GN‖H∞ =
∑3N

k=N ĜN (k) = N .

(e) For 1 < p < +∞, ‖GN‖Hp ≤ N
1
p′ , where 1

p′ + 1
p = 1.

Proof. Let FN−1 be the (N − 1)’th Fejér Kernel, namely

FN−1(eit) =

N−1∑
k=−(N−1)

(
1− |k|

N

)
eikt , eit ∈ T .

It is known that ‖FN−1‖L1(T) = 1. Define G̃N (z) = ζ2NFN−1(ζ) for ζ ∈ T, then

‖G̃N‖L1(T) = 1 and

‖G̃N‖L∞(T) = G̃N (1) =
3N∑
k=N

̂̃GN (k) = N.

Moreover, ̂̃GN (k) ≥ 0, for every k ∈ [N, 3N ], and ̂̃GN (k) = 0, for every k /∈ (N, 3N).
The polynomial GN defined in the unit disk with boundary values G̃N satisfies the
same properties, by the equality of norms (1.2), that proves properties (a)− (d). The

last property comes from the interpolation inequality ‖f‖p ≤ ‖f‖
1
p′
∞‖f‖

1
p

1 .

Lemma 5.8. Suppose g ∈ B\B0. Then there exist δ ∈ (0, π/8), an increasing sequence
{rn}n in (0, 1), and a sequence {tn}n in [0, 2π) satisfying:

(a) For every n ∈ N and every t ∈ [−δ(1− rn), δ(1− rn)] we have

(1− rn)
∣∣∣g′ (rnei(tn+t)

)∣∣∣ ≥ δ.
(b) limn→∞ rn = 1.

Proof. Write M = ||g||B. Since g /∈ B0 there exists an η > 0, an increasing sequence
{rn}n in (0, 1) with limn→∞ rn = 1, and a sequence {tn}n in [0, 2π), such that

(1− rn)|g′(rneitn)| ≥ η , for all n. (5.2)

Since g ∈ B,
sup
z∈D

(1− |z|)|g′(z)| = M,

and, from the Maximum Modulus Principle we have, for |z| ≤ 1+rn
2 ,

|g′(z)| ≤ 2M

1− rn
.

70



5.3. Integral operators on mixed norm spaces

Now, let |z| ≤ rn. Then, D
(
z, 1−rn

2

)
⊆ D

(
0, 1+rn

2

)
, and by Cauchy’s inequality

|g′′(z)| ≤
max

w∈D(z, 1−rn2 )
|g′(w)|

1−rn
2

≤ 2

max
w∈D(0, 1+rn

2 )
|g′(w)|

1− rn
≤ 4M

(1− rn)2
.

Take δ > 0 and |s− tn| < δ(1− rn). Noticing that

|rneis−rneitn | ≤ |eis−eitn | =
∣∣∣e i(tn−s)2

∣∣∣ ∣∣∣e i(s−tn)
2 − e−

i(s−tn)
2

∣∣∣ = 2

∣∣∣∣sin s− tn2

∣∣∣∣ ≤ 2

∣∣∣∣s− tn2

∣∣∣∣ ,
we obtain

|g′(rneis)− g′(rneitn)| ≤ |rneis − rneitn |
4M

(1− rn)2
≤ 4|s− tn|M

(1− rn)2
≤ 4δM

1− rn
≤ η/2

1− rn
,

if δ is small enough. From here and from (5.2),

|g′(rneis)| ≥ |g′(rneitn)| − |g′(rneis)− g′(rneitn)| ≥ η

1− rn
− η

2(1− rn)
=

η

2(1− rn)
,

and letting s = t+ tn we have, for |t| ≤ δ(1− rn),

(1− rn)|g′(rnei(t+tn))| ≥ η

2
≥ δ ,

if δ is small enough.

Before stating the main result of this section, recall that, given two Banach spaces
X and Y, an operator T : X → Y fixes a copy of a Banach space Z if there exists
a subspace X0 of X such that X0 is isomorphic to Z and T : X0 → T (X0) is an
isomorphism. Studying spaces and operators for which this happens is a question of
interest in the theory of Banach spaces.

Theorem 5.9. If g ∈ B \ B0, then the operator Vg : H0(p,∞, α) → H0(p,∞, α)
fixes a copy of c0 and the operator Vg : H(p,∞, α) → H(p,∞, α) fixes a copy of `∞.
Consequently this last operator has a non-separable image.

Proof. Since g ∈ B, we have that Vg : H(p,∞, α) → H(p,∞, α) is bounded. Once
again we write Vg as V ◦Mg′ , with Mg′ : H(p,∞, α)→ H(p,∞, α+ 1) the operator of
multiplication by g′ and V : H(p,∞, α + 1) → H(p,∞, α) the Volterra operator. We
know that, if we avoid the constant functions, V is an isomorphism. More specifically,
if we call X the one-codimensional subspace of H(p,∞, α) defined by

X = {f ∈ H(p,∞, α) : f(0) = 0} ,

then V : H(p,∞, α+1)→ X is an onto isomorphism whose inverse is the differentiation.
Therefore we only need to prove that Mg′ : H(p,∞, α) → H(p,∞, α + 1) fixes a copy
of `∞ if g ∈ B \ B0.
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To do this we need to construct a bounded linear operator Φ: `∞ → H(p,∞, α)
such that, for certain C > 0,

C‖Mg′ (Φa) ‖p,∞,α+1 ≥ ‖a‖`∞ , for all a ∈ `∞. (5.3)

Notice that, if Φ: `∞ → H(p,∞, α) is a bounded operator and 5.3 is satisfied, then
‖Φa‖ ≤ ‖Φ‖‖a‖`∞ and

C‖Mg′ (Φa) ‖p,∞,α+1 ≥ ‖a‖`∞ ≥
‖Φa‖
‖Φ‖

, for all a ∈ `∞, (5.4)

and therefore Mg′ is bounded away from zero on the set X0 = Φa, a ∈ `∞. This means
that it is an isomorphism between X0 and Mg′(X0). Moreover, since Mg′ is bounded,
then C‖Mg′ (Φa) ‖p,∞,α+1 ≤ C‖Mg′‖‖Φa‖p,∞,α and, from 5.3,

C‖Mg′‖‖Φa‖p,∞,α ≥ C‖Mg′ (Φa) ‖p,∞,α+1 ≥ ‖a‖`∞ , for all a ∈ `∞, (5.5)

and thus Φ is bounded away from zero, so it is an isomorphism between `∞ and Φa =
X0.

Since g ∈ B \ B0 we can apply Lemma 5.8 to find a δ ∈ (0, π/8), an increasing
sequence {rn}n in (0, 1) with rn → 1 and a sequence {tn}n in [0, 2π) such that for every
n ∈ N and every t ∈ [−δ(1− rn), δ(1− rn)] we have

(1− rn)
∣∣∣g′ (rnei(tn+t)

)∣∣∣ ≥ δ.
Fix β > 0 large enough (this β will depend on ||g||B, δ, α and p). Passing to a
subsequence if necessary, we can assume that rn ≥ 1/2, for all n and

1− rn
1− rn+1

≥ β , for all n. (5.6)

Now consider a sequence {Nn}n of positive integers such that

Nn(1− rn) ∈ [1, 2] , for all n ∈ N. (5.7)

By (5.6) and (5.7) we have, if β is big enough,

Nn+1

Nn
≥ β

2
≥ 3 , for all n ∈ N.

Let ν = α+ 1
p − 1 = α− 1

p′ . For every n ∈ N define the function gn by

gn(z) = Nν
nGNn(e−itnz) , z ∈ D.

The GN ’s are given in Lemma 5.7 and the tn’s in Lemma 5.8.
Observe that, for every r ∈ (0, 1) and every t ∈ [0, 2π), we have

|gn(reit)| ≤ Nν
n

3Nn∑
k=Nn

ĜNn(k)rNn = rNnN1+ν
n = e

Nn log r+(α+ 1
p

) logNn . (5.8)

72



5.3. Integral operators on mixed norm spaces

This and the fact that Nn ≥ 3n−1 yield that, for every a = {an}n ∈ `∞, the series

∞∑
n=1

angn(z)

converges uniformly on compact subsets of D and its sum defines a function Φa holo-
morphic on D.

Let us see that Φa belongs to H(p,∞, α) for all a ∈ `∞. Since ĝn(k) = 0, for
k ≤ Nn, we have the estimate, for r ∈ (0, 1) and n ∈ N,

Mp(r, gn) ≤ Nν
nr

Nn‖GNn‖Hp ≤ rNnN
ν+ 1

p′
n = rNnNα

n .

Consequently, for a ∈ `∞, we have

Mp(r,Φa) ≤ ‖a‖`∞
∞∑
n=1

Mp(r, gn) ≤ ‖a‖`∞
∞∑
n=1

rNnNα
n .

Take r ∈ (0, 1) and, putting r0 = 0, define l ∈ N by the condition rl−1 < r ≤ rl.
Thus, in the case l ≥ 2, we have

(1− r)α
l−1∑
n=1

rNnNα
n ≤ (1− rl−1)α

l−1∑
n=1

Nα
n = [(1− rl−1)Nl−1]α

l−1∑
n=1

(
Nn

Nl−1

)α

≤ 2α
l−1∑
n=1

(
β

2

)−α(l−1−n)

≤ 2α
∞∑
k=0

(
β

2

)−kα
:= A < +∞ .

For n ≥ l we have, using log r ≤ r − 1 and Nn(1− r) ≥ Nn(1− rn) ≥ 1,

log
[
(1− r)αrNnNα

n

]
≤ α log

[
Nn(1− r)

]
+Nn(r − 1)

≤ Cα −
Nn(1− r)

2
≤ Cα −

Nn(1− rl)
2

,

for certain Cα > 0 satisfying α log x ≤ Cα + x
2 , for all x ≥ 1. Therefore

∞∑
n=l

(1− r)αrNnNα
n ≤

∞∑
n=l

eCαe−
βn−l

2 = eCα
∞∑
j=0

e−
βj

2 := B < +∞ .

Putting all together we have, for all r ∈ (0, 1),

(1− r)αMp(r,Φa) ≤ (A+B)‖a‖`∞ .

Taking the supremum over r we see that Φa ∈ H(p,∞, α) and Φ: `∞ → H(p,∞, α) is
a bounded linear operator.

It remains to prove (5.3). We can assume a = {an}n ∈ `∞ and ‖a‖`∞ = 1. Pick
l ∈ N such that |al| ≥ 1/2. We are going to prove that, for certain η > 0 we have

|Φa(rle
i(t+tl))| ≥ η(1− rl)−

1
p
−α

, for all t ∈ [−δ(1− rl), δ(1− rl)]. (5.9)
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This and Lemma 5.8(a) yield

|Mg′(Φa)(rle
i(t+tl))| ≥ ηδ(1− rl)−

1
p
−1−α

, for all t ∈ [−δ(1− rl), δ(1− rl)],

and consequently we get (5.3), since

Mp(rl,Mg′(Φa)) =

(∫ 2π

0
|Mg′(Φa)(rle

i(θ+tl))|p dθ
2π

)1/p

≥

(∫ δ(1−rl)

−δ(1−rl)
ηpδp(1− rl)(− 1

p
−1−α)p dθ

2π

)1/p

= ηδ(1− rl)−
1
p
−1−α

(
δ(1− rl)

π

)1/p

and

‖Mg′
(
Φa
)
‖p,∞,α+1 = sup

r≤1
(1− r)1+αMp(r,Mg′(Φa)) ≥ (1− rl)1+αMp(rl,Mg′(Φa))

≥ ηδ
(
δ

π

) 1
p

:=
1

C
.

Let us prove (5.9). By the definition of Φa, for every t ∈ R, we have

|Φa(rle
i(t+tl))| ≥ |al||gl(rlei(t+tl))| −

∑
n6=l
|an||gn(rle

i(t+tl))|

≥ 1

2

∣∣gl(rlei(t+tl))∣∣−∑
n6=l

M∞(rl, gn) .
(5.10)

By (5.7), for t ∈ [−δ(1 − rl), δ(1 − rl)] and k ≤ 3Nl, we have |kt| ≤ 6δ ≤ π/3 and
cos(kt) ≥ 1/2. Therefore

∣∣gl(rlei(t+tl))∣∣ ≥ Re
(
gl(rle

i(t+tl))
)

= Nν
l

3Nl∑
k=Nl

rkl ĜNl(k) cos(kt)

≥
Nν
l r

3Nl
l

2

3Nl∑
k=Nl

ĜNl(k) ≥ κNν+1
l ,

(5.11)

for certain κ > 0.
Using (5.8) we can estimate M∞(rl, gn) ≤ 2rNnl Nν+1

n . Thus,

l−1∑
n=1

M∞(rl, gn) ≤
l−1∑
n=1

2Nν+1
n ≤ 2N1+ν

l

l−1∑
n=1

(
2

β

)(l−n)(1+ν)

≤ 4

(
2

β

)ν+1

Nν+1
l ≤

κNν+1
l

4
,

(5.12)
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if β is big enough.
We use rNll = exp(Nl log rl) ≤ exp

(
Nl(rl − 1)

)
≤ e−1, to obtain, if l < n,

M∞(rl, gn) ≤ 2rNnl Nν+1
n ≤ 2Nν+1

l

(Nn

Nl

)ν+1
exp
(
−Nn

Nl

)
.

If β is big enough we have x−1 ≥ x1+νe−x for x ≥ β. Thus

∞∑
n=l+1

M∞(rl, gn) ≤ 2Nν+1
l

∞∑
n=l+1

(Nn

Nl

)ν+1
exp
(
−Nn

Nl

)
≤ 2Nν+1

l

∞∑
n=l+1

Nl

Nn

≤ 2N1+ν
l

∞∑
n=l+1

βl−n ≤
κNν+1

l

4
, (5.13)

if β is big enough.
Finally we collect all the estimates. For t ∈ [−δ(1− rl), δ(1− rl)], by (5.10), (5.11),

(5.12) and (5.13),

|Φa(rle
i(t+tl))| ≥ 1

2

∣∣gl(rlei(t+tl))∣∣− l−1∑
n=1

M∞(rl, gn)−
∞∑

n=l+1

M∞(rl, gn)

≥
(
κ− κ

4
− κ

4

)
N1+ν
l =

κ

2
N
α+ 1

p

l ≥ κ

2
α+ 1

p
+1

(1− rl)−α−
1
p .

We have proved (5.9) and thus the theorem follows for the space H(p,∞, α). Since
the functions gn are polynomials, a similar argument shows that if a ∈ c0, then Φa ∈
H0(p,∞, α). This finishes the proof.

With this we are now ready to characterize the boundedness of Vg : H(p,∞, α) →
H0(p,∞, α) and the compactness of Vg on H(p,∞, α) and on H0(p,∞, α). All of them
are equivalent to g ∈ B0.

Corollary 5.10. Let g be a function in the Bloch space B. The following are equivalent:

(a) Vg : H(p,∞, α)→ H(p,∞, α) is compact;

(b) Vg : H(p,∞, α)→ H(p,∞, α) is weakly compact;

(c) Vg : H(p,∞, α)→ H0(p,∞, α) is bounded;

(d) Vg : H0(p,∞, α)→ H0(p,∞, α) is compact;

(e) Vg : H0(p,∞, α)→ H0(p,∞, α) is weakly compact;

(f) Vg : H(p,∞, α)→ H(p,∞, α) does not fix a copy of `∞;

(g) Vg : H0(p,∞, α)→ H0(p,∞, α) does not fix a copy of c0;

(h) g ∈ B0.
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Chapter 5. Semigroups of composition operators on mixed norm spaces

Proof. First we will prove that (h) implies (a) and (d). Let us assume that g ∈ B0.
Take {fn} a sequence in the unit ball of H(p,∞, α) that converges to zero uniformly
on compact subsets of the unit disk. Let us fix ε > 0. Then there is R < 1 such that
|g′(z)|(1 − |z|) < ε whenever |z| ≥ R. Moreover, there is N0 ∈ N such that if n ≥ N0

we have that |fn(z)| ≤ ε/||g||B for all |z| ≤ R. On the one hand, if r ≤ R, then

(1− r)α+1Mp(r, g
′fn) ≤ (1− r)α+1 sup

θ∈[0,2π]
|g′(reiθ)|Mp(r, fn)

≤ ||g||B(1− r)αMp(r, fn) ≤ ε.

On the other hand, if r > R, then

(1− r)α+1Mp(r, g
′fn) ≤ (1− r)α+1 sup

θ∈[0,2π]
|g′(reiθ)|Mp(r, fn)

≤ ||fn||p,∞,α(1− r) sup
θ∈[0,2π]

|g′(reiθ)| ≤ ε.

Thus, lim ||g′fn||p,∞,α+1 = 0. This implies that Mg′ : H(p,∞, α)→ H(p,∞, α+1) and
Mg′ : H0(p,∞, α)→ H0(p,∞, α+ 1) are compact.

A similar argument shows that (h) implies (c). The proof of (c) ⇒ (f) follows from
the fact that, if Vg fixes a copy of `∞, say X0 ≈ `∞ then

`∞ ≈ V (X0) ⊆ H0(p,∞, α),

yielding a contradiction since H0(p,∞, α) is separable.
Being trivial that (a)⇒ (b)⇒ (f) and that (d)⇒ (e)⇒ (g), we only have to prove

that both (f) and (g) imply (h). But this is just Theorem 5.9.

To conclude this section on the integral operator, we give an application to the
inclusion of exponential functions in the space.

Proposition 5.11. Let X be a Banach space of analytic functions and g an analytic
function on the unit disk.

• If Vg : X → X is bounded, then esg ∈ X for some s > 0.

• If Vg : X → X is compact, then esg ∈ X for every s > 0.

Proof. Let g be an analytic function on D such that Vg : X → X is bounded and
suppose g(0) = 0. Then, Vg(1) = g and in general V n

g (1) = 1
n!g

n. Let 0 < s < 1/r(Vg)
where r(Vg) is the spectral radius of the operator Vg. Hence,

∑∞
n=0 s

nV n
g converges in

the operator norm. With f ≡ 1 we have that

∞∑
n=0

snV n
g (1) =

∞∑
n=0

sngn

n!
= esg ∈ X

for some s > 0.
If Vg : X → X is compact, its spectrum is the set of its eigenvalues and {0}. Let

λ 6= 0, then Vgf = λf implies f(0) = 0. Differentiating we get f(z)g′(z) = λf ′(z), that
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is, f ′(0) = 0, and, in general, f (n)(0) = 0 for every n ∈ N. This means that if f is an
eigenfunction of Vg, then f ≡ 0, that is, Vg has no eigenvalues λ 6= 0, and since it is
compact, r(Vg) = 0. From the first part we have that esg ∈ X for every s > 0.

In our mixed norm spaces, the last result becomes:

Corollary 5.12. Let g be an analytic function on the unit disk.

• If g ∈ B, then eg ∈ H(p,∞, α) for some p > 0.

• If g ∈ B0, then eg ∈ H(p,∞, α) for every p > 0.

We can also prove the converse. This result appears in [98] in the case of the Hardy
space H2 as a first step to prove that g ∈ BMOA. For g analytic on the unit disk
we denote by gζ the function gζ(z) = g(σζ(z)) − g(ζ), z ∈ D, with σζ(z) = z+ζ

1+ζz
the

automorphism of the disk associated with ζ.

Proposition 5.13. Let X be a Banach space of analytic functions such that the point
evaluation functionals Λz are bounded for every z ∈ D. If supζ∈D ‖egζ‖X < ∞ then
g ∈ B. In particular, if X is conformally invariant and eg ∈ X, then g ∈ B.

Proof. Since X is a Banach space and every point evaluation functional is bounded,
they are uniformly bounded on compact subsets of the unit disk (using the uniform
boundedness principle). Therefore, every point evaluation of the derivative is bounded.
Write k(f) = f ′(0). Taking in particular the evaluation of the derivative at zero we
have

|k(egζ )| = |σ′ζ(0)g′(σζ(0))egζ(0)| = (1− |ζ|2)|g′(ζ)| ≤ ‖k‖‖egζ‖X .

From here,
sup
ζ∈D

(1− |ζ|2)|g′(ζ)| ≤ sup
ζ∈D
‖k‖‖egζ‖X <∞

and we conclude that g ∈ B.

5.4 Semigroups of composition operators on H(p,∞, α)

According to Proposition 5.4, H0(p,∞, α) = [ϕt, H0(p,∞, α)], so, for every semigroup
{ϕt},

H0(p,∞, α) ⊆ [ϕt, H(p,∞, α)] ⊆ H(p,∞, α).

In this section we will study if the previous inclusions can be equalities. The first
theorem proves that the second inclusion is always strict.

Theorem 5.14. No nontrivial semigroup induces a strongly continuous semigroup of
operators on H(p,∞, α). In other words,

[ϕt, H(p,∞, α)] ( H(p,∞, α)

for every semigroup of analytic functions {ϕt}.
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To prove this theorem, by Proposition 2.22 we are interested in the integral operator
on H(p,∞, α) and in the question of whether the subspace

Vγ(H(p,∞, α)) = {h ∈ H(p,∞, α) : Vγ(f) = h for some f ∈ H(p,∞, α)}

is dense in H(p,∞, α). Differentiating we have

Vγ(H(p,∞, α)) =

{
h ∈ H(p,∞, α) :

h′

γ′
∈ H(p,∞, α)

}
.

If γ is the associated g-symbol of a semigroup with Denjoy-Wolff point b = 0 we study
the density of

E =
{
h ∈ H(p,∞, α) : P h′ ∈ H(p,∞, α)

}
or

E =
{
h ∈ H(p,∞, α) : (1− z)2P h′ ∈ H(p,∞, α)

}
,

for b = 1, where P is the function with Re P ≥ 0 associated to the infinitesimal
generator of the semigroup.

First we prove a lemma that gives us information about the functions in E. For
θ ∈ [0, 2π] define Sθ as the Stolz region with vertex eiθ and the function

ψ(θ) = inf
z∈Sθ
|P (z)|

if b = 0 and
ψ(θ) = inf

z∈Sθ
|(1− z)2P (z)|

if b = 1. In both cases, we have that ψ(θ) > 0 a.e. θ ∈ [0, 2π]. We only have to prove
it for the second case. Since the function z 7→ 1

(1−z)2 belongs to the Hardy space Hβ

for β < 1/2 and 1/P belongs to Hα for α < 1 (because its real part is positive), we
have that the function z 7→ 1

(1−z)2P (z)
belongs to the Hardy space Hδ for δ < 1/3.

Consequently, for almost every θ,

sup
z∈Sθ

1

|(1− z)2P (z)|
< +∞.

Lemma 5.15. Let h ∈ E and θ ∈ [0, 2π] such that ψ(θ) > 0, then

lim
r→1−

(1− r)α
(∫ θ+(1−r)

θ−(1−r)
|h(reit)|pdt

) 1
p

= 0.

Proof. We may assume that b = 0 and that θ = 0. If h ∈ E then for every r ∈ (0, 1)
we have

(1− r)α
(∫ 1−r

−(1−r)
ψp(0)|h′(reit)|pdt

) 1
p

≤ (1− r)α
(∫ 1−r

−(1−r)
|P (reit)|p|h′(reit)|pdt

) 1
p

≤ ‖Ph′‖p,∞,α = M.
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From here, since ψ(0) > 0,(∫ 1−r

−(1−r)
|h′(reit)|pdt

) 1
p

≤ M/ψ(0)

(1− r)α
.

Now, writing

h(reit) = h(0) + eit
∫ r

0
h′(ρeit) dρ

and using Minkowski’s integral inequality we have that(∫ 1−r

−(1−r)
|h(reit)|pdt

) 1
p

≤ C +

∫ r

0

M/ψ(0)

(1− ρ)α
dρ = C +

C ′

(1− r)α−1
.

Hence,

lim
r→1−

(1− r)α
(∫ 1−r

−(1−r)
|h(reit)|pdt

) 1
p

≤ lim
r→1−

(1− r)α
(
C +

C ′

(1− r)α−1

)
= 0.

Now, let h ∈ E, then h = limn→∞ hn, with hn ∈ E for every n. Since

(1− r)α
(∫ 1−r

−(1−r)
|h(reit)|pdt

) 1
p

is bounded by the norm ‖h‖p,∞,α, we have that

(1− r)α
(∫ 1−r

−(1−r)
|hn(reit)− h(reit)|pdt

) 1
p

≤ ‖hn − h‖p,∞,α,

and the result also holds for every h ∈ E.

Thus, given any θ such that ψ(θ) > 0, the function f(z) = 1

(1−e−iθz)α+
1
p
, z ∈ D, is

an example of a function in H(p,∞, α) that does not belong in E, proving Theorem
5.14.

Now that we know

H0(p,∞, α) ⊆ [ϕt, H(p,∞, α)] ( H(p,∞, α)

for every semigroup {ϕt}, we want to characterize the semigroups for which

H0(p,∞, α) = [ϕt, H(p,∞, α)].

First, we deal with the case b = 0. It is worth noticing that, unlike the BMOA
case (see [29, Prop. 3]), the integral operator we are interested in is bounded in
H(p,∞, α) for every admissible function γ. Indeed, by Proposition 5.6, Vγ is bounded
from H(p,∞, α) to itself if and only if γ ∈ B, that is, supz∈D(1 − |z|) 1

|P (z)| < ∞, and
this is true since every such P induced by a semigroup of analytic functions has positive
real part.
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Theorem 5.16. Let {ϕt} be a semigroup with Denjoy-Wolff point b ∈ D. Then

H0(p,∞, α) = [ϕt, H(p,∞, α)]⇔ γ ∈ B0.

Moreover, if γ 6∈ B0 then the space [ϕt, H(p,∞, α)] contains a subspace isomorphic to
`∞.

Proof. By Proposition 2.22,

[ϕt, H(p,∞, α)] = H(p,∞, α) ∩ (Vγ(H(p,∞, α))⊕ C),

where Vγ is the integral operator with symbol γ(z) =
∫ z

0
1

P (ζ)dζ. Since Vγ is bounded

on H(p,∞, α) we have

Vγ(H(p,∞, α))⊕ C ⊂ H(p,∞, α)

and therefore

H(p,∞, α) ∩ (Vγ(H(p,∞, α))⊕ C) = Vγ(H(p,∞, α))⊕ C.

From here,
H0(p,∞, α) = [ϕt, H(p,∞, α)] = Vγ(H(p,∞, α))⊕ C

if and only if Vγ(H(p,∞, α)) ⊆ H0(p,∞, α), and, by Proposition 5.10, this is equivalent
to γ ∈ B0.

Notice that, since

γ(z) = −
∫ z

0

1

P (ζ)
dζ,

if b = 0, then γ ∈ B0 is equivalent to 1
P ∈ H0(p,∞, α).

Now, for b = 1, recall that

E =
{
h ∈ H(p,∞, α) : (1− z)2P h′ ∈ H(p,∞, α)

}
.

As before, we have that [ϕt, H(p,∞, α)] = E for (1 − z)2P (z) the generator of the
semigroup {ϕt}.

Theorem 5.17. For every semigroup of analytic functions with Denjoy-Wolff b ∈ T
the set E contains a copy of `∞. Consequently, [ϕt, H(p,∞, α)] ) H0(p,∞, α).

Several auxiliary results are needed to prove this theorem. First, we define the space

Xν,β =

{ ∞∑
n=1

anfn : {an} ∈ `∞

}
,

where fn(z) = δνn(1 + δn − z)β, δn = K−n for K big enough, ν > 0 and βp < −1.
The first lemma relates the space Xν,β with H(p,∞, α) for some ν depending on p

and α.

80



5.4. Semigroups of composition operators on H(p,∞, α)

Lemma 5.18. Let F (z) =
∑∞

n=1 |fn(z)| then

(1− r)αMp(r, F ) ≤ C

for every r and for ν = −(α+ β + 1
p).

Proof. Adapting the proof of [57, Lemma in Section 4.6], we can see that there exists
a constant C such that

Mp(r, fn) ≤ Cδνn(1 + δn − r)β+ 1
p .

Let l ∈ N such that 1 − r ∈ (δl+1, δl]. Then, since 1 + δn − r ≈ δn for n ≤ l and
1 + δn − r ≈ 1− r for n > l, we have

(1− r)αMp(r, F ) ≤
∞∑
n=1

(1− r)αMp(r, fn) ≤ C
∞∑
n=1

(1− r)αδνn(1 + δn − r)β+ 1
p

. C
l∑

n=1

(1− r)αδ
ν+β+ 1

p
n + C

∞∑
n=l+1

(1− r)α+β+ 1
p δνn

≤ C(1− r)αδ−αl + C(1− r)−νδνl+1 ≤ C ′,

given that both α and ν are positive.

The first property we will need about this spaces is the following:

Proposition 5.19. Let ν = −(α+ β + 1
p) and define

Φ : `∞ → Xν,β

{an} →
∞∑
n=1

anfn.

Then Φ is an isomorphism between `∞ and Xν,β with the norm of H(p,∞, α).

Proof. Following the steps of Theorem 5.9 it is easy to see using the previous lemma
that Φ is well defined and bounded from `∞ to Xν,β . We only need to show that, for
some C > 0, given a = {an} ∈ `∞, C‖Φa‖p,∞,α ≥ ‖a‖∞. Let ‖a‖∞ = 1 and l ∈ N such
that |al| > 1

2 and δl ≈ (1− rl). By definition of Φa, for |t| < δl we have, as in the proof
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of the previous lemma,

|Φa(rle
it)| ≥ |al||fl(rleit)| −

l−1∑
n=1

|an||fn(rle
it)| −

∞∑
n=l+1

|an||fn(rle
it)|

≥ 1

2
δνl |1 + δl − rleit|β −

l−1∑
n=1

δνn|1 + δn − rleit|β −
∞∑

n=l+1

δνn|1 + δn − rleit|β

≥ C

2
δνl δ

β
l − C

′
l−1∑
n=1

δν+β
n − C ′′

∞∑
n=l+1

δνnδ
β
l

≥ C

2
δν+β
l − C ′δν+β

l−1 − C
′′δνl+1δ

β
l

≥ C

2
δν+β
l − C ′Kν+βδν+β

l − C ′′K−νδν+β
l ≥ Aδν+β

l ≥ A′(1− rl)ν+β.

Then, since |t| < δl ≈ 1− rl

Mp
p (rl,Φa) ≥

∫
|t|<δl

|Φa(rle
it)|p dt

2π
≥ A′

π
(1− rl)(ν+β)pδl ≈ C(1− rl)(ν+β)p+1

it follows that

‖Φa‖p,∞,α ≥ (1− rl)αMp(rl,Φa)

≥ C(1− rl)α(1− rl)ν+β+ 1
p = C.

Our interest in the space Xν,β comes from the following two propositions. In the
first one we prove that, if α > 1, the set E contains a copy of `∞.

Proposition 5.20. Let ν = −(α+ β + 1
p) and α > 1, then Xν,β ⊆ E.

Proof. For f ∈ Xν,β we already know that f ∈ H(p,∞, α) for the given parameter ν
(Lemma 5.18), so we only need to show (1− z)2Pf ′ ∈ H(p,∞, α). Since

f ′(z) = −
∞∑
n=1

anδ
ν
nβ(1 + δn − z)β−1,

it is clear that f ′ ∈ Xν,β−1. Multiplying by (1− z)2 we have that

|f ′(z)(1− z)2| ≤ C
∞∑
n=1

δνn|1 + δn − z|β−1|1− z|2 ≤ C
∞∑
n=1

δνn|1 + δn − z|β+1.

Hence, by Lemma 5.18, (1 − z)2f ′ ∈ H(p,∞, α − 1). Moreover, since P has positive
real part, P ∈ H(∞,∞, 1) and then (1− z)2Pf ′ ∈ H(p,∞, α).
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The next proposition allows us to take away the condition on α by taking the closure
on E. Since E = [ϕt, H(p,∞, α)], we finally get that, if b = 1, [ϕt, H(p,∞, α)] contains
a copy of `∞, and therefore it can never be H0(p,∞, α). First we need the following
lemma.

Lemma 5.21. For every f ∈ Xν,β and θ ∈ (0, α)

f ′(z)(1− z)[(1− z)P (z)]θ ∈ H(p,∞, α).

Proof. As in the proof of the last proposition, we have that, for f ∈ Xν,β ,

|f ′(z)(1− z)1+θ| ≤ C
∞∑
n=1

δνn|1 + δn − z|β−1|1− z|1+θ ≤ C
∞∑
n=1

δνn|1 + δn − z|β+θ

so, by Lemma 5.18, (1 − z)1+θf ′ ∈ H(p,∞, α − θ). Since P θ ∈ H(∞,∞, θ), we have
f ′(z)(1− z)1+θP (z)θ ∈ H(p,∞, α).

Proposition 5.22. If ν = −(α+ β + 1
p) then Xν,β ⊆ E.

Proof. For f ∈ Xν,β we define

hn = f(0) + V

(
nf ′

n+ ψ

)
,

where V is the Volterra operator and ψ(z) = [(1− z)P (z)]1−θ for 0 < θ < 1.
Since

ψ(D) ⊆ ∆ = {w : Argw ∈ (−π(1− θ), π(1− θ))},

we have that there exists a constantM such that
∣∣ w
n+w

∣∣ < M for every w ∈ ∆ and n ∈ N.
Now, since n

n+ψ(z) = 1− ψ(z)
n+ψ(z) we have

∣∣ n
n+ψ(z)

∣∣ < M +1 for every z ∈ D and therefore

it is a bounded function. This allows us to show that h′n = nf ′

n+ψ ∈ H(p,∞, α + 1),

since f ′ ∈ Xν,β−1 ⊆ H(p,∞, α + 1) for every f ∈ Xν,β , and n
n+ψ ∈ H

∞. From here,
hn ∈ H(p,∞, α).

Moreover, hn ∈ E for every n ∈ N. Indeed, by the definition of hn and ψ we have

P (z)(1− z)2h′n(z) = P (z)(1− z)2 nf ′

n+ ψ(z)
= f ′(z)(1− z)1+θP (z)θψ(z)

n

n+ ψ(z)
.

By the previous Lemma, for every f ∈ Xν,β and θ ∈ (0, α)

f ′(z)(1− z)1+θP (z)θ ∈ H(p,∞, α),

and recalling that ψ
n+ψ ∈ H

∞, we get P (z)(1− z)2h′n(z) ∈ H(p,∞, α), that is, hn ∈ E.
To prove Xν,β ⊆ E we are going to show that hn → f in H(p,∞, α). Taking

derivatives, this is equivalent to h′n → f ′ in H(p,∞, α+ 1), and by definition of hn, to(
n

n+ ψ
− 1

)
f ′ =

(
ψ

n+ ψ

)
f ′ → 0
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Chapter 5. Semigroups of composition operators on mixed norm spaces

in H(p,∞, α+ 1)

Rephrasing, in what follows we want to prove that
(

ψ
n+ψ

)
g → 0 in H(p,∞, α) for

g ∈ Xν,β . Define the sets

An = {z = reit ∈ D : |t| ≤ n(1− r), |t| ≤ π}

and
Bn = {z = reit ∈ D : n(1− r) < |t| ≤ π}

and the associated functions cn = ψ
n+ψgχAn and dn = ψ

n+ψgχBn , so

ψ

n+ ψ
g = cn + dn

and ∥∥∥∥ ψ

n+ ψ
g

∥∥∥∥
p,∞,α

≤ sup
0≤r<1

(1− r)α[Mp(r, cn) +Mp(r, dn)]. (5.14)

First, suppose z = reit ∈ An, then |t| ≤ n(1− r) and

|1− z| =
√

(1− r)2 + 4r sin2 t

2
≤
√

(1− r)2 + rt2 ≤ 1− r + |t| ≤ (n+ 1)(1− r).

Now, since ReP > 0, let

Q(z) =
P (z)− i ImP (0)

ReP (0)
,

then ReQ(z) > 0 and Q(0) = 1. Therefore, Q ∈ P and, for the growth property (1.4),

|Q(z)| ≤ 1 + |z|
1− |z|

≤ 2

1− |z|

and

|P (z)| ≤ 2ReP (0) + |ImP (0)|
1− |z|

.

Using these last two observations,

|(1− z)P (z)| ≤ (2ReP (0) + |ImP (0)|) (n+ 1),

so
|ψ(z)| = |(1− z)θP θ(z)| ≤ (2ReP (0) + |ImP (0)|)θ (n+ 1)θ <

n

2

for n large enough. From here∣∣∣∣ ψ

n+ ψ

∣∣∣∣ ≤ (2ReP (0) + |ImP (0)|)θ (n+ 1)θ

n− n
2

≤ C(n+ 1)θ−1 = αn,

with αn → 0 when n→∞ (recall that 0 < θ < 1). Therefore,

lim
n→∞

sup
0≤r<1

(1− r)αMp(r, cn) ≤ lim
n→∞

αn‖g‖p,∞,α = 0.
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Now, take n ≥ 7. If z = reit ∈ Bn, then 1 − r < π
n , so r > 1/2. Recall that

dn = ψ
n+ψ (

∑∞
k=1 akfk)χBn with fk(z) = δνk(1 + δk − z)β, δk = K−k and β < 0. For

z ∈ Bn we have |1+δk−z| ≥ |r−z| = r|1−eit| ≥ r
π |t| ≥

|t|
2π . Therefore |fk(z)| ≤ δνk

(
|t|
2π

)β
and

Mp(r, fkχBn) ≤ δνk

(
2

∫ π

n(1−r)

(
t

2π

)βp dt
2π

) 1
p

≤ δνk

(
2

∫ ∞
n(1−r)

(
t

2π

)βp dt
2π

) 1
p

≤ Cδνk (n(1− r))β+ 1
p .

Now we take l ∈ N such that (1 − r)K l ∈
(

1√
n
, K√

n

]
(that means,

(
(1− r)K l

)α ≤
(K/
√
n)
α

and
(
(1− r)K l

)−ν ≤ (1/
√
n)
−ν

). The integral mean of dn can be bound as

Mp(r, dn) ≤
∣∣∣∣ ψ

n+ ψ

∣∣∣∣ ‖an‖`∞ ∞∑
k=1

Mp(r, fkχBk)

≤ (M + 1)‖an‖`∞

[
l−1∑
k=1

Cδ−αk +
∞∑
k=l

C ′δνk (n(1− r))β+ 1
p

]
≤ (M + 1)‖an‖`∞

(
CK lα + C ′n

β+ 1
pK−lν (1− r)β+ 1

p

)
=

(M + 1)‖an‖`∞
(1− r)α

(
CK lα(1− r)α + C ′n

β+ 1
pK−lν(1− r)−ν

)
≤ (M + 1)‖an‖`∞

(1− r)α

(
C
Kα

nα/2
+ C ′n

β+ 1
pnν/2

)
=

(M + 1)‖an‖`∞
(1− r)α

(
CKαn−α/2 + C ′n−α−ν/2

)
.

From here clearly sup0≤r<1(1− r)αMp(r, dn)→ 0 when n→∞, and, by (5.14),∥∥∥∥ ψ

n+ ψ
g

∥∥∥∥
p,∞,α

≤ sup
0≤r<1

(1− r)α[Mp(r, cn) +Mp(r, dn)]→ 0

when n→∞. This finishes the proof.
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Chapter 6

Operators on Banach spaces of
analytic functions defined
axiomatically

Let Ω be a domain (i.e., an open and connected set) in the complex plane. We will con-
sider general domains Ω which will sometimes be required to be bounded and sometimes
will simply be the unit disk D.

We will denote by H(Ω) the algebra of all analytic functions in Ω. Let X ⊂ H(Ω)
be a Banach space of analytic functions in Ω. Abstract Banach spaces of analytic
functions, assumed to satisfy only a handful of axioms, have been considered in the
literature, e.g., in [40] , [107], [3], or [37].

Recall from Chapter 1 that, given a point z in Ω, we will denote by Λz the point eval-
uation functional corresponding to z, defined by Λz(f) = f(z), for f ∈ X. Throughout
this chapter we assume that the point evaluation functionals are bounded in X. (This
is the most common axiom in the literature.) Thus, they are uniformly bounded on
each compact subset of Ω; indeed, given a compact set K ⊂ Ω, we have

sup
z∈K
|Λz(f)| = sup

z∈K
|f(z)| <∞

for each f ∈ X, hence supz∈K ‖Λz‖ <∞ by a direct application of the uniform bound-
edness principle. By a functional Banach space we will allude to a Banach space of
analytic functions in which the point evaluation functionals are bounded and some
additional axioms are satisfied.

Throughout the chapter, T will denote a general operator, while TF,ϕ will be a
weighted composition operator.

The results in this chapter can be found in [14].
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Chapter 6. Operators on Banach spaces defined axiomatically

6.1 Some preliminary results

6.1.1 Some consequences of a basic axiom in the disk

Let X ⊂ H(D) be a functional Banach space on the disk on which the point evaluations
are bounded. If f ∈ X and f(z) =

∑∞
n=0 anz

n in D then the functional Λ0, given by
Λ0(f) = a0 = f(0), is bounded. This observation extends to the remaining coefficient
functionals.

Proposition 6.1. Let X ⊂ H(D) be a Banach space which contains the polynomials
and on which the point evaluations are bounded. The following assertions hold.

(a) All coefficient functionals Λn(f) = an are bounded. More precisely, for every

n ∈ N and r ∈ (0, 1) there exists a constant Mr > 0 such that |an| ≤
Mr

rn
‖f‖X for all

f ∈ X.
(b) lim supn→∞

n
√
‖zn‖X ≥ 1.

Proof. Recall that the point evaluation functionals on X are uniformly bounded on
compact subsets of the disk. Thus,

max
|w|=r

|f(w)| ≤Mr‖f‖X

for some fixed Mr > 0 and all f ∈ X. Let f ∈ X with f(z) =
∑∞

n=0 anz
n. The Cauchy

integral formula yields

|an| ≤
max|w|=r |f(w)|

rn
≤ Mr

rn
‖f‖X .

(b) Applying the conclusion of part (a) to the function f(z) = zn, we get 1 ≤
Mr

rn
‖f‖X for arbitrary but fixed r, 0 < r < 1. Hence

r = lim
n→∞

r
n
√
Mr
≤ lim sup

n→∞
n
√
‖zn‖X .

Since this holds for arbitrary r ∈ (0, 1), the statement follows.

In the next section a relevant condition in some statements will be the assumption
that lim supn→∞

n
√
‖zn‖X ≤ 1 and, thus, actually lim supn→∞

n
√
‖zn‖X = 1. It is not

difficult to see that in most spaces of interest to us the above lim sup is actually equal
to one. This is readily verified for the Hardy, Bergman, and mixed-norm spaces but
also in the Bloch, analytic Besov spaces, and weighted Banach spaces H∞v .

The next example may not seem so natural but will be relevant for further discus-
sion.

Example 1. Consider the space X whose elements f |D are the restrictions to the disk of
the functions f in the Fock space F 2, defined as the space of entire functions [133] which
are square integrable in the complex plane C with respect to the Gaussian measure:

‖f‖2F =
1

π

∫
C
|f(z)|2e−|z|2dA(z) <∞ .
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Clearly, if f |D ∈ X, its extension f to the entire plane is unique by the principle of
isolated zeroes, hence there is a one-to-one correspondence between the members of
X and the functions in F 2. If X is equipped by the norm of the extension to the
plane: ‖f |D‖X = ‖f‖F 2, it is clear that it is a Banach space (actually, Hilbert) of
analytic functions in the unit disk. It is also well-known that the point evaluations (at
all points in the plane) are bounded on F 2 [133, Theorem 2.7] and the polynomials
are dense [133, Proposition 2.9], hence the point evaluations (at the points of D) are
bounded on X and the polynomials are dense in X. So, the space X defined in this
fashion is one more in our collection of spaces; however, it does not satisfy the condition
lim supn→∞

n
√
‖zn|D‖X = 1. In fact, one easily calculates that

‖zn|D‖2X = ‖zn‖2F 2 = 2

∫ ∞
0

r2n+1e−r
2
dr = Γ(n+ 1) = n!

and Stirling’s formula shows that limn→∞
n
√
‖zn‖X =∞.

6.1.2 Pointwise multipliers and the domination property

As in Chapter 2, a function F analytic in D is said to be a pointwise multiplier of a
Banach space of analytic functions X into itself if Ff ∈ X for every f ∈ X. For any
such F we can define the multiplication operator MF in a natural way:

MF : X → X , MF f = Ff , f ∈ X .

Under the assumption that each point-evaluation functional Λζ(f) = f(ζ) is bounded
on X, a standard normal family argument shows that MF has closed graph and is,
thus, a bounded operator.

We also denote by M(X) the space of all (bounded) multipliers from X into itself, a
closed subspace of the space of bounded operators on X. By Proposition 2.11 (a simple
consequence of the boundedness of point evaluations), M(X) ⊆ H∞ and ‖F‖∞ ≤
‖MF ‖. We also saw in Chapter 2 that, in general, H∞ 6= M(X); for example, in the
Bloch and Dirichlet spaces. Thus, a most natural question comes to mind: for which
“reasonable” Banach spaces X of analytic functions is H∞ = M(X) true? We have
not been able to find an answer in the literature and we give here a very simple answer
in terms of what we call the domination property. Note the similarity with a property
seen earlier in the study of semigroups (Sec. 5.2, Prop 5.2).

We will say that a Banach space X of analytic functions has the Domination Prop-
erty (DP) if there is a universal constant C > 0 such that if f ∈ H(Ω), g ∈ X and
|f(z)| ≤ |g(z)| holds for all z ∈ D, then f ∈ X and ‖f‖X ≤ C‖g‖X .

It is readily checked that all Hardy, Bergman, mixed-norm spaces H(p, q, α), and
weighted Banach spaces H∞v have this property.

Theorem 6.2. Let X ⊂ H(Ω) be a functional Banach space in which the point evalu-
ations are bounded. Then the following conditions are equivalent:

(a) H∞(Ω) ⊂M(X); that is, H∞(Ω) = M(X).
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(b) X has (DP).

Moreover, the least constant possible in the inequality that defines the property (DP) is
C = ‖J‖, where J is the correspondence operator J : H∞ →M(X), J(F ) = MF .

In the special case when Ω = D, both conditions above are equivalent to the following:

(c) The set BP of all Blaschke products satisfies BP ⊂M(X) and supB∈BP ‖MB‖X→X <
∞.

Proof. (b)⇒(a) Suppose X has (DP). Let F ∈ H∞(Ω). Then the function ‖F‖∞f ∈
X and

|F (z)f(z)| ≤ ‖F‖∞|f(z)|

holds for all z ∈ D, hence by (DP) we have Ff ∈ X and ‖Ff‖X ≤ C‖F‖∞‖f‖X . This
shows that F ∈M(X).

(a)⇒(b) Now assume that H∞(Ω) ⊂ M(X) and let us show that the space X

has (DP).

First of all, observe that the correspondence operator J : H∞ →M(X), given by
J(F ) = MF , is bounded. To verify this, it suffices to see that it has closed graph by
an application of a normal families argument in the usual way: suppose that Fn → F
in H∞ and J(Fn) = MFn → T in the space of bounded operators on X. In order to
show that T = MF , we note that

‖Fnf − Tf‖X ≤ ‖MFn − T‖ · ‖f‖X → 0 , n→∞ .

In view of the boundedness of point evaluations, it follows that Fn → F pointwise
(actually, uniformly on compact subsets) and also Fnf → Tf pointwise, hence Fnf →
Ff pointwise and therefore Tf = Ff . This shows that T = MF .

Knowing that J is a bounded operator, there exists a universal constant C > 0 such
that for each F ∈ H∞(Ω) we have ‖MF ‖ ≤ C‖F‖∞. Thus, whenever ‖F‖∞ ≤ 1, we
have that ‖MF ‖ ≤ C for some fixed constant C.

Let f ∈ H(Ω) and g ∈ X be such that |f(z)| ≤ |g(z)| holds for all z ∈ Ω. The trivial
case g ≡ 0 yields f ≡ 0 which clearly presents no problem. When g is not identically
zero in Ω, every zero of g is a zero of f (of at least the same order) and is isolated so
one easily extends the function F = f/g to be analytic in the whole domain Ω. This
function F ∈ H∞(Ω) and ‖F‖∞ ≤ 1. By the above observation based on the Closed
Graph Theorem, there is a fixed constant C (independent of F ) such that ‖MF ‖ ≤ C.
Hence, we obtain

‖f‖X = ‖Fg‖X ≤ ‖MF ‖‖g‖X ≤ C‖g‖X .

This shows that X has (DP). It is also clear from the proof that the smallest possible
value of C is precisely ‖J‖.

(a), (b) ⇔ (c) It is readily seen that any of the assumptions (a), (b) implies (c).

The converse follows from Marshall’s Theorem 1.2 on the density of the convex hull of
Blaschke products in the unit ball of H∞.
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6.2. Weighted composition operators on the disk

It is worth remarking that it does not seem easy to find a natural and satisfactory
analogue of Theorem 6.2 for composition operators. That is, we have not been able to
identify any property that would be equivalent to the statement: Every ϕ ∈ H(D) such
that ϕ(D) ⊂ D induces a bounded composition operator Cϕ on X.

6.2 Weighted composition operators on the disk

In this section we only consider spaces of analytic functions in the disk that satisfy
a fixed set of five natural axioms. We will prove two results: one characterizing all
weighted composition operators among the bounded operators on such a space, and an-
other, characterizing the invertible weighted composition operators among the bounded
ones.

6.2.1 A characterization of weighted composition operators on spaces
of the disk

The unilateral shift operator S, defined by Sf(z) = zf(z), for z ∈ D and f ∈ X, makes
sense and is often bounded on many functional Banach spaces X ⊂ H(D). Clearly,
S = Mz.

Throughout the whole section, we will consider Banach spaces X ⊂ H(D) that
satisfy the following set of axioms:

Ax1 All point evaluation functionals Λz are bounded on X.

Ax2 The set of all algebraic polynomials of z is contained in X and dense in it (in
‖ · ‖X).

Ax3 The shift operator S = Mz is bounded on X.

Ax4 lim supn→∞ ‖zn‖1/n = 1.

Ax5 Every disk automorphism induces a bounded composition operators on X.

Each one of these axioms appears in a most natural way in one context or another.
The Hardy spaces Hp and the Bergman spaces Ap, 1 ≤ p <∞, satisfy all five axioms.
More generally, the spaces H(p, q, α), 1 ≤ q <∞ and H0(p,∞, α) verify them whenever
1 ≤ p ≤ ∞ and α > 0. Also, the little Bloch space B0 and analytic Besov spaces Bp,
1 < p < ∞, satisfy all of these axioms (see [131, Chapter 5], [76], or [42] and Chapter
1 and 2).

As we saw in Chapter 1, the weighted spaces H2
β satisfy Axiom [Ax1] and clearly

also Axiom [Ax2]. They satisfy Axiom [Ax3] if and only if supn β(n+1)/β(n) <∞ by
[50, Proposition 2.7] and Axiom [Ax4] if and only if lim supn β(n)1/n = 1 by a trivial
calculation; a simple example of a coefficient weight that satisfies both is β(n) = nα,
α ≥ 0 or β(n) = (n + 1)α, α < 0. Axiom [Ax5] is discussed in Chapter 2. Theorem
2.7 proves that all the weighted spaces H2

β with β(n) = (n+ 1)γ , γ < 2, satisfy [Ax5].
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The non-separable spaces such as B, H∞, H(p,∞, α) and also H∞v fail to satisfy
Axiom [Ax2].

Theorem 6.4, to be proved in this subsection, provides a generalization of the well-
known fact that in Hardy spaces or Bergman spaces the only operators that commute
with the shift are the pointwise multiplication operators. It also generalizes a well-
known characterization of composition operators on H2 which states that they are the
only multiplicative operators on this space, in the sense that T (fg) = Tf · Tg for all
f , g ∈ H2 such that also fg ∈ H2; see [91, Corollary 5.1.14, p. 170].

Before stating and proving Theorem 6.4 we will need a simple auxiliary statement,
easy to prove and valid for arbitrary planar domains [59, Lemma 11, p. 57]; however,
we will state it only for the disk.

Lemma 6.3. Let g ∈ H(D), g 6≡ 0, let H be meromorphic in D, and assume that
gHn ∈ H(D) for all n ≥ 1. Then H ∈ H(D).

It will become obvious from the proof that the extra assumption on the norms of the
monomials, together with a minor technical assumption, forces the analytic function
ϕ = Tz/(T1) to become a self-map of the disk, which is the key to the validity of the
result. It should be noted that Axiom [Ax5] is not required in the statement.

Theorem 6.4. Let X ⊂ H(D) be a functional Banach space in which the axioms
[Ax1] - [Ax4] are fulfilled. Let T be a continuous operator on X with the property
that Tz 6= λ · T1 for every unimodular number λ. Then the following conditions are
equivalent:

(a) T is a weighted composition operator;

(b) There exists ϕ ∈ H(D) such that ϕ(D) ⊂ D and MϕT = TS;

(c) There exists ϕ, meromorphic in D, such that MϕT = TS;

(d) There exists ϕ, meromorphic in D, such that MϕnT = TSn for all integers n ≥ 0;

(e) There exists ϕ, meromorphic in D, such that ϕn · T1 = T (zn) for all integers
n ≥ 0;

(f) There exists ϕ ∈ H(D) such that ϕ(D) ⊂ D and ϕn · T1 = T (zn) for all integers
n ≥ 0;

(g) T1 · T (fg) = Tf · Tg holds for all functions f , g ∈ X for which fg ∈ X as well.

Whenever any of the conditions (a)–(g) is fulfilled, then ϕ = Tz/(T1) is the composition
symbol of T .

Proof. It suffices to prove the chain of implications (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒
(f) ⇒ (a) and then also (a) ⇒ (g) ⇒ (e).

(a) ⇒ (b) Let T = MFCϕ. Then for any f in X we have MϕTf = Fϕ(f ◦ ϕ) =

TSf , hence MϕT = TS holds. (Note that this step involves using [Ax3]).
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(b) ⇒ (c) This implication is trivial.

(c) ⇒ (d) The statement is obvious for n = 0 and we also have it for n = 1 by

(c). Now MϕT = TS implies TS2 = MϕTS = MϕMϕT = Mϕ2T . Proceeding by
induction, we obtain TSn = MϕnT for all n ≥ 0.

(d) ⇒ (e) Follows trivially by applying both sides of the equality in (d) to the

constant function one.

(e) ⇒ (f) First, we have to distinguish between two possibilities: T1 ≡ 0 and

T1 6≡ 0. If T1 ≡ 0, then it follows from (e) that T (zn) ≡ 0 for all n ≥ 1. But this
contradicts the property that Tz 6= λ · T1 for all λ of modulus one.

Knowing that T1 6≡ 0, it follows from the assumption (e) for n = 1 that ϕ =
Tz/(T1), a meromorphic function. Since T (zn) = T1 · ϕn holds for all integers n ≥ 1,
it follows from Lemma 6.3 that actually ϕ ∈ H(D).

It is only left to show that |ϕ(ζ)| < 1 for all ζ ∈ D. Since T1 ·ϕn ∈ X for all n ≥ 1,
by the boundedness of the point-evaluation functionals for an arbitrary but fixed ζ in
D (by virtue of [Ax1]) we get

|(T1 · ϕn)(ζ)| ≤ ‖Λζ‖ · ‖T1 · ϕn‖ = ‖Λζ‖ · ‖T (zn)‖ ≤ ‖Λζ‖ · ‖T‖ · ‖zn‖ .

Taking the n-th roots of both sides and then lim supn→∞, using condition [Ax4] we
first get that |ϕ(ζ)| ≤ 1 for all ζ ∈ D. Next, it is immediate that |ϕ(ζ)| = 1 for some
ζ ∈ D is impossible in view of the maximum modulus principle and the assumption
that Tz 6= λ · T1 for λ with |λ| = 1. Thus, ϕ is an analytic function in D which maps
D into itself.

(f) ⇒ (a) Suppose that ϕn · T1 = T (zn) for some analytic self-map ϕ of D and

for all integers n ≥ 0. We need to show that T is a weighted composition operator,
namely, Tf = F · (f ◦ ϕ) for this same mapping ϕ and F = T1.

By assumption, T (zn) = T1 · ϕn = F · ϕn for all integers n ≥ 0, hence by linearity
Tp = F · (p ◦ ϕ) for every polynomial p. Now let f be an arbitrary function in X and
{pn}n a sequence of polynomials convergent to f in the norm of X (which exists by
[Ax2]). Then, by continuity of T , we have Tpn → Tf in X and since Tpn = F ·(pn◦ϕ),
it follows that F · (pn ◦ ϕ)→ Tf in X, and hence pointwise as well. That is, Tf(z) =
F (z) · (f ◦ ϕ)(z) at every point z in D.

(a) ⇒ (g) Let Tf = F (f ◦ ϕ). It is readily checked that (g) holds as both sides

of the equality T1 · T (fg) = Tf · Tg are equal to F 2(f ◦ ϕ)(g ◦ ϕ).

(g) ⇒ (e) Assume that T1 · T (fg) = Tf · Tg holds whenever f , g, fg ∈ X. It is

clear that the identity in (e) holds trivially for n = 0 and that it holds for n = 1 for
ϕ = Tz/(T1), clearly a meromorphic function in D since Tz, T1 ∈ X. We now prove

that ϕn · T1 = T (zn) by induction on n ≥ 1. Assuming that T (zn) = ϕn · T1 = (Tz)n

(T1)n−1

for some n ≥ 1, we get from (g) with f(z) = zn and g(z) = z and from the inductive
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hypothesis that

T (zn+1) =
T (zn)T (z)

T1
=

(Tz)n+1

(T1)n
= ϕn+1 · T1 ,

which completes the inductive proof.

An inspection of the proof shows that we have effectively used all assumptions on
T (linearity and boundedness), on ϕ, and on X. It should be clear that all of our
assumptions are really needed but we still include some examples to illustrate this.

The following example shows that the result is false if the assumption [Ax4] is not
fulfilled. In this case, the remaining axioms [Ax1] - [Ax3] hold in X and, in spite of
the fact that the representation Tf = F (f ◦ ϕ) in view of (d) holds on a dense subset
of X, namely for all polynomials, T cannot be represented in this fashion on the whole
space.

Example 2. Let X be the space from Example 1 formed by restrictions of functions in
the Fock space to the disk and let T be the linear operator given by

Tf(z) = f
(z

2
+ 1
)
, f ∈ X, z ∈ D .

As some very simple integral estimates show, this is a bounded operator on X. (A more
general result characterizing the symbols of all bounded composition operators on the
Fock space can be found in [45].)

It is trivial to check that T satisfies condition (c) of Theorem 6.4 with ϕ(z) =
Tz/(T1) = z

2 + 1. However, ϕ is not a self-map of D so other conditions do not hold.
Thus, even though the formal relation T = M1Cϕ = Cϕ holds, T is not a weighted
composition operator on the disk in the sense considered here -in view of the fact that
ϕ does not map D into itself.

It is important to note that there does not exist any other representation of T as
a weighted composition operator with an admissible pair of symbols. Indeed, if we had
T = Cϕ = MFCψ for some F ∈ H(D) and some analytic self-map ψ of D, then taking
first f ≡ 1 and then f(z) = z in f ◦ ϕ = F (f ◦ ψ), this would imply F ≡ 1 and ψ = ϕ
respectively.

Our next example shows that the assumption [Ax2] is also essential. Indeed, if X
does not contain the constant functions (even if the polynomials lacking the constant
term are dense in the space), the conclusion of the result fails.

Example 3. Let X = A2
0 = {f ∈ A2 : f(0) = 0}, the subspace of the Bergman space

A2 of codimension one equipped with the inherited norm. It is clear that this is a Hilbert
space and [Ax1], [Ax3], and [Ax4] are satisfied. Also, X contains all polynomials that
vanish at the origin and it is easy to see that they are actually dense in X. However,
the constant function one does not belong to X.

If we define the operator T by Tf(z) = f ′(0)z, it is clear that this is a linear rank
one operator from X into itself and satisfies the relation MϕT = TS = 0 for the
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constant function ϕ ≡ 0 (which trivially maps D into itself). However, the operator T
defined in this fashion cannot be written as a weighted composition operator in any way.
In fact, if we had F (z) · f(ϕ(z)) = f ′(0)z for some F analytic in D and some analytic
mapping ϕ of D into itself, after substituting f(z) = z we would get F (z)ϕ(z) = z while
substituting f(z) = z2 would yield Fϕ2 ≡ 0, hence either F ≡ 0 or ϕ ≡ 0, immediately
leading to a contradiction.

6.2.2 Invertibility of weighted composition operators in spaces on the
disk

We already know that in certain “natural” spaces the inverse of an invertible compo-
sition operator is again a composition operator though this does not hold in general;
cf. [50, Exercises 2.1.14 and 3.1.6]. We now address the following question: when
is a weighted composition operator invertible? A rule of thumb should suggest that
the composition symbol should be an automorphism of the domain and the multipli-
cation symbol should be invertible (bounded from above and below) or, alternatively,
a self-multiplier of the space whose multiplicative inverse is also a self-multiplier, but
we already mentioned in the Introduction that it is possible to have a weighted com-
position operator which is bounded, surjective, and invertible and whose individual
multiplication and composition operator are both unbounded operators. We will see
an example of this type in this section.

Statements of this exact type have already appeared in the recent literature. Gu-
natillake [70] studied the spectrum of weighted composition operators with automorphic
symbols acting on the Hardy space H2. As a motivation for this, in the same paper he
characterized the invertibility of the operator on H2.

Theorem 6.5 (Gunatillake). The operator TF,ϕ on H2 is invertible if and only if F is
both bounded and bounded away from zero on the unit disk and ϕ is an automorphism of
the unit disk. The inverse operator is the weighted composition operator T1/F◦ϕ−1,ϕ−1 .

Two generalizations were obtained subsequently. Bourdon [37] obtained a version
of the last statement in the context of sets of analytic functions in the disk (with no
linear structure at all) that satisfy certain axioms.

Theorem 6.6 (Bourdon). Suppose that X is a set of functions analytic on D such that

(i) TF,ϕ maps X to X.

(ii) X contains a nonzero constant function.

(iii) X contains a function of the form z 7→ z + c for some constant c.

(iv) There is a dense subset S of the unit circle such that for each point in S there is
function in X that does not extend analytically to a neighborhood of that point.

If TF,ϕ : X → X is invertible, then ϕ is an automorphism of D.
Moreover, if X is conformally invariant, then TF,ϕ is invertible on X if and only

if ϕ is an automorphism of D and F as well as 1
F are multipliers of X.
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He then applied his findings to certain specific spaces of the disk. Hyvärinen,
Lindström, Nieminen and Saukko [77] obtained a generalization to other spaces of
analytic functions on the disk with certain growth control.

Theorem 6.7 (Hyvärinen, Lindström, Nieminen and Saukko). Let X satisfy

• There is a positive constant s such that for each f ∈ X and each z ∈ D we have
|f(z)| . ‖f‖X(1−|z|2)−s and for any z ∈ D there is some fz ∈ X with ‖fz‖X ≤ 1
such that fz(z)(1− |z|2)s = 1.

• There is a positive constant s such that ‖Cϕ‖ . (1− |ϕ(0)|2)−s whenever ϕ is an
automorphism of D.

• Polynomials are dense in X.

The operator TF,ϕ is invertible on X if and only if F is bounded and bounded away
from zero on the unit disk and ϕ is an automorphism of the unit disk. The inverse
operator of TF,ϕ : X → X is also a weighted composition operator and it has the form

T−1
F,ϕ =

1

F ◦ ϕ−1
Cϕ−1 .

In this subsection we consider a different set of axioms and prove similar invertibility
results which complement the earlier results. It is readily verified that every space of the
disk that satisfies the hypotheses of [77] also satisfies our axioms [Ax1] - [Ax5]. Thus,
our next result is more general. If compared with Bourdon’s result [37, Theorem 2.2]
which applies in a very general context of sets of functions without linear structure
but with certain boundary properties, our result below gives an impression of being
less general. However, we have neither been able to prove rigorously that our axioms
[Ax1] - [Ax4] imply Bourdon’s from [37, Theorem 2.2] nor to give an example of
a space that satisfies our axioms but does not satisfy his. The main interest of the
theorem may reside in the method of proof.

Theorem 6.8. Let X ⊂ H(D) be a functional Banach space in which the axioms [Ax1]
- [Ax4] are satisfied, as in Theorem 6.4, and suppose that a weighted composition
operator TF,ϕ is bounded in X.

(a) If TF,ϕ is invertible in X then its composition symbol ϕ is an automorphism of
D, the multiplication symbol F does not vanish in the disk, and the inverse operator
T−1
F,ϕ is another weighted composition operator TG,ψ, whose symbols are:

G =
1

F ◦ ϕ−1
, ψ = ϕ−1 . (6.1)

(b) Assuming that Axiom [Ax5] also holds, we have the following characterization.
The weighted composition operator TF,ϕ is invertible on X if and only if its compo-

sition symbol ϕ is an automorphism of D, the multiplication symbol F does not vanish
in the disk, and 1/F ∈M(X). If this is the case, then F is also a self-multiplier of X
and the inverse operator is TG,ψ, with the symbols given by (6.1).
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Note that the condition F ∈M(X) is not needed in the proof of (b), hence it is not
listed among the hypotheses. It actually follows easily from the remaining assumptions.
This may seem paradoxical but can be explained by the fact that we are assuming from
the start that TF,ϕ acts boundedly so in certain multiplications the boundedness of
MF is not really required.

Proof. (a) To simplify the notation, write T for our operator TF,ϕ and U for its inverse.
Then TU = UT = I, where I is the identity operator on X.

We first make sure that the possibility Uz = λ · U1 (for some fixed λ with |λ| = 1)
is ruled out: indeed, if this happens then z = TUz = λTU1 = λ for all z ∈ D, which
is absurd. This shows the hypotheses of Theorem 6.4 are all satisfied so we can apply
the statement.

We want to use part (e) of Theorem 6.4 to conclude that U is also a weighted
composition operator. To this end, we ought to show that

U(zn) = U1 ·
(
Uz

U1

)n
, n ≥ 2 . (6.2)

First observe that
1 = TU1 = F (U1 ◦ ϕ)

which shows that neither F nor U1 ◦ ϕ can vanish in D and

F =
1

U1 ◦ ϕ
. (6.3)

Now, let g = Uz and h = U(zn). Then Tg = z and

F (h ◦ ϕ) = Th = zn = (Tg)n = Fn(gn ◦ ϕ) .

It follows from (6.3) that

(h ◦ ϕ)((U1)n−1 ◦ ϕ) = gn ◦ ϕ .

Since ϕ is not identically constant, we deduce from the uniqueness principle for analytic
functions that h(U1)n−1 = gn holds throughout D. Thus, in view of the removable
singularities,

h =
gn

(U1)n−1
=
( g

U1

)n
· U1

also holds in all of D. By the way g and h were defined, this means that (6.2) holds.
Now Theorem 6.4 implies that U is a weighted composition operator.

Next, knowing that U = TG,ψ for some G ∈ H(D) and some analytic self-map ψ of
D, we find an explicit formula for U . Starting from

1 = UT1 = U(F ) = G(F ◦ ψ)

it is clear that G does not vanish in D. Using also the representation of T = TF,ϕ and
the fact that f(z) = z is also a function in X, we obtain

z = UTz = U(F · ϕ) = G(F ◦ ψ)(ϕ ◦ ψ) = U(F ) · (ϕ ◦ ψ) = ϕ ◦ ψ
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so ϕ ◦ ψ = id, the identity mapping of D. By a similar reasoning, we also deduce that
ψ ◦ ϕ = id. Therefore both ϕ and ψ are bijective mappings of D, hence they are disk
automorphisms and mutually inverse.

As for the symbols of U = T−1, the above reasoning shows that ψ = ϕ−1 and from
(6.3) we get

G = U1 = (U1 ◦ ϕ) ◦ ψ =
1

F ◦ ψ
=

1

F ◦ ϕ−1
.

(b) ⇒ First suppose that T = TF,ϕ is invertible. By what we have already
proved in part (a) using only axioms [Ax1] - [Ax4], we know that F does not vanish
in D, that U = T−1 is also a weighted composition operator and we know that its
symbols are given by (6.1). So, it is only left to show that 1/F ∈M(X), assuming also
Axiom [Ax5].

To this end, we first prove an auxiliary fact that F ∈M(X). Let f be an arbitrary
function in X. By our assumptions, every disk automorphism induces a bounded
composition operator so Cψ is bounded on X. Therefore f ◦ψ ∈ X and also T(f ◦ψ) ∈
X. But

T(f ◦ ψ) = F (f ◦ ψ ◦ ϕ) = Ff ,

a function clearly in X. This shows that F ∈M(X).
Similarly, considering Cϕ instead of Cψ, U = T−1 instead of T and G = U1 instead

of F = T1, we see that G ∈M(X) as well.
In order to show that 1/F ∈M(X), let f ∈ X be arbitrary. Since Cψ is bounded

on X it follows that f ◦ ψ ∈ X, hence

G(f ◦ ψ) =
f ◦ ψ
F ◦ ψ

∈ X .

Finally, since Cϕ is bounded on X, it follows that

f ◦ ψ
F ◦ ψ

◦ ϕ =
f

F
∈ X .

This shows that 1/F ∈M(X).

⇐ Now assume that TF,ϕ = T is bounded on X, its composition symbol ϕ is
an automorphism of D, the multiplication symbol F does not vanish in the disk, and
1/F ∈ M(X). We want to show that T is invertible by checking that the operator
U = TG,ψ, with G and ψ given by (6.1), acts boundedly on X and TU = UT = I.

In view of Axiom [Ax5], both operators Cϕ and Cψ where ψ = ϕ−1, are bounded
on X. Thus, if f ∈ X then f ◦ϕ ∈ X and then also (f ◦ϕ)/F ∈ X since 1/F ∈M(X).
But Cψ maps X to itself and therefore we also have that

f

F ◦ ψ
=
f ◦ ϕ
F
◦ ψ ∈ X .

Since this holds for arbitrary f ∈ X, if follows that G = 1/(F ◦ ψ) ∈M(X). Now it is
clear that the compositions

UT = MGCψMFCϕ , TU = MFCϕMGCψ
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make sense as operators mapping X to itself, and a short and direct computation shows
that both coincide with the identity operator I on X.

Example 4. Consider the space X = H∞v with the non-radial weight v(z) = |1 − z|.
This space contains H∞ and also some unbounded functions such as f(z) = 1

1−z . It
is immediate that the point evaluations are bounded on X (and uniformly bounded on
compact sets), with

1

2
≤ ‖Λz‖ ≤

1

|1− z|
for all z in D (for the first inequality, consider any non-zero constant function). By
a standard normal family argument, it follows that X is a Banach space. The shift
operator is trivially bounded on X, so the space satisfies the axioms [Ax1], [Ax3], and
[Ax4]. It can also be checked that it fails to satisfy [Ax2] and [Ax5] so we cannot
expect Theorem 6.8 to hold automatically. In fact, some of the conclusions in part (b)
do not follow, and even more can be said.

It is easy to check that the rotations do not necessarily generate bounded operators
on X. If ϕ(z) = −z, then Cϕ does not map X into itself: the function given by
f(z) = 1

1−z is in X but Cϕf is not:

‖Cϕf‖ = ‖f(−z)‖ = sup
z∈D

∣∣∣∣1− z1 + z

∣∣∣∣ =∞ .

Consider also the function F (z) = `(z) = 1+z
1−z . Since it is unbounded, F cannot gen-

erate a bounded pointwise multiplier MF from X into itself. Nonetheless, the weighted
composition operator TF,ϕ with

F (z) =
1 + z

1− z
, ϕ(z) = −z

is bounded on X. While such examples have appeared earlier in the literature, what
seems remarkable about this situation is that our operator TF,ϕ is even a surjective
isometry and an involution:

‖TF,ϕ‖ = sup
z∈D
|1 + z||f(−z)| = sup

w∈D
|1− w||f(w)| = ‖f‖ , T−1

F,ϕ = TF,ϕ .

6.3 Invertibility in axiomatic spaces on general domains

In this section we work in a more general context of Banach spaces of analytic functions
on a general bounded planar domain (without any connectivity assumptions). It should
be noted that while the axioms in [37] are quite general they refer necessarily to the disk
so they are not suited for this general context. Our axioms -when applied to the spaces
on the disk- are still weaker than those assumed in [77] and hence our result is more
general. The main idea is to avoid the use of Carleson measures and the technicalities
typical of any individual space while relying on the properties of functions which are
near extremal for the point evaluations.
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It should be noted that in this section we only prove a theorem on invertibility,
different from Theorem 6.8. Since the monomials are very special and so is the disk as
a domain, it is not at all clear how an analogue of Theorem 6.4 would look like on a
general bounded domain.

In what follows we consider Banach spaces X ⊂ H(Ω) that satisfy the following set
of axioms (ordered following certain similarity with the previous section):

A1 All point evaluation functionals Λz are bounded on X.

A2 f0 ∈ X, where f0(z) ≡ 1.

A3 The shift operator is bounded on X.

A4 For every function f ∈ X we have
|f(z)|
‖Λz‖

→ 0 as dist (z, ∂Ω)→ 0.

A5 Each automorphism of Ω induces a bounded composition operator in X.

One easily notices the similarities between the odd-numbered axioms in the above
list with the corresponding ones from the previous section. Note that Axiom (A2) is
much weaker than the second axiom required earlier while Axiom (A4) is different.
It generalizes the well-known fact that in Hilbert spaces the normalized reproducing
kernels tend to zero weakly: if we denote by Kz the reproducing kernel at z, then

|f(z)|
‖Λz‖

=
|〈f,Kz〉|
‖Λz‖

=

∣∣∣∣〈f, Kz

‖Λz‖

〉∣∣∣∣→ 0 .

All of the spaces in Chapter 1 satisfy Axiom (A1), and Axioms (A2) and (A3)
are easy to check in most of them. Axiom (A4) is satisfied by the Hardy spaces
(see the remark after Proposition 1.3), the Bergman spaces (see Theorem 1.4), the
Dirichlet space (Proposition 1.5), the weighted Hilbert spaces H2

β with
∑∞

n=0
1

β(n)2
=∞

(Theorem 1.6), the Besov spaces (Theorem 1.8), the little Bloch space by definition,
and the “little-oh” weighted Banach space H0

v . The boundedness of the composition
operators was discussed in Chapter 2.

As we mentioned in Section 6.2.1, the weighted Hilbert spaces spaces may or may
not satisfy Axioms (A3) and (A5) depending on the sequence {β(n)}. Likewise, by
Theorem 2.6 the boundedness of composition operators induced by automorphisms of
the disk on the “little-oh” weighted Banach space H0

v depends on the weight.
The mixed norm spaces H(p, q, α) satisfy all five axioms when 0 < q < ∞, since

(A1), (A2) and (A3) are easy to check, Axiom (A4) is Proposition 4.9 and Ax-
iom (A5) is Proposition 5.1.

It is quite routine to check from our axioms that if a weighted composition operator
acts on a space:

TF,ϕ : X → X , TF,ϕf = F · (f ◦ ϕ),

where F is analytic in Ω and ϕ is an analytic self-map of Ω, then the operator is
actually bounded. This follows from Axiom (A1) and the usual argument involving
normal families and the closed graph theorem.
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Note that in this context it is not clear at all what result, if any, should constitute
an analogue of Theorem 6.4 as the geometry of the disk and the role played by the
monomials zn are quite special while here we are working with general bounded do-
mains. Thus, we prove only one result in this section: a theorem on invertibility of a
weighted composition operator based on the five axioms above.

We first need a simple topological lemma which states essentially that when we
delete part of a domain we inevitably add some boundary (of course, we may lose some
but that is not of interest here). As is usual, ∂D denotes the boundary of the set D
while D(z; r) will denote the open disk centered at z of radius r.

Lemma 6.9. Let Ω be a bounded planar domain and D a non-empty domain contained
in Ω, D 6= Ω. Then ∂D ∩ Ω 6= ∅.

Proof. Suppose that, on the contrary, ∂D ∩ Ω = ∅. Then for every z in Ω we can find
a positive r such that either D(z; r) ⊂ D or D(z; r) ⊂ C \D.

Now there are three possible scenarios:
(1) If it happens that for every z in Ω there exists r > 0 such that D(z; r) ⊂ D then

Ω ⊂ D, hence D = Ω which is absurd.
(2) If it turns out that for every z in Ω there exists r > 0 such that D(z; r) ⊂ C \D

then D ⊂ Ω ⊂ C \ D. But this means that D = ∅, which again contradicts our
assumptions.

(3) In the remaining case, we can find z1 ∈ Ω and r1 > 0 such that D(z1; r1) ⊂ D
and also z2 ∈ Ω and r2 > 0 such that D(z2; r2) ⊂ C \D. Since Ω is a planar domain,
it is path connected so we can find a simple curve γ connecting z1 with z2 and entirely
contained in Ω. Since z1 ∈ D and z2 ∈ C \ D, the curve γ can neither be contained
entirely in D nor in C \D there must exist a point z on the curve γ such that z ∈ ∂D.
But then z ∈ Ω ∩ ∂D = ∅, which is again absurd.

This completes the proof.

The following purely complex analysis statement may be of interest by itself. It
should be compared with [99, Corollary 2.10, p. 25], a known statement with much more
restrictive hypotheses and a bit stronger conclusion. It shows that for nicely behaved
self-maps of a domain the behavior inside is somehow controlled by the behavior near
the boundary. As is usual, we will denote by d(z, ∂Ω) the distance of the point z to the
boundary of Ω and will often write z → ∂Ω to denote the fact that d(z, ∂Ω)→ 0.

Theorem 6.10. Let Ω be a bounded planar domain and ϕ a non-constant analytic
self-map of Ω with the property that d(ϕ(z), ∂Ω) → 0 whenever d(z, ∂Ω) → 0. Then
ϕ(Ω) = Ω.

Proof. Clearly, ϕ(Ω) is a domain contained in Ω. Suppose that ϕ(Ω) 6= Ω. Then by
Lemma 6.9, Ω ∩ ∂ϕ(Ω) 6= ∅, and we can find a point w0 ∈ Ω ∩ ∂ϕ(Ω). Note that
w0 6∈ ϕ(Ω). Hence there exists a sequence of points wn ∈ ϕ(Ω) such that wn → w0

and therefore also a sequence of points zn ∈ Ω such that wn = ϕ(zn) → w0 ∈ Ω, as
n → ∞. Since Ω is a bounded domain, some subsequence znk → z0 ∈ Ω. Of course,
wnk → w0 ∈ Ω and this will force a contradiction in both possible cases: z0 ∈ Ω and
z0 ∈ ∂Ω.
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Indeed, if z0 ∈ Ω then w0 = limϕ(znk) = ϕ(z0), which is contradiction with the fact
that w0 6∈ ϕ(Ω). And if z0 ∈ ∂Ω then znk → z0 means that limk→∞ dist (znk ,Ω) = 0
hence, by assumption, limk→∞ dist (ϕ(znk),Ω) = 0. But since ϕ(znk) = w0, this means
that w0 ∈ ∂Ω, which is in contradiction with w0 ∈ Ω.

We are now ready to prove a theorem on invertibility for our set of five axioms.
Since the axioms assumed here are much weaker than the ones in [77], our result is
more general even in the case when Ω = D. The result, of course, also generalizes a
theorem for H2 from [70] whose proof has partially served as an inspiration although
some entirely new techniques were required here.

The reader will undoubtedly notice that the statement below resembles Theorem 6.8
to some extent. Just like in Theorem 6.8, the condition F ∈ M(X) is not needed in
the proof of (b), and thus it is not listed among the assumptions (it will again follow
from the remaining ones).

Theorem 6.11. Let X ⊂ H(Ω) be a Banach space which satisfies the set of ax-
ioms (A1) - (A4) and suppose that the weighted composition operator TF,ϕ is bounded
in X.

(a) If TF,ϕ is invertible in X then its composition symbol ϕ is an automorphism of
Ω and the multiplication symbol F does not vanish in Ω.

(b) If, in addition to the axioms listed, the space X also satisfies Axiom (A5) we
have the following characterization.

The weighted composition operator TF,ϕ is invertible on X if and only if its compo-
sition symbol ϕ is an automorphism of Ω, the multiplication symbol F does not vanish
in Ω, and 1/F ∈M(X). If this is the case, then F is also a self-multiplier of X and the
inverse operator is TG,ψ, with the symbols given by the formula (6.1), which formally
reads as in the case of the disk.

Proof. (a) Suppose that TF,ϕ is invertible. We divide the proof into a few steps.

• ϕ is injective:

First of all, the function F is in X since f0 ∈ X with f0(z) ≡ 1 by Axiom (A2)
and F = TF,ϕf0 ∈ X. Then, by Axiom (A3), f1 · F ∈ X, with f1(z) = z, z ∈ Ω.
By assumption, TF,ϕ is invertible on X and hence surjective. Therefore, there
exists a function g ∈ X such that

TF,ϕg = F (g ◦ ϕ) = f1 · F,

that is, g(ϕ(z)) = z for z ∈ Ω. From here it follows that ϕ is injective: if α, β ∈ Ω
are such that ϕ(α) = ϕ(β), then

α = g(ϕ(α)) = g(ϕ(β)) = β .

• ϕ is onto and, thus, an automorphism of Ω, and also F does not vanish in Ω:

Let z ∈ D be an arbitrary point and let fz ∈ X be a function in X such that
‖fz‖ = 1 and |fz(z)| ≥ C‖Λz‖. Since the operator TF,ϕ is surjective, there exists
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a function g ∈ X such that TF,ϕg = F · (g ◦ ϕ) = fz. Taking into account that
the operator TF,ϕ is invertible, there is a constant m > 0 such that

m‖g‖ ≤ ‖TF,ϕg‖ = ‖fz‖ = 1.

In view of Axiom (A1), we have

|g(ϕ(z))| ≤ ‖Λϕ(z)‖‖g‖ ≤
‖Λϕ(z)‖
m

.

From here it follows that

|F (z)| = |fz(z)|
|g(ϕ(z))|

≥ Cm‖Λz‖
‖Λϕ(z)‖

> 0 .

Equivalently,

0 <
Cm

‖Λϕ(z)‖
≤ |F (z)|
‖Λz‖

. (6.4)

Since z was arbitrary, we conclude that this holds for all z ∈ D.

By Axiom (A4), we have

|F (z)|
‖Λz‖

→ 0 as z → ∂Ω ,

hence by (6.4):

‖Λϕ(z)‖ → ∞ as z → ∂Ω .

We will now see that this means that ϕ(z)→ ∂Ω as z → ∂Ω. If this was not the
case, we could find a sequence {zn} ⊂ Ω such that zn → ∂Ω, ‖Λϕ(zn)‖ → ∞ and
{ϕ(zn)} is contained in a compact subset of Ω. For every function f ∈ X and
a compact subset K of Ω, the set of values {|Λϕ(z)f | : z ∈ K} is bounded as a
consequence of Axiom (A1). Hence by the uniform boundedness principle there
exists a constant CK such that ‖Λϕ(zn)‖ ≤ CK , which is absurd.

Thus, ϕ has the property claimed and this implies that it is a surjective self-map
of Ω by Theorem 6.10.

(b) As before, some of the conclusions follow from part (a) already proved. We
prove the rest in two steps.

• F is a self-multiplier of X.

Since ϕ is an automorphism of Ω, by Axiom (A5) the operator Cϕ−1 is bounded
and

‖MF f‖ = ‖TF,ϕCϕ−1f‖ ≤M‖f‖

for all f ∈ X. In other words, MF is a bounded operator on X.
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• 1
F is a self-multiplier of X.

By (6.4), we have

|F (z)| ≥ Cm ‖Λz‖
‖Λϕ(z)‖

.

In order to bound F from below, it suffices to see that

‖Λϕ(z)‖ = ‖ΛzCϕ‖ ≤ ‖Λz‖‖Cϕ‖ . (6.5)

It follows from here that

|F (z)| ≥ Cm ‖Λz‖
‖Λϕ(z)‖

≥ Cm

‖Cϕ‖
> 0 .

for every z ∈ Ω since the composition operator with symbol ϕ is bounded by
Axiom (A5). Note that ‖Cϕ‖ > 0 by virtue of Axiom (A2). Hence 1

F is analytic
in Ω. Since the operator TF,ϕ is surjective, for each f ∈ X there exists g ∈ X
such that

f = TF,ϕg = F · (g ◦ ϕ).

Thus,
1

F
f = g ◦ ϕ ∈ X,

since Cϕ is a bounded operator on X. It follows that M 1
F

is also bounded on X.

Conversely, if the following three assumptions are satisfied: the composition symbol
ϕ is an automorphism of Ω, the multiplication symbol F does not vanish in Ω, and
1/F ∈ M(X), we will show that TF,ϕ is invertible and its inverse is given by the
expected formula.

If ϕ is an automorphism of Ω, so is its inverse ϕ−1. By Axiom (A5) the composition
operator Cϕ−1 is bounded on X. The multiplication operator M 1

F
is bounded on X by

assumption, hence the operator Cϕ−1M 1
F

is bounded. Moreover, for each function f

in X we have

TF,ϕCϕ−1M 1
F
f = TF,ϕ

(
f

F
◦ ϕ−1

)
= F ·

((
f

F
◦ ϕ−1

)
◦ ϕ
)

= f

and also

Cϕ−1M 1
F

TF,ϕf = Cϕ−1M 1
F

(F · (f ◦ ϕ)) = (f ◦ ϕ) ◦ ϕ−1 = f .

In other words, the operator TF,ϕ is invertible and

T−1
F,ϕ = Cϕ−1M 1

F
= M 1

F◦ϕ−1
Cϕ−1 = T 1

F◦ϕ−1 ,ϕ
−1 .
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The space from Example 4 is again relevant here. This time it satisfies the axioms
(A1), (A2), and (A3). It can also be checked that it fails to satisfy (A4) and (A5);
for example, in view of our observations in Example 4, we see that in general

|f(z)|
‖Λz‖

≥ 2|f(z)| 6→ 0 , |z| → 1− .

Thus, we cannot expect Theorem 6.11 to hold automatically. In fact, we already know
from Example 4 that not all conclusions in part (b) can hold since 1/F is an unbounded
function and therefore cannot multiply X into itself.
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Conclusions

The results of this thesis are contained in the following research papers:

• I. Arévalo, A characterization of the inclusions between mixed norm spaces, J.
Math. Anal. Appl. 429 (2015), 942–955.

• I. Arévalo, R. Hernández, M. J. Mart́ın and D. Vukotić, On weighted compositions
preserving the Carathéodory class, arXiv preprint arXiv:1608.04577 (2016).

• I. Arévalo, M. D. Contreras and L. Rodŕıguez-Piazza, Semigroups of compo-
sition operators and integral operators on mixed norm spaces, arXiv preprint
arXiv:1610.08784 (2016).

• I. Arévalo, D. Vukotić, Weighted composition operators in functional Banach
spaces: an axiomatic approach, arXiv preprint arXiv:1706.07133 (2017).

There is another related paper which does not form part of this thesis:

• I. Arévalo, M. Oliva, Semigroups of weighted composition operators in spaces of
analytic functions.

The topics studied in this thesis suggest further related and natural questions.
Among them, we mention the following.

1) It is a question of interest to study the compactness of weighted composition
operators assuming only certain axioms or properties such as (DP) or similar. In
particular, it would be interesting to continue the study began in [32] and determine a
general criterion for compactness.

2) Also on spaces defined by axioms, it would be of interest to describe when a
weighted composition operators is a Fredholm operator, thus generalizing some of the
results from [77].

We have already obtained several partial results on these topics but there is no time
to finish our study and also be able to include all of our findings into this thesis. Hence,
such investigation could form part of further research projects or, alternatively, some
results could be included in a later version of the paper [14] (still unpublished).
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Conclusiones

Los resultados de esta tesis están contenidos en los siguientes art́ıculos de investigación:

• I. Arévalo, A characterization of the inclusions between mixed norm spaces, J.
Math. Anal. Appl. 429 (2015), 942–955.

• I. Arévalo, R. Hernández, M. J. Mart́ın y D. Vukotić, On weighted compositions
preserving the Carathéodory class, arXiv preprint arXiv:1608.04577 (2016).

• I. Arévalo, M. D. Contreras y L. Rodŕıguez-Piazza, Semigroups of composi-
tion operators and integral operators on mixed norm spaces, arXiv preprint
arXiv:1610.08784 (2016).

• I. Arévalo, D. Vukotić, Weighted composition operators in functional Banach
spaces: an axiomatic approach, arXiv preprint arXiv:1706.07133 (2017).

El siguiente es otro art́ıculo de investigación relacionado pero que no forma parte
de esta tesis:

• I. Arévalo, M. Oliva, Semigroups of weighted composition operators in spaces of
analytic functions.

Los temas estudiados en esta tesis sugieren nuevas preguntas relacionadas. Entre
ellas, mencionamos las siguientes.

1) Es una pregunta de interés estudiar la compacidad de operadores de composición
ponderados asumiendo sólo ciertos axiomas o propiedades como (DP) o similares. En
particular, seŕıa interesante continuar el estudio iniciado en [32] y determinar un criterio
general para la compacidad.

2) También en espacios definidos por axiomas, seŕıa de interés poder describir
cuándo un operador de composición ponderado es un operador de Fredholm, gener-
alizando aśı algunos de los resultados de [77].

Ya hemos obtenido algunos resultados parciales sobre estos temas, pero no ha habido
tiempo de terminar nuestro estudio y de incluirlo en la tesis. Por lo tanto, dicha in-
vestigación podŕıa formar parte de proyectos de investigación posteriores o, alternati-
vamente, algunos resultados podŕıan ser incluidos en una versión posterior del art́ıculo
[14] (por publicar).

109





Bibliography
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[104] E. Schöder, Über iterierte Funktionen, Math. Ann. 3 (1871), 296–322.

[105] H.J. Schwartz, Composition Operators on Hp. Ph.D. Thesis, The University of
Toledo, OH 1969.

[106] W. Seidel and J. L. Walsh, On the derivatives of functions analytic in the unit
circle and their radii of univalence and p-valence, Trans. Amer. Math. Soc. 52
(1942), 128–216.

[107] J.H. Shapiro, Compact composition operators on spaces of boundary-regular holo-
morphic functions, Proc. Amer. Math. Soc. 100 (1987), 49–57.

117



Bibliography

[108] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-
Verlag, New York, NY 1993.

[109] A.L. Shields, Weighted shift operators and analytic function theory, in: Topics in
operator theory , pp. 49–128, Math. Surveys, No. 13, Amer. Math. Soc., Providence,
RI 1974.

[110] A. L. Shields and D. L. Williams, Bounded projections, duality, and multipliers
in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 256–279.

[111] A. L. Shields and D. L. Williams, Bounded projections and the growth of har-
monic conjugates in the disc, Michigan Math. J. 29 (1982), 3–25

[112] S. Shimorin, Weighted composition operators associated with conformal map-
pings, Quadrature Domains and Their Applications, 217–237, Oper. Theory Adv.
Appl., 156, Birkhauser, Basel, 2005.

[113] R. K. Singh, A relation between composition operators on H2(D) and H2(P+),
Pure Appl. Math. Sci. 1 (1974/75), 1–5.

[114] A. Siskakis, Semigroups of composition operators in Bergman spaces, Bull. Aus-
tral. Math. Soc. 35 (1987), 397–406.

[115] A. Siskakis, Semigroups of composition operators on the Dirichlet space, Results
Math. 30 (1996), 165–173.

[116] A. Siskakis, Semigroups of composition operators on spaces of analytic functions,
a review, Contemp. Math. 232 (1990), 229–252.

[117] A. Siskakis, Weighted composition semigroups on Hardy spaces, Linear Algebra
Appl. 84 (1986), 359–371.

[118] W. T. Sledd, Some results about spaces of analytic functions introduced by Hardy
and Littlewood, J. London Math. Soc. 9 (1974/75), 328–336.

[119] W. Smith, Brennan’s conjecture for weighted composition operators, Recent Ad-
vances in Operator-Related Function Theory, 209–214, Contemp. Math., 393,
Amer. Math. Soc., Providence, RI, 2006.

[120] D. A. Stegenga, Multipliers of the Dirichlet space, Illinois J. Math. 24 (1980),
113–139.

[121] M. Tjani, Compact composition operators on Besov spaces, Trans. Amer. Math.
Soc. 355 (2003), 4683–4698.

[122] G. Valiron, Sur l’iteration des fonctions holomorphes dans un demi-plan, Bull.
Sci. Math. 55 (1931), 105–128.
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[125] D. Vukotić, Analytic Toeplitz operators on the Hardy space Hp: a survey, Bull.
Belg. Math. Soc. Simon Stevin 10 (2003), 101–113.

[126] D. Vukotić, The isoperimetric inequality and a theorem of Hardy and Littlewood,
Amer. Math. Monthly 110 (2003), 532–536.
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Carathéodory’s class, 14

Carleson measure, 18, 24–26
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