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ABSTRACT. We review some relationships between the growth of uni-
valent functions in classical spaces of analytic functions and the geom-
etry of image domains under such maps and apply this to obtain the
characterization of nonlinear superposition operators between function
spaces.
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INTRODUCTION

The purpose of these notes is to show how some geometric features of
simply connected planar domains relate to the membership of Riemann
maps of the disk onto such domains in certain classical function spaces
and classes. In other words, given a conformal map of the unit disk onto
a domain, we try to understand its membership in some classical confor-
mally invariant spaces just by “drawing a picture” of the domain.

Next, we study the maximum growth of functions in certain classical
spaces of analytic functions. When possible, we show that this maximum
growth is achieved by univalent mappings which will allow us to do a
“univalent interpolation” of large values when needed. In case of the
Dirichlet space, we consider some well-known inequalities of Beurling
and Chang-Marshall for their boundary values.

Finally, certain questions of comparative rates of growth, especially
the superposition operators between two function spaces, are also con-
sidered. Obtaining conclusive results in this area requires not only the
basics of entire functions but, above all, a combination of some (or all) of
the techniques described above so this seems like a natural topic to end
this notes with. The main focus is on the superpositions between pairs of
classical spaces of analytic functions such as the Bergman spaces Ap and
analytic Besov spaces Bp (including the Dirichlet and Bloch spaces).

This material is based on several of the author’s papers that have ap-
peared over the last 12 years or so, many of them jointly with various
coauthors (whose names are mentioned in the references), as well as on
the results of several other mathematicians, including some classical the-
orems. It is my hope that eventually, perhaps within a few years, much
of this material (in an expanded form) will find its way to an advanced
graduate textbook.

Acknowledgments. The notes correspond to the content of the 8 lec-
tures titled “Spaces of Analytic Functions, Geometry of Domains, and
Superposition Operators”given in Helsinki in May of 2013 for the Finnish
Doctoral Programme in Mathematics and Its Applications. This is a signif-
icantly expanded and revised version of the earlier report [Vu04R] and
various other talks on this general area given over the years.
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1. PLANAR DOMAINS

In this section we review the basic concepts and collect the essential
facts that will be needed later about domains in the complex plane. We
begin by fixing some notation.

1.1. Notation. Throughout the text, C will denote the complex plane and
D the unit disk: D = {z ∈ C : |z| < 1}. We will write H(D) for the algebra
of all analytic (holomorphic) functions in D. The notation K b D will
mean that K is a compact subset of the unit disk.

We will often need estimates on the distance of a point w in a planar
domain Ω (other than the plane) to the boundary ∂Ω. Throughout these
notes, we will use the following notation:

dΩ(w) = dist (w, ∂Ω) = min{|w − z| : z ∈ ∂Ω} .
Similarly, for a compact subset Q of Ω (e.g., a closed square), we will also
use the notation dΩ(Q) for the distance from the set Q to ∂Ω.

We will often need to compare two quantities asymptotically (without
being concerned about the exact value of the constants). For two positive
functions u and v we will use the notation u ≍ v to denote that mu ≤ v ≤
M u for some fixed positive constants m and M . Similarly, the notation
u . v will mean that u ≤ C v for some positive constant C.

1.2. The Whitney decomposition of a planar domain. It is well known
that the structure of open sets in Rn (n > 1) and, in particular, in C (when
identified with R2), is different from that of open sets on the real line.
Namely, every open set in the plane can be represented as a countable
union of closed dyadic squares (that is, squares of side length 2k each,
where k ∈ Z, and with sides parallel to the coordinate axes) with pairwise
disjoint interiors.

The Whitney decomposition theorem refines this further by stating that
we can simultaneously control the size of these squares and their dis-
tances to the boundary, as well as their total number for each possible
size. A precise formulation is as follows. The details of proofs can be
found in [St70], Chapter VI.

LEMMA 1. An arbitrary non-empty open set Ω in the plane, other than the plane
itself, can be represented as Ω = ∪∞

n=1Qn, where Qn are closed dyadic squares
with pairwise disjoint interiors, and with the property that

diamQn ≤ dΩ(Qn) ≤ 4 diamQn ,

for all n ≥ 1.

More can be said about the squares in a Whitney decomposition. We
will say that a square Qn from the decomposition is a neighbor of a square
Qm if Qm ∩ Qn is a line segment (note that the four squares that share
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only a vertex with the given square do not qualify as neighbors). Being
a neighbor is clearly a symmetric relation. It can also be verified that the
sizes of any two neighboring squares are comparable (within a factor of
4). It follows that each square has at most 16 neighbors.

1.3. A topological theorem. The purpose of this section is to prove the
following result from [DGV10]. Although it is a statement of geomet-
ric/topological character, a proof exists using techniques from Analysis.

THEOREM 2. Let Ω be a planar domain. Then there exists a simply connected
domain Ω′ ⊂ Ω such that Ω \ Ω′ is a countable union of line segments each of
which has finite length.

The key to our proof will be the Whitney decomposition. Somewhat
similar constructions of domains were employed earlier by Peter W. Jones,
e.g. in [Jo82] and [Jo95], but in a rather different context of Sobolev spaces.
An immediate consequence of the theorem above is the following curious
topological/geometric fact.

COROLLARY 3. A planar domain of finite area contains a simply connected
domain of the same area.

Proof of Theorem 2. Let (Qn) be a Whitney decomposition of Ω as in
Lemma 1. We can partition this collection of squares into countably many
generations according to the scheme described below.

Choose an arbitrary but fixed squareQ∗ among the squares in the Whit-
ney decomposition; let us refer to it as the pivoting square. For any other
square Q from the decomposition, consider a Jordan arc γ in Ω that con-
nects the center of Q∗ to the center of Q and does not pass through the
vertex of any square in the decomposition. The selection of our squares,
together with a simple compactness argument, allows us to assure that
there are finitely many squares in our decomposition which intersect γ.
It is also clear that for any Q, we can choose a finite sequence of our
squares in such a way that the first one is Q∗, the last one is Q and each
square is a neighbor of the preceding one. In view of this fact, we can
assign to any square Q, the minimum of the cardinal numbers of such
sequences. We will refer to such positive integer as the generation of Q,
understanding that Q∗ belongs to the generation zero. Thus, generation 1
will be formed by all the neighbors of this square. Inductively, define
the generation n+ 1 as the neighbors of the squares of the n-th generation
already defined. Using a simple compactness argument and the crucial
property that diamQn ≍ dΩ(Qn), it can be shown that no square will be
omitted in this process, i.e., every square Qn in the decomposition be-
longs to some generation. An inductive argument allows us to deduce
that there are only finitely many squares in every generation.
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Next, we reorder our sequence of squares (Qn), starting with Q∗ and
continuing with all the squares from the first generation (in any order),
then with all the squares of the second generation, and so on. Observe
that this new sequence has the property that given a squareQn, the square
Qn+1 either belongs to the same generation as Qn or it belongs to the next
one.

Recall that if Qn and Qm are neighbors, they share a segment on their
boundaries. Let us denote by Cn,m a small open subsegment properly
included in Qn ∩ Qm, that is, Cn,m is a segment without its endpoints,
contained inQn andQm simultaneously. Observe that with this selection,
Int(Qn) ∪ Int(Qm) ∪ Cn,m is a domain.

We will construct the domain Ω′ inductively. Let Ω1 be the interior
of Q∗. In order to construct the domain Ω2, consider the interior of the
square Q2. Since Q2 is a neighbor of Q1, we can consider the segment C1,2

and define Ω2 = Int(Q1) ∪ Int(Q2) ∪ C1,2.
In this way, our domains Ωn will consist of the union of the interiors of

the squares Q1, · · · , Qn and a certain union of some segments Cn,m that
connect every square Qk with one of the previous ones which must be
its neighbor and must also belong to the preceding generation. That is,
if we suppose that Ωn has been constructed in such a way that it satisfies
the properties just mentioned, in order to construct Ωn+1, we proceed
as follows. Consider Qn+1 and suppose it belongs to the generation N .
Then choose one k with 1 ≤ k ≤ n so that Qk belongs to the generation
N−1 and Qk and Qn+1 are neighbors. Having made this selection, define
Ωn+1 = Ωn ∪ Int(Qn+1) ∪ Ck,n+1.

Finally, set Ω′ = ∪Ωn. Observe that our domain Ω′ has the following
properties.

• Ω′ contains the interiors of all squares Qn.
• Since segments Cn,m have been chosen to be completely contained

in the intersection of Qn and Qm, every square of the generation
N is connected to one square of the previous generation and to
at most one of the generation N + 1. Consequently, Ωn is simply
connected for any n.

• Since the union of an ascending chain of simply connected do-
mains is again simply connected, it follows that Ω′ is also simply
connected.

It is now clear that Ω\Ω′ is a subset of the union of the boundaries of all
squares Qn, that is, Ω \ Ω′ is contained in a countable union of segments
and the result follows. �
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2. CLASSICAL FUNCTION SPACES AND THE ISOPERIMETRIC INEQUALITY

The main purpose of this section is to prove the classical isoperimetric
inequality for Jordan domains with rectifiable boundary by using com-
plex analysis. To be more precise, the proof is based on a quantitative
form of the inclusion of a Hardy space into the related Bergman space
with the double exponent.

We begin by reviewing the very basics of the classical Hardy and Bergman
spaces of analytic functions in the disk. No exhaustive review of these
spaces will be given.

2.1. A brief review of Hardy spaces. We briefly review the theory of
Hardy spaces and the classical Riesz decomposition. For more details,
the reader is advised to consult the classical sources such as [Du70] or
[Ko98], for example.

Given a function f in H(D), consider the standard integral means over
the circle of radius r centered at the origin:

Mp(r, f) =

(∫ 2π

0

|f(reiθ)|p dθ
2π

)1/p

.

It is a consequence of the subharmonicity of |f |p that Mp(r, f) is an in-
creasing function of f . If

∥f∥Hp = sup
0<r<1

Mp(r, f) <∞ ,

we will say that f belongs to the Hardy space Hp and define its Hardy
space norm as above. Equipped with this norm, Hp is a Banach space
whenever 1 ≤ p < ∞. It is not difficult to check that Hp ⊂ Hq whenever
p > q.

It is a well-known fact that whenever f belongs to Hp, the radial limit
f̃(θ) = limr→1− f(re

iθ) exists for almost every θ in [0, 2π) (in the sense of
Lebesgue measure). The Hp-norm can be computed by integrating these
boundary values:

(1) ∥f∥Hp =

(
1

2π

∫ 2π

0

|f̃(θ)|dθ
)1/p

.

When p = 2 and the Taylor series expansion of f in the disk is f(z) =∑∞
n=0 anz

n then the norm of f can be computed by the formula

(2) ∥f∥H2 =

(
∞∑
n=0

|an|2
)1/2

.

It is standard that a sequence (zn) in D is the sequence of zeros of
some Hp-function if and only if it satisfies the so-called Blaschke condi-
tion:

∑∞
n=1(1 − |zn|) < ∞. Thus, the zero sets of all the spaces Hp are
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the same, independently of p. For any such sequence, the corresponding
Blaschke product is defined as

B(z) =
∞∏
n=1

|zn|
zn

zn − z

1− znz
.

We remark that when zn = 0, the term z is to be used instead of the
corresponding fraction. It can be proved that this infinite product con-
verges uniformly on every K b D and the limit function is an H∞ func-
tion whose boundary values have modulus one. It is easily seen that
|B(z)| < 1 for all z inside D and |B̃(eiθ)| = 1 for almost all θ in [0, 2π).
In view of (1), the Blaschke product B that corresponds to the zero set of
some function f from Hp is an isometric zero-divisor, that is, we have what
is known as the Riesz factorization theorem:

For every f ∈ Hp, we can write f = Bg where B is the Blaschke prod-
uct formed by the zeros of f and g = f/B is a zero-free member of Hp

such that ∥f/B∥p = ∥f∥p.
This result is the key to many proofs in the theory of Hardy spaces. We

will see an illustration of it in a proof given below.

2.2. Basic facts on Bergman spaces. Let dA denote Lebesgue area mea-
sure in the unit disk D, normalized so that A(D) = 1: dA(z) = π−1dxdy =
π−1rdrdθ. If 0 < p < ∞, the Bergman space Ap is the set of all analytic
functions f in the unit disk D with finite Lp(D, dA) norm:

∥f∥pAp =

∫
D
|f(z)|p dA(z) = 2

∫ 1

0

Mp
p (r, f)rdr <∞ ,

This readily implies that Hp ⊂ Ap but more is actually true: Hp ⊂ A2p, as
we will see later.

Note that ∥f∥Ap is a true norm if and only if 1 ≤ p <∞ and, in this case,
Ap is a Banach space. When 0 < p < 1, Ap is still a complete space with
respect to the translation-invariant metric defined by dp(f, g) = ∥f − g∥pp
but we shall not be concerned with this case. Also, it is easy to check that
Ap ⊂ Aq whenever p > q.

When p = 2 and the Taylor series expansion of f in the disk is f(z) =∑∞
n=0 anz

n then the A2 norm of f can be computed by the formula

(3) ∥f∥A2 =

(
∞∑
n=0

|an|2

n+ 1

)1/2

.

In what follows, we will essentially need only two basic facts about
Bergman space functions. The first one is a standard example of a family
of functions in such spaces.
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LEMMA 4. The function fc given by fc(z) = (1−z)−c belongs toAp if and only
if cp < 2. Also, fc ∈ Hp if and only if cp < 1.

Proof. For Ap, integrate in polar coordinates centered at the point z = 1
rather than at the origin. For the Hardy spaces, work with boundary
values of f . �

Another relevant fact is the growth of the functions in Bergman spaces.
There is a more precise statement but for our purpose it suffices to know
just the correct maximum order of growth.

LEMMA 5. For every f in Ap and every z in D, we have

|f(z)| ≤ ∥f∥Ap

(1− |z|)2/p
.

Proof. Follows in a straightforward fashion by applying the sub-mean
value property to the subharmonic function |f |p on a smaller disk of ra-
dius 1− |z| centered at z. �

A detailed account of the theory of Bergman spaces can be found in the
texts [HKZ00] and [DS04], for example.

2.3. The isoperimetric inequality. The classical isoperimetric inequality
is well known and states that A(Ω) ≤ (4π)−1L(∂Ω)2, where A(Ω) is the
area of a plane Jordan domain Ω, while L(∂Ω) is the length of its bound-
ary ∂Ω (a simple, closed, and rectifiable curve). Equality holds only when
Ω is a disk. This means that of all simple closed curves of given length L,
the one that encloses the largest area, namely L2/(4π), is a circle of radius
L/(2π).

There are many known proofs of this fact. We follow the approach by
Carleman which uses complex analysis.

THEOREM 6. For arbitrary p in (0,∞), every f in Hp belongs to A2p, and
∥f∥A2p ≤ ∥f∥Hp , with equality if and only if f has the form

(4) f(z) = const ·
(

1

1− λz

)2/p

, |λ| < 1 .

Thus, the injection map Jp : Hp → A2p, Jp(f) = f , has norm one.

Proof. The proof is a typical application of the Riesz factorization tech-
nique.

We first consider the case p = 2, when we can use the norm formulas
in terms of the Taylor coefficients. By grouping the terms in the series
multiplication, together with the formulas (3) and (2), and the Cauchy-
Schwarz inequality (applied to each term in the appropriate sum), we
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get

∥f∥4A4 = ∥f 2∥2A2 =

∥∥∥∥∥
∞∑
n=0

(
n∑

k=0

akan−k

)
zn

∥∥∥∥∥
2

A2

=
∞∑
n=0

1

n+ 1

∣∣∣∣∣
n∑

k=0

akan−k

∣∣∣∣∣
2

=
∞∑
n=0

∣∣∣∣∣
n∑

k=0

akan−k ·
1√
n+ 1

∣∣∣∣∣
2

≤
∞∑
n=0

n∑
k=0

|ak|2|an−k|2 =

(
∞∑

m=0

|am|2
)

·

(
∞∑
n=0

|an|2
)

= ∥f∥4H2 ,

which proves the inequality ∥f∥A4 ≤ ∥f∥H2 .
Equality holds in the above chain if and only if for each n ≥ 2 we have

akan−k =
Cn√
n+ 1

, k = 0, 1, . . . , n ,

for some constant Cn that depends only on n. (Note that such equalities
for n = 0 and n = 1 hold trivially.) It is easily observed that if a0 = 0, then
from the equalities a0 · a2n = a2n, n = 1, 2, 3,. . . , we conclude that an = 0
for all n. Thus f ≡ 0, a case of little interest. Therefore we may assume
a0 ̸= 0. By setting a1/a0 = λ, we derive from the chains of equalities

a0an = a1an−1 = . . .

the relations
an =

a1
a0
an−1 = λan−1

for all n, from which we infer an = λna0. It follows after summation that
our extremal function (in the case p = 2) is of the form

f(z) =
∞∑
n=0

a0λ
nzn =

a0
1− λz

.

We can now prove the statement for arbitrary p, by relying on the Riesz
factorization technique. Let f belong to Hp and suppose first that it does
not vanish anywhere in D. Then we can choose an analytic branch of
fp/2 and apply to it the special case p = 2 of the inequality just proved in
computing

∥f∥p/2A2p = ∥fp/2∥A4 ≤ ∥fp/2∥H2 = ∥f∥p/2Hp ,

which shows that ∥f∥A2p ≤ ∥f∥Hp . Equality will be possible only for
functions of the form

f(z) =

(
a0

1− λz

)2/p

.
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Finally, if f has zeros in the disk, then it has a factorization f = Bg,
where B is the Blaschke product with the same zeros as f and g is zero-
free with the same Hp-norm as f . Thus, by the cases considered previ-
ously,

∥f∥A2p

∥f∥Hp

=
∥Bg∥A2p

∥Bg∥Hp

<
∥g∥A2p

∥g∥Hp

≤ 1

(with strict inequality), and we are done. �

It should be observed that the inclusion Hp ⊂ Aq is false whenever
q > 2p. This can be seen by considering the function fα(z) = (1− z)−α. It
suffices to choose α so that 2/q ≤ α < 1/p and apply Lemma 4 to see that
fα is in Hp but not in Aq.

The classical isoperimetric inequality now follows easily from our re-
sult. The key point is as follows. Let F be a univalent map of D onto a
simply connected domain Ω bounded by a rectifiable Jordan curve. For
0 < r < 1, let Cr = {z : |z| = r}. Then

L(∂Ω) = lim
r→1−

L(F (Cr)) = lim
r→1−

r

∫ 2π

0

|F ′(reiθ)|dθ = 2π∥F ′∥H1 ,

by [Du70, Theorem 3.12].

COROLLARY 7. If a Jordan domain Ω of area A(Ω) is bounded by a rectifiable
curve ∂Ω of length L(∂Ω), then A(Ω) ≤ (4π)−1L(∂Ω)2. Equality holds if and
only if Ω is a disk.

Proof. Appealing to the Riemann Mapping Theorem, we choose a confor-
mal mapping F of D onto Ω. Then, as observed above, L(∂Ω) = 2π∥F ′∥H1 .
Furthermore, A(Ω) = π∥F ′∥2A2 (in view of our normalization of the area
measure). By applying the case p = 1 of Theorem 6 to f = F ′, the desired
inequality follows.

The discussion of extremal functions in (4) shows that equality is only
possible when F ′ is of the form

F ′(z) =
C

(1− λz)2
,

for some constant C. But this means that F is a linear fractional map:

F (z) =
D

1− λz
.

Since such transformations carry disks onto disks or half-planes and all
our functions are obviously bounded, it follows that Ω = F (D) is again a
disk. �



12 D. VUKOTIĆ

The above approach is essentially due to Carleman [Ca21] although it
was only formulated for sufficiently smooth domains in his paper, prob-
ably because at that time the theory of Hardy spaces had not yet fully
been developed. In full generality, the details were supplied by Matel-
jević [Mat80]. Unfortunately, his paper remained little known so it was
rediscovered later [Vu03].
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3. GROWTH OF FUNCTIONS IN THE DIRICHLET SPACE

The main purpose of this section is to review the basic properties of
functions in the classical Dirichlet space of the disk. This space being
smaller than the Hardy space H2 and its functions more special in a cer-
tain sense, their growth can be controlled in a more precise way. This is
made quantitative by theorems of Beurling and Chang-Marshall which
will be briefly reviewed. Both will be proved here, except for the most
difficult case α = 1.

3.1. The Dirichlet space. The Dirichlet space D is the set of all analytic
functions f in D with the finite Dirichlet integral (i.e., such that f ′ ∈ A2),
equipped with the norm

(5) ∥f∥2D = |f(0)|2 +
∫
D
|f ′|2dA .

The Dirichlet space can be proved to be a Hilbert space of analytic func-
tions. The norm of a function f in D can also be computed as follows:

(6) ∥f∥2D = |a0|2 +
∞∑
n=1

n|an|2 ,

where f has the Taylor series
∑∞

n=0 anz
n in D. The following estimate is

well known and useful.

LEMMA 8. Every function in D satisfies the following growth estimate:

(7) |f(z)− f(0)| ≤ ∥f∥D

√
log

1

1− |z|2
.

Proof. If the Taylor series of f in D is f(z) =
∑∞

n=0 anz
n, by applying the

Cauchy-Schwarz inequality we get

|f(z)− f(0)| =

∣∣∣∣∣
∞∑
n=1

√
nan

zn√
n

∣∣∣∣∣
≤

(
∞∑
n=1

n|an|2
)1/2( ∞∑

n=1

|z|2n

n

)1/2

≤ ∥f∥D

√
log

1

1− |z|2
.

�
One of the earliest sources that quotes this fact appears to be [SS62],

pp. 218–219.
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3.2. The distribution function. It is immediate from (6) and (2) that D ⊂
H2, hence every function f in the Dirichlet space has boundary values
almost everywhere on the unit circle. Thus, given a function f in D, it
makes sense to consider its boundary distribution function |Eλ| for λ > 0,
where

Eλ = {θ ∈ [0, 2π] : |f(eiθ)| > λ}
and |E| denotes the the normalized arc measure of the set E ⊂ T.

The following formula is useful and widely used. Applying Fubini’s
theorem to a function g, increasing on [0,∞) and absolutely continuous
on every closed interval of this semi-axis (as in [Ru87, Theorem 8.16)] or
the first page of Chapter VIII of [Ko98]), we get∫ 2π

0

g
(
|f(eiθ)|

)
dθ − 2πg(0) =

∫ 2π

0

(∫ |f(eiθ)|

0

g′(λ)dλ

)
dθ

=

∫ 2π

0

(∫ ∞

0

χ{θ:|f(eiθ)|>λ}g
′(λ)dλ

)
dθ

=

∫ ∞

0

(∫ 2π

0

χ{θ:|f(eiθ)|>λ}dθ

)
g′(λ)dλ

= 2π

∫ ∞

0

|Eλ| g′(λ)dλ .

3.3. On the theorems of Beurling and Chang-Marshall. The purpose of
this section is to show the power of Green’s theorem, which can even
be used to deduce some relatively strong statements about analytic func-
tions.

The following deep uniform estimate was proved in Beurling’s thesis
[Be33].

THEOREM 9. If f ∈ D, ∥f∥D ≤ 1, and f(0) = 0, then

(8) |Eλ| ≤ e−λ2+1 .

We will omit the full proof of this theorem. However, a weaker version
will be deduced at the end of this section.

The general Sobolev imbedding theorem was already known to Hardy
and Littlewood in the case of analytic functions and can be stated as fol-
lows: if 0 < p < 2, f ∈ H(D), and f ′ ∈ Lp(D, dA), then f ∈ L

2p
2−p (D, dA).

For the critical exponent p = 2, the following is true. If f ∈ H(D) and
f ′ ∈ L2(D, dA) (that is, if f ∈ D), then∫

D
e|f(z)|

2

dA(z) <∞ .
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This is usually referred to as an inequality of Trudinger-Moser type; see
[Mo71] or [Yu61], for example. Although the integral over the unit cir-
cle of a function which has boundary values there is bigger than its area
integral over the disk, one can actually get a stronger version of the above
statement, known as the Chang-Marshall inequality:

THEOREM 10.

sup

{∫ 2π

0

eα|f(e
iθ)|2dθ : ∥f∥D ≤ 1, f(0) = 0

}
is finite for all α ≤ 1.

Its proof in the critical case α = 1 was a deep result of Chang and Mar-
shall [CM85] which provided an answer to a question stated on p. 1079 of
Moser’s influential paper [Mo71]. See also [Mar89] for a simplified proof
and [Ch96] for more details and the vast literature on this topic and its
relations with geometry.

By the weak Chang-Marshall inequality we mean the uniform estimate

(9) sup

{∫ 2π

0

eα|f(e
iθ)|2dθ : ∥f∥D ≤ 1, f(0) = 0

}
<∞ , α < 1 .

Note that the uniform estimate as in Theorem 10 is false when α > 1.
However, for every fixed f in D and for all α > 0 we still have

(10)
∫ 2π

0

eα|f(e
iθ)|2dθ <∞ .

This can be deduced from the following observation due to Garnett (see
p. 1016 of [CM85]): if f(z) =

∑∞
n=0 anz

n, there is obviously a polynomial
P and g ∈ D such that f = P + g, g(0) = 0, and ∥

√
3αg∥D ≤ 1, whence by

(9) we have∫ 2π

0

eα|f(e
iθ)|2 dθ

2π
≤
∫ 2π

0

e2α(|P |2+|g|2) dθ

2π
≤ e2α∥P∥2∞

∫ 2π

0

e2α|g(e
iθ)|2dθ <∞ ,

which proves the statement.
It is beyond the scope of these notes to present the proof of the strong

Chang-Marshall inequality, i.e., the case α = 1. The case 0 < α < 1
(that is, the weak Chang-Marshall inequality) is certainly easier to prove.
However, its proof that one normally encounters in the literature is based
on Theorem 9. Together with (8), the formula for the distribution function
from Subsection 3.2 applied to g(λ) = eαλ

2 yields

(11)
∫ 2π

0

eα|f(e
iθ)|2 dθ

2π
= 1 + 2α

∫ ∞

0

λeαλ
2 |Eλ| dλ <∞

for any α < 1. Now (9) follows immediately from Theorem 9.
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Instead of this argument which uses Beurling’s deep theorem, we give
an extremely simple proof as presented in [PV06] which relies only on the
growth estimate for Dirichlet functions and Green’s formula. (Note that
the case α = 1 is much harder and requires even more refined arguments
than Beurling’s theorem.)

THEOREM 11. For every positive value α < 1, we have

sup

{∫ 2π

0

eα|f(e
iθ)|2dθ : ∥f∥D ≤ 1, f(0) = 0

}
<∞ .

Proof. Fix α < 1. Let f ∈ D, ∥f∥D ≤ 1, and f(0) = 0. Consider the
function

Wf (z) = exp(α|f(z)|2)− 1 .

Its dilatations Wf,r, defined by Wf,r(z) = Wf (rz), vanish at the origin
and belong to C∞(D), so we may apply the first lemma in Section D.1,
Chapter X of [Ko98] to get

(12)
∫ 2π

0

Wf (re
iθ)dθ = π

∫
D
log

1

|z|
· r2 · (∆Wf )(rz) dA(z) .

A straightforward computation of the Laplacian of Wf yields:

∆Wf = 4∂∂ exp(α|f |2) = 4α|f ′|2(1 + α|f |2) exp(α|f |2) .
Since by Fatou’s lemma we have∫ 2π

0

eα|f(e
iθ)|2dθ ≤ 2π + lim inf

r→1−

∫ 2π

0

Wf (re
iθ)dθ ,

the theorem will follow from (12) if we can show that the integrals over
D of the functions

Uf,r(z) = log
1

|z|
· |f ′(rz)|2(1 + α|f(rz)|2) exp(α|f(rz)|2)

are all finite and bounded by the same constant (independent of r) for
each f as specified above. This is actually rather simple.

By (7) and by our assumptions that f(0) = 0 and ∥f∥D ≤ 1, we obtain

Uf,r(z) ≤ log
1

|z|
·
1 + α log 1

1−r2|z|2

(1− r2|z|2)α
· |f ′(rz)|2

≤ log
1

|z|
·
1 + α log 1

1−|z|

(1− |z|)α
· |f ′(rz)|2 .

For R sufficiently close to one, log(1/|z|) ≍ 1− |z| whenever R < |z| < 1.
Since α < 1, we get

Uf,r(z) ≤ |f ′(rz)|2 on some annulus AR = {z : R < |z| < 1} .
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It is well known that M2
2 (r, f

′) = (2π)−1
∫ 2π

0
|f ′(reiθ)|2dθ is an increasing

function of r, hence∫
AR

Uf,rdA ≤
∫
D
|f ′(rz)|2dA(z) = 2

∫ 1

0

M2
2 (rρ, f

′) ρ dρ(13)

≤ 2

∫ 1

0

M2
2 (ρ, f

′)ρdρ = ∥f∥D ≤ 1 .

On the other hand, the area version of the sub-mean value property
yields

(1−R)2|f ′(rz)|2 ≤ (1− r|z|)2|f ′(rz)|2 ≤
∫
D(rz,1−r|z|)

|f ′|2dA ≤ ∥f∥2D ≤ 1

whenever |z| ≤ R. Hence

(14) Uf,r(z) ≤MR log(1/|z|) on the punctured closed disk D(0, R) \ {0} ,

where MR is a constant that depends only upon R.
From (13) and (14) we finally obtain∫

D
Uf,r(z) dA(z) ≤ 1 +MR

∫
D(0,R)

log
1

|z|
dA

for all r ∈ (0, 1) and all f such that ∥f∥D ≤ 1 and f(0) = 0, which is what
was needed. �

It would require harder work that what was shown above to derive the
strong versions of the theorems of Chang-Marshall or Beurling. How-
ever, as a corollary of the above proof we obtain a weaker version of
Beurling’s Theorem 9.

COROLLARY 12. Let 0 < α < 1. If f ∈ D, ∥f∥D ≤ 1, and f(0) = 0, then

|Eλ| ≤ Cα e
−αλ2

,

where the positive constant Cα depends only on α.

Proof. By Theorem 11, we know that
∫ 2π

0
eα|f(e

iθ)|2dθ ≤ Cα for some
fixed constant Cα. Hence, keeping in mind that |Eλ| is a non-increasing
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positive function bounded above by 1, we get

Cα ≥ 1 + 2α

∫ ∞

0

teαt
2 |Et| dt

≥ 1 + 2α

∫ λ

0

teαt
2 |Et| dt

≥ 1 + 2|Eλ|α
∫ λ

0

teαt
2

dt

≥ 1 + |Eλ|(eαλ
2 − 1)

≥ |Eλ|eαλ
2

�
Yet another measure of growth of functions in D (in terms of the as-

ymptotic behavior of their Hp norms, based also on the Chang-Marshall
inequality) can be found in [Vu04R].
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4. UNIVALENT FUNCTIONS AND CONFORMALLY INVARIANT SPACES

The Dirichlet space is just one example among the spaces from an in-
creasing scale of conformally invariant spaces Bp in the disk (case p = 2).
The functions in these spaces allow for a rich interplay with geometric
features, in the sense that univalent Bp functions can be described in
terms of geometric properties of the image domain in a quantitative way.

4.1. Univalent functions. A function f is said to be univalent in D if
f ∈ H(D) and is one-to-one. We will denote by U the set of all such
functions. For different topics in the theory of univalent functions the
reader may consult the monographs by Duren [Du83] or Pommerenke
[Po92], for example.

By the inverse function theorem, every univalent function f is a home-
omorphism of the disk onto f(D). Thus, whenever f ∈ U , the domain
f(D) is simply connected. By the Riemann mapping theorem, the con-
verse is also true: for any given simply connected domain Ω (other than
the plane itself) there is a function f (called a Riemann map) that takes D
onto Ω and the origin to a prescribed point. The Riemann map f has the
following basic but important property (Corollary 1.4 of [Po92]) which,
recalling the notation from Subsection 1.1, can be written as follows.

LEMMA 13. If f ∈ U then

(15)
1

4
(1− |z|2)|f ′(z)| ≤ dist(f(z), ∂Ω) ≤ (1− |z|2)|f ′(z)| , z ∈ D .

Hence (1− |z|2)|f ′(z)| ≍ df(D))(f(z)), for all z ∈ D.

The proof of this standard result is based on the Schwarz-Pick lemma
on the one hand and the Koebe one-quarter theorem on the other hand
([Po92], Section 1.3). This estimate is relevant in geometric function the-
ory.

4.2. Hyperbolic metric in the disk. In what follows we will need a few
basic properties of the hyperbolic metric. Recall that the hyperbolic dis-
tance between two points z and w in the disk is defined as

ρ(z, w) = inf
γ

∫
γ

|dζ|
1− |ζ|2

=
1

2
log

1 +
∣∣ z−w
1−zw

∣∣
1−

∣∣ z−w
1−zw

∣∣ ,
where the infimum is taken over all rectifiable curves γ in D that join z
with w. The first formula is the definition and the second can be proved
by observing that ρ is invariant under disk automorphism and then, after
applying such a map, reducing the general case to special case when z =
0 and w = r ∈ (0, 1) and doing some elementary calculus estimates and
integration.
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The hyperbolic metric ρΩ on an arbitrary simply connected domain Ω
(other than the entire plane) is defined via the corresponding pullback to
the disk: if f is a Riemann map of D onto Ω then

ρΩ(f(z), f(w)) = ρ(z, w) = inf
Γ

∫
f−1(Γ)

|dζ|
1− |ζ|2

,

where the infimum is taken over all rectifiable curves Γ in Ω from f(z) to
f(w). The metric ρΩ does not depend on the choice of the Riemann map
f . For more details we refer the reader to [Po92, Sections 1.2 and 4.6].

From the definition of hyperbolic metric we notice the following im-
portant feature of Riemann maps: if f(0) = 0 then

(16) ρΩ(0, f(z)) = ρ(0, z) ≥ 1

2
log

1

1− |z|
, z ∈ D .

Another fundamental property, which is easily deduced from (15), is that
(in our earlier notation for the distance to the boundary of the domain)

(17) ρΩ(w1, w2) ≤ inf
Γ

∫
Γ

|dw|
dΩ(w)

,

where the infimum is taken over all rectifiable curves Γ in Ω from w1 to
w2.

4.3. The Bloch space. By definition, f ∈ B if f ∈ H(D) and

∥f∥B = |f(0)|+ sup
z∈D

(1− |z|2)|f ′(z)| <∞ .

A modification of the Schwarz-Pick lemma shows that H∞ ⊂ B. The in-
clusion is strict. Actually, there are many univalent functions that belong
to B \H∞, a simple example being f(z) = log 1+z

1−z
.

Let f ∈ B. Integration of the derivative f ′ from the origin to z along
a line segment leads to the following basic growth estimate for arbitrary
Bloch function f .

LEMMA 14. Whenever f ∈ B and z ∈ D, we have

|f(z)− f(0)| ≤ 1

2
log

1 + |z|
1− |z|

· ∥f∥B .

In particular, convergence in the Bloch space implies uniform convergence on
any K b D.

Note that the function log 1+z
1−z

mentioned above achieves maximum pos-
sible growth along the entire radius [0, 1). A different and more com-
plicated examples will be exhibited later, in the section on superposition
operators from the Bloch into a Bergman space.
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One of the basic papers on the subject of Bloch spaces is that of Ander-
son, Clunie, and Pommerenke [ACP74]; see also Danikas’ lecture notes
[Da99] or Chapter 5 of Zhu’s book [Zh90].

It is clear from the basic estimate that a univalent function f belongs to
B if and only if

sup
z∈D

df(D)(f(z)) <∞ ,

i.e. if and only if f(D) does not contain arbitrarily large disks.

4.4. Bloch domains. A planar domain Ω is a said to be a Bloch domain
if and only if every f ∈ H(D) with the property f(D) ⊂ Ω must belong
to B. (Note that f(D) = Ω is not required and no special properties of
Ω are being assumed either.) The following result is considered a “folk
knowledge”.

PROPOSITION 15. A planar domain is a Bloch domain if and only if it does not
contain arbitrarily large disks.

It should be remarked that similar result exist for other conformally
invariant spaces of analytic functions, such as BMOA or Qp but we will
not discuss them here.

4.5. Analytic Besov spaces. It is actually possible to construct a scale of
spaces of Lp type that includes both D and B. This is done by integrating
(1 − |z|2)|f ′(z)| with respect to the hyperbolic area element dA(z)/(1 −
|z|2)2. Thus, when 1 < p < ∞, a function f ∈ H(D) is said to belong to
the analytic (diagonal) Besov space Bp if and only if

sp(f)
p = (p− 1)

∫
D
|f ′(z)|p(1− |z|2)p−2dA(z) <∞ .

The above seminorm sp is invariant under the conformal automorphisms
of the disk: sp(f ◦ φ) = sp(f), for every disk automorphism φ. A true
norm is usually given by the formula

∥f∥pBp = |f(0)|p + sp(f)
p .

It is clear that B2 = D, the Dirichlet space. An important property
of analytic Besov spaces is the following: Bp ⊂ Bq, whenever 1 < p <
q ≤ ∞. Also, we may interpret the Bloch space as a limit case: B∞ = B.
There is a way of defining the space B1 as well but this would require
more work and some further considerations, so we will avoid this in the
present article.

In view of their conformal invariance, Bp spaces are closely related
with hyperbolic metric. Furthermore, they represent the range of the
Bergman projection when acting on Lp spaces with respect to the hyper-
bolic area measure. They also relate naturally with the membership in
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Schatten class of Hankel operators, etc. Thus, it is clear that they are very
natural and important objects to study.

Note that the space Bp is also invariant under translations τ(z) = z + a
and dilations dr(z) = rz, 0 < r < 1; that is, if f ∈ Bp then also τ ◦ f ∈ Bp

and f ◦ dr ∈ Bp.
Besides the invariance properties of Bp spaces, we will only use the

following statement in the sequel.

LEMMA 16. Whenever f ∈ Bp, 1 < p <∞, and z ∈ D, we have

|f(z)− f(0)| ≤ C

(
log

1 + |z|
1− |z|

)1−1/p

· ∥f∥Bp .

In particular, convergence inBp norm implies uniform convergence on anyK b
D.

A statement of this type can be found in Zhu’s semi-expository paper
[Zh91], for example. Another useful reference on analytic Besov spaces
is [Zh90, Chapter 5]. One of the most influential papers on the subject
was [AFP85].

4.6. Image domains under univalent Besov functions. Among the sim-
ply connected domains, those that are images of the disk under univalent
maps in Bp can be characterized in a very convenient way. This was ob-
served and used in [Wa00] and in [BFV01].

PROPOSITION 17. Let 1 < p < ∞. A domain Ω has the property that every
f ∈ U such that f(D) = Ω belongs to Bp if and only if Ω is simply connected
and

∫
Ω
dp−2
Ω dA <∞.

Proof. Since the Jacobian of the change of variable w = f(z) is |f ′(z)|2 and
(1− |z|2)|f ′(z)| ≍ dΩ(f(z)) in view of Lemma 13, we readily see that∫

D
|f ′(z)|p(1− |z|2)p−2dA(z) ≍

∫
Ω

dΩ(w)
p−2dA(w) ,

which proves the statement. �
This simple but extremely useful result allows us to construct simply

connected domains whose Riemann maps lie in the desiredBp space. The
following example is from [DGV02].

PROPOSITION 18. Let (an) be infinite sequence of positive numbers. Consider
a sequence of open squares Qn with side lengths an respectively and whose one
side lies on the positive part of the x-axis so that Qn∩Qn+1 is a vertical segment
for all n. Define Ω to be the interior of the union ∪∞

n=1Qn. Let F be a univalent
map of the unit disk onto Ω. Then F ∈ Bp if and only if

∑∞
n=1 a

p
n <∞.

Thus, there are univalent functions in every Bp and Bp ̸= ∩q>pB
q.
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Proof. We give a proof only when 2 ≤ p < ∞; the case 1 < p < 2 is
handled analogously but with all inequalities reversed. For each point in
Qn we have dΩ(w) ≤ an/2, whence∫

Ω

dΩ(w)
p−2dA(w) .

∞∑
n=1

∫
Qn

ap−2
n dA(w) .

∞∑
n=1

apn .

For the reverse estimate, consider the square Q′
n concentric with Qn but

half the size. Every point w in this square satisfies dΩ(w) ≥ an/4; hence∫
Ω

dΩ(w)
p−2dA(w) &

∞∑
n=1

∫
Q′

n

ap−2
n dA(w) &

∞∑
n=1

apn ,

which proves the desired inequality. �

Walsh used Proposition 17 to give a couple of interesting examples
which were subsequently improved in [DGV02].

Observe first that a univalent map onto a domain of finite area neces-
sarily belongs to the Dirichlet space. But does it have to belong to any
smaller Bp space (p < 2)? Walsh [Wa00] answered this in the negative by
giving the following example.

PROPOSITION 19. There exists a domain Ω of finite area such that no univalent
map f : D → Ω can belong to ∪p<2B

p.

Proof. Such a domain Ω can be constructed by making countably many
slits in the unit square

Q = {x+ iy : 0 < x < 1 , 0 < y < 1}

as follows: delete a vertical line segment of height 1/(n + 1) at the base
point k/2n, k = 1, 3, . . . , 2n − 1, for every n ≥ 1. Then every point
w = x+ iy in Ω with the imaginary part

1

n+ 2
< y <

1

n+ 1
, n = 1, 2, . . .

also satisfies dΩ(w) ≤ 1/2n+1. Hence, whenever p < 2, we have∫
Ω

dΩ(w)
p−2dA(w) &

∞∑
n=1

2(2−p)n

(n+ 1)(n+ 2)
= ∞ ,

showing that a univalent map of D onto Ω cannot belong toAp, according
to Proposition 17. �

Clearly, the domain from Proposition 19 is far from being a Jordan do-
main, for many of its boundary points are not simple. The following
example was given in [DGV02].
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PROPOSITION 20. There exists a Jordan domain Ω of finite area such that no
univalent map f : D → Ω can belong to ∪p<2B

p.

Proof. Such a domain can be obtained by gluing to a vertical strip count-
ably many “combs”, each finer and of smaller area than the previous one.
To put it in precise terms, let

αn = n−2 , n ≥ 1 , β0 = 0 , βn =
n∑

k=1

αk , n ≥ 1 , β =
∞∑
n=1

αn =
π2

6
.

Consider the domains

Rn = {x+ iy : 2βn−1 < y < 2βn−1 + αn , 0 ≤ x < αn }, n ≥ 1 .

Tn,k = {x+ iy : 2βn−1 < y < 2βn−1 +
αn

2
,
k

2n
αn ≤ x ≤ k

2n
αn +

αn

2n+1
} ,

for n = 1, 2, 3, . . . and 0 ≤ k ≤ 2n − 1. Define

Sn = Rn \

(
2n−1∪
k=0

Tn,k

)
and finally

Ω =

(
∞∪
n=1

Sn

)
∪ {x+ iy : −1 < x < 0, 0 < y < 2β} .

It is easy to see that Ω is a Jordan domain. By applying a reasoning similar
to that of Proposition 19, we arrive at the same conclusion:

∫
Ω
dp−2
Ω dA =

∞ when p < 2. We omit the details here. �

It is clear that a univalent map of the disk onto a simply connected
domain whose complement has finite area cannot belong to D. Can it
belong to any larger Bp space (p > 2)? Walsh [Wa00] gave the following
counterexample.

PROPOSITION 21. There exists a simply connected domain Ω whose comple-
ment has zero area, yet every univalent map of D onto Ω belongs to ∩p>2B

p.

His construction consisted in deleting from the plane countably many
vertical half-lines, each of them from a point with certain special rational
coordinates to infinity. We refer the reader to [Wa00] for the details. The
following improvement was found in [DGV02].

PROPOSITION 22. There exists a slit domain Ω, that is, a simply connected
domain whose complement is a single Jordan arc, such that every univalent map
of D onto Ω belongs to ∩p>2B

p.
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Proof. The domain is constructed by deleting from the plane a spiral-like
curve that wanders off from the origin to the point at infinity. More pre-
cisely, let

r0 = 0 , rn =
n∑

k=1

1

k
, n ≥ 1 ,

and consider the following sequence of Jordan arcs in the form of letter
“C”:

Cn = {z : |z| = rn , | arg z| >
rn+1 − rn

2
=

1

2(n+ 1)
}

and the following sequences of “upper”line segments:

Un = [r2n−1e
i(r2n−r2n−1)/2, r2ne

i(r2n+1−r2n)/2]

and “lower”segments

Ln = [r2ne
−i(r2n+1−r2n)/2, r2n+1e

−i(r2n+2−r2n+1)/2] .

Next, join the upper edges of C1 and C2 by U1, as well as those of C3

and C4 by U2, etc. Connect also the lower edges of C2 and C3 by L1.
Continuing this process yields as a result the simple arc

Γ = (∪∞
n=1Cn) ∪ (∪∞

n=1Un) ∪ (∪∞
n=1Ln)

that connects the origin with the point at infinity since rn → ∞ as n→ ∞.
Hence the domain Ω = C \Γ is simply connected. A procedure similar to
the one applied before allows us to estimate the integral

∫
Ω
dp−2
Ω dA from

above by a convergent series whenever 2 < p < ∞. Again, we refer the
reader to [DGV02] for specific details of such estimates. �

4.7. Univalent Bp domains. One can easily give a natural definition of
a Bp domain. By analogy with an unpublished argument due to Heden-
malm for Qp domains, the following was shown in [DGV02].

PROPOSITION 23. When 1 < p <∞, Bp domains do not exist.

Proof. Suppose there exist such a domain Ω. Then Ω contains some open
disk. Since Bp is invariant under translations and dilations, without loss
of generality we may assume that D ⊂ Ω. Then every analytic function
that maps the disk into itself must belong to Bp. In particular, every in-
finite Blaschke product does. This contradicts a theorem of H.O. Kim
[Ki84] which states that the only Blaschke products in Bp are the finite
ones. Hence there does not exist a Bp domain. �

Even though the Bp domains do not exist, there is a reasonable middle
ground between this phenomenon and Proposition 17. It is convenient
and natural to define the following notion. We will say that Ω is a uni-
valent Bp domain if every univalent function f in D such that f(D) ⊂ Ω
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must have the property f ∈ Bp. Note that we are not requiring that Ω be
simply connected, nor that f be onto (as in the criterion of Walsh).

The following lemma might be interesting in itself.

LEMMA 24. Whenever p ≥ 2, every domain Ω contains a simply connected
domain Ω′ with the property that for any finite α ≥ 0∫

Ω

dαΩ(w) dA(w) ≍
∫
Ω′
dαΩ′(w) dA(w) ,

with the constants of comparison depending only on α (but not on the geometry
of Ω!).

Proof. Actually, the domain constructed in the proof of Theorem 2 has the
desired property. This can be seen as follows. Since Ω and Ω′ differ only
by a set of Lebesgue measure zero, and Ω′ ⊂ Ω we get trivially that∫

Ω′
dαΩ′ dA(w) ≤

∫
Ω

dαΩ(w) dA(w) .

For the reverse inequality, we can use the fact that for any square Q,∫
Q

dαQ(w) dA(w) ≥ Cα(diam Q)α+2 ,

where the constant Cα depends only on α and not on the decomposition
and can be computed explicitly.

Recalling the properties of the Whitney decomposition, we get∫
Ω′
dαΩ′(w) dA(w) =

∞∑
j=1

∫
Qj

dαΩ′(w) dA(w)

≥
∞∑
j=1

∫
Qj

dαQj
(w) dA(w)

≥ Cα

∞∑
j=1

(diam Qj)
α+2

= 2Cα

∞∑
j=1

∫
Qj

(diam Qj)
α dA(w)

≥ C̃α

∞∑
j=1

∫
Qj

dαΩ(w) dA(w)

= C̃α

∫
Ω

dαΩ(w) dA(w) .

This completes the proof. �
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Here is one of the principal results of [DGV02]. Note that this statement
“interpolates”between the trivial case p = 2 (the univalent D domains
clearly being the ones of finite area) and the expected result for the Bloch
space: the supremum of the radii of all disks contained in the domain
must be finite.

THEOREM 25. Univalent Bp domains exist if and only if 2 ≤ p ≤ ∞. If this is
the case, Ω is a univalent Bp domain if and only if

∫
Ω
dp−2
Ω dA <∞.

Proof. To show that there are no univalent Bp domains when 1 < p < 2,
suppose that Ω is such a domain. Then Ω contains some disk D0. Now,
by Walsh’s example (Proposition 19) there is a bounded function f ∈ U
such that f /∈ Bp. We can find complex constants α and β so that if
g = α + βf then g(D) ⊂ D0 ⊂ Ω. Then g ∈ U and g(D) ⊂ Ω but g ̸∈ Bp, a
contradiction.

Now for the main part: the description of univalent Bp domains when
2 ≤ p < ∞. The proof is similar but easier for the Bloch space (case
p = ∞) and will be omitted here. We remark that it does not require
Whitney squares - one can comfortably work with disks.

The easy implication goes as follows. Let
∫
Ω
dp−2
Ω dA < ∞ and let f be

an arbitrary univalent map such that that f(D) = D ⊂ Ω. It is easy to
see that dD(w) ≤ dΩ(w) for all w in D. Taking into account that p ≥ 2, we
have ∫

D

dp−2
D dA ≤

∫
D

dp−2
Ω dA ≤

∫
Ω

dp−2
Ω dA <∞ ,

so by Proposition 17 we know that f ∈ Bp. This shows that Ω is a univa-
lent Bp domain.

We finally prove the difficult part. The key point is, of course, Lemma 24.
We may reason as follows. Suppose Ω is a univalent Bp domain. We have
to show that

∫
Ω
dp−2
Ω dA < ∞. Assume the contrary:

∫
Ω
dp−2
Ω dA = ∞. By

Lemma 24, Ω contains a simply connected domain ∆ such that we also
have

∫
∆
dp−2
∆ dA = ∞. Then by Proposition 17 there exists a univalent map

f of D onto ∆ such that f ̸∈ Bp. Since ∆ ⊂ Ω, this would mean that Ω is
not a univalent Bp domain. This contradiction completes the proof. �

It is clear from the definition that a subdomain of a univalent Bp do-
main is also a univalent Bp domain. An example of such a domain that
is not even finitely connected is obtained by deleting the centers of all
squares Qn in the domain from Proposition 18.
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5. SUPERPOSITION OPERATORS

The purpose of this section is, for different given pairs of spaces of an-
alytic functions, to fully describe all superposition operators from one
function space into another in terms of the behavior of their symbol (al-
ways an entire function). This provides a comparative measure of growth
of the functions in two different spaces.

As a rule, the proofs of all results here will be based on elementary
properties of entire functions and on two basic elements studied in detail
in earlier sections: on growth estimates for functions in different spaces
and on geometric construction of domains related to univalent functions
in our spaces.

5.1. Superposition operators. We begin by describing the basic prob-
lems.

Trivially, if f ∈ Ap and n ≤ [p/q], then fn ∈ Aq. It follows immediately
that P ◦ f ∈ Aq, for any polynomial P of degree ≤ [p/q]. Are such poly-
nomials the only entire functions for which the statement is true? The
answer is yes, as found by Cámera and Giménez [CG94] in 1994. It is not
surprising that similar phenomena were also observed in Hardy spaces
Hp (see [Ca95]).

In general, given two metric function spaces X and Y , where X , Y ⊂
H(D), we will say that φ acts by superposition from X into Y if φ ◦ f ∈ Y
whenever f ∈ X . If this is the case, we say that φ defines the superposition
operator

Sφ : X → Y , Sφ(f) = φ ◦ f .
It follows easily that φ must be entire if X contains the linear functions.
This is so because the identity function belongs to X in this case, hence
φ ∈ Y and, in particular, φ ∈ H(D). By applying φ to a linear function,
it is then easily seen that φ is analytic in any open disk and hence entire.
Also (when X and Y are linear spaces), Sφ is a linear operator if and only
if φ(z) = cz, where c = const.

Since Sφ is typically a non-linear operator, we cannot take for granted
many of the usual properties the linear operators have, such as closed
graph and action ⇒ boundedness, boundedness ⇔ continuity, and so
forth. Actually, we should even make sure to formulate the definition of
these concepts in this case. Thus, we will say that Sφ is a bounded operator
if it maps bounded sets into bounded sets (in analogy with the linear
case). For example, it is rather easy to see that the function φ(z) = zn

and, analogously, any polynomial of degree n ≤ [p/q] induces a bounded
superposition operator fromAp intoAq (just inspect carefully the obvious
estimates used in proving that the operator acts from one space into the
other).
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QUESTION. LetX and Y be two metric spaces of functions in H(D) that contain
the linear functions.

(1) For which (entire functions) φ do we have Sφ(X) ⊂ Y ?
(2) If Sφ(X) ⊂ Y , when is Sφ a bounded operator?

Knowing the answers to the above questions seems like a very natu-
ral way of comparing “how much faster”the functions in one space grow
than those in the other. Superpositions between various spaces of real
functions have been studied extensively. Appel’s and Zabrejko’s mono-
graph [AZ90] reviews the developments up to about 1990 and there have
been literally hundreds of papers on the topic published since then. The
question on when one function acts between two spaces also comes up
often in certain topics of harmonic analysis, functional analysis, or func-
tion algebras. However, such a study between classical spaces of ana-
lytic functions and in the terms formulated above has begun, surprisingly
enough, only quite recently.

In this section we present a small sample of results from [CG94], [BFV01],
[AMV04], and [BV08], hoping that they will give the reader the flavor of
this recent line of research.

5.2. A brief review of entire functions. As is usual, by an entire function
we mean one that is analytic in the whole complex plane C. Two basic
types of entire functions will be of interest to us here: the polynomials
and the functions of finite positive order.

We recall the Cauchy estimates, a standard generalization of Liouville’s
theorem, easily deduced from the Cauchy integral formula.

LEMMA 26. Given a non-negative number a and an entire function φ, there
exists a positive number R such that

|φ(w)| ≤M |w|α , whenever |w| > R ,

if and only if φ is a polynomial of degree at most [α], the greatest integer part of
α.

Given a non-constant entire function φ, its order ρ is defined as

(18) ρ = lim sup
r→∞

log logM(r)

log r
,

where M(r) = max{|φ(z)| : |z| = r}. We will always work with one φ
at a time and will therefore suppress any reference to φ in M(r) and ρ in
order not to burden the notation. The type σ of an entire function φ of
order ρ (0 < ρ <∞) is given by

(19) σ = lim sup
r→∞

logM(r)

rρ
.

The possibilities σ = 0 and σ = ∞ are not excluded.
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The simplest example of a function of integer order ρ and finite positive
type σ is eσzρ . More involved examples (including the case of fractional
orders) can be constructed in the form of power series or as integrals of
certain complex functions.

Some very basic material on entire functions can be found in Chap-
ter VIII of [Ti88]. The classical monographs [Bo54] and [Le96] contain
plenty of information.

5.3. Superpositions acting between two Bergman spaces. The first re-
sult we review here concerns the superposition operators between two
Bergman spaces. As already mentioned, it was proved in [CG94]. The
statement is intuitively quite reasonable to expect but its proof still re-
quires a certain amount of work. The method employed in [CG94] is
the most natural one: it consists in choosing the right “test functions”in
Ap and making a clever use of the standard Cauchy estimates for entire
functions. It should be worth observing that several details in the orig-
inal proof can be simplified. The result is a somewhat shorter proof we
present below that involves choosing only one test function instead of
several such functions.

THEOREM 27. Let 0 < p, q <∞ and let φ be entire. Then Sφ maps Ap into Aq

if and only if φ is a polynomial whose degree is at most [p/q]. If this is the case,
then Sφ is actually a bounded operator.

Proof. We have already commented on the sufficiency of the condition on
degree ≤ [p/q] at the beginning of the section, so we need only verify the
necessity. To this end, suppose φ is not a polynomial of degree ≤ p/q.
We can find ε > 0 such that [p

q
+ ε] < [p

q
] + 1. According to the Cauchy

estimates (Lemma 26), we can choose inductively an infinite sequence of
points (wn) in the plane with increasing moduli and the property that

(20) |φ(wn)| > n|wn|p/q+ε , for all n .

At least one of the 8 octants

{z : πn/4 ≤ arg z < π(n+ 1)/4} , n = 0, 1, . . . , 7,

contains infinitely many points wn. Without loss of generality, we may
assume it is the first octant. The reason for this is the following: φ is a
polynomial of degreeN if and only if the function given by ψ(w) = φ(λw)
is also such, whenever |λ| = 1, so that rotations are allowed.

By the Bolzano-Weierstrass theorem, the sequence (argwn) will have a
convergent subsequence. We may choose a further subsequence, denoted
again (wn), so that the arguments argwn decrease to zero. Again, this is a
consequence of the fact that φ is a polynomial of degree N if and only if
the function given by ψ(w) = φ(w) is also such, so we are allowed to use
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reflections across the real axis. Another rotation can be used after this to
take the sequence back to the first octant.

Now choose

f(z) =

(
1 + z

1− z

)α

, α

(
p

q
+ ε

)
=

2

q
.

Since 0 < α < 2/p, it follows from Lemma 4 that f ∈ Ap.
Let us first consider the case when p ≥ 1. Then f ∈ U and maps the unit

disk onto an angle with vertex at the origin and of aperture < 2π. Note
also that it maps any Stolz angle in D with vertex at z = 1 symmetric with
respect to the real axis onto a symmetric angle of opening smaller than
π centered at the origin. In particular, the pre-image of the first octant is
contained in a Stolz angle.

Let zn be points in the disk such that f(zn) = wn. The choice of zn is
unique because f is univalent. Moreover, by the mapping properties of
f , all zn will belong to a Stolz angle. Then 1 − |zn| > c|1 − zn| for some
c ∈ (0, 1). By deleting again finitely many terms, we may also assume
that Re zn ≥ 0 for all n (hence |1 + zn| ≥ 1). By our choice of ε we have

∥φ ◦ f∥Aq

(1− |zn|)2/q
≥ |φ(f(zn))| = |φ(wn)| > n|wn|p/q+ε

= n

(
|1 + zn|
|1− zn|

)α(p/q+ε)

≥ n

(
c

1− |zn|

)α(p/q+ε)

≥ M n

(1− |zn|)2/q
.

In view of Lemma 5 this contradicts the assumption that φ ◦ f ∈ Aq .
The case when 0 < p < 1 is easily taken care of by multiplying both p

and q by a sufficiently large positive integer N so as to have Np ≥ 1 and
Nq ≥ 1, thus reducing the problem to the case already considered. �

Even when the operator Sφ is not linear, one can understand the con-
cepts of “continuous”and “locally Lipschitz”in the usual terms. The fol-
lowing statement was also proved in [CG94].

THEOREM 28. When φ acts by superposition from Ap into Aq as in the condi-
tions of Theorem 27, the operator Sφ is continuous and also Lipschitz at every
point of Ap.

We do not give a proof here but instead refer the reader to the original
paper [CG94]. Interesting results regarding superpositions from Bergman
space into the Nevanlinna area class can also be found there. We also re-
mind the reader that further details regarding Hardy and related spaces
can be found in the survey [Ca95].
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5.4. Superpositions from the Bloch space to a Bergman space. Here we
have a different situation, in the sense that any Bergman space is “much
bigger”than the Bloch space; in other words, Bergman functions grow
much faster than Bloch functions.

Since Bloch functions grow at most as log 1
1−|z| and Ap functions grow

at most as (1 − |z|)2/p, we may ask whether any function like φ(z) = ecz,
c ̸= 0, will still have the property

f ∈ B ⇒ φ ◦ f ∈ Ap .

One immediately notices that, even though fc(z) = c log 1/(1 − z) is a
Bloch function, the function

efc(z) =
1

(1− z)c

will not belong to the Bergman space Ap if we choose c ≥ 2/p, according
to Lemma 4. This should lead to the understanding that entire functions
of order one and finite positive type will not serve for mapping B into Ap

by superposition. However, this is precisely where the cut occurs. Before
we proceed to our next result, we will need the following lemma.

The auxiliary construction of a conformal map onto a specific Bloch
domain with the maximal (logarithmic) growth along a certain broken
line displayed below might be of some independent interest. Thus, we
state it separately as a lemma. Loosely speaking, such a domain can be
imagined as a “highway from the origin to infinity” of width 2δ.

LEMMA 29. For each positive number δ and for every sequence {wn}∞n=0 of
complex numbers such that w0 = 0, |w1| ≥ 5 δ, argw1 < π/2, argwn ↘ 0, and

(21) |wn| ≥ max

{
3|wn−1|,

n−1∑
k=1

|wk − wk−1|

}
for all n ≥ 2 ,

there exists a domain Ω with the following properties:
(i) Ω is simply connected;

(ii) Ω contains the infinite polygonal lineL = ∪∞
n=1[wn−1, wn], where [wn−1, wn]

denotes the line segment from wn−1 to wn;
(iii) any Riemann map f of D onto Ω belongs to B;
(iv) dist(w, ∂Ω) = δ for each point w on the broken line L.

Proof. It is clear from (21) that |wn| ↗ ∞ as n → ∞. We construct the
domain Ω as follows. First connect the points wn by a polygonal line L as
indicated in the statement. Let D(z, δ) = {w : |z − w| < δ} and define

Ω =
∪

{D(z, δ) : z ∈ L} ,
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i.e. let Ω be a δ-thickening of the polygonal line L. In other words, Ω is
the union of simply connected cigar-shaped domains

Cn =
∪

{D(z, δ) : z ∈ [wn−1, wn]} .

By our choice of wn, it is easy to check inductively that |wn − wk| ≥ 5 δ
whenever n > k. Since our construction implies that

Cn ⊂ {w : |wn−1| − δ < |w| < |wn|+ δ} ,
wee see immediately that

(a) for all m, n, Cm ∩ Cn ̸= ∅ if and only if |m− n| ≤ 1;
(b) for all n, Cn ∩ Cn+1 is either D(wn, δ) or the interior of the convex

hull of D(wn, δ) ∪ {an} for some point an outside of D(wn, δ).
Thus, each ΩN = ∪N

n=1Cn is also simply connected. Since

Ω = ∪∞
N=1ΩN and ΩN ⊂ ΩN+1 for all N,

we conclude that Ω is also simply connected (like in [DGV02], Section 4.2,
p. 56). By construction, dist(w, ∂Ω) ≤ δ for all w in Ω, hence any Riemann
map onto Ω will belong to B. It is also clear that (iv) holds. �

Both the above lemma and our next result are taken from [AMV04].

THEOREM 30. Let 0 < p < ∞ and let φ be entire. Then the following state-
ments are equivalent:

(a) Sφ : B → Ap;
(b) Sφ maps B boundedly into Ap;
(c) φ either has order less than one, or order one and type zero.

Proof. In order to prove that (c) implies (b), let us suppose that φ is an
entire function of order one and type zero. By (18), this means that

lim sup
r→∞

log logM(r)

log r
= 1

and the quantity

(22) E(r) =
logM(r)

r

tends to zero as r → ∞.
Let f be an arbitrary function in B of norm at most K. By Lemma 14,

we have

(23) |f(z)| ≤
(
log

1

1− |z|
+ 1

)
K .

By our assumption on E(r), for some sufficiently large R0 it follows that

(24) E(|w|) < 1/(2pK) , whenever |w| > R0 .
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Thus, whenever |f(z)| > R0 we get

|φ(f(z))| ≤ M(|f(z)|)
= e|f(z)|·E(|f(z)|)

≤ exp

(
K ·

(
log

1

1− |z|
+ 1

)
· E(|f(z)|)

)
≤ e1/(2p)

(1− |z|)1/(2p)

by the definition of M(r) and by (22), (23), and (24) respectively.
If, on the contrary, |f(z)| ≤ R0 then |φ(f(z))| ≤ M(R0) by the Maxi-

mum Modulus Principle. Combining the two possible cases, we obtain

∥φ ◦ f∥pp ≤ e1/2
∫
D

dA(z)

(1− |z|)1/2
+M(R0)

p = C ,

where C depends only on φ, p, and K but not upon f . This shows that
Sφ is a bounded operator from B into Ap.

The reasoning is similar, but simpler, when φ has order ρ < 1: use the
estimate M(r) ≤ exp (rρ+ε) for a small enough ε and large enough r.

It is plain that (b) implies (a).
Thus, it is only left to prove that (a) implies (c). This is the crucial part

and it suffices to consider only the harder case so assume that Sφ : B →
Ap but φ has order one and type different from zero, there exists an ε and
a sequence {rn}∞n=1 such that rn → ∞ as n→ ∞ and

(25)
logM(rn)

rn
≥ ε > 0 , for all n .

In other words, there exists a sequence {wn}∞n=1 such that |wn| = rn and

(26) |φ(wn)| =M(rn) ≥ eε|wn| , for all n .

Fix a constant δ > 12/(εp). We can now choose an infinite subsequence,
denoted again {wn}, so that the sequence {argwn} in [0, 2π] is convergent
and all points wn lie in an angular sector of opening π/2. We may further
assume that they are all located in the first quadrant and the arguments
argwn decrease to 0, by applying symmetries or rotations if necessary.
There is no loss of generality in doing this because the entire functions ψ
and φt defined by ψ(z) = φ(z) and φt(z) = φ(eitz) respectively have the
same order and type as φ.

Select inductively a further subsequence, labeled again {wn}, in such a
way that w0 = 0, |w1| ≥ 5 δ, and (21) holds. Next, construct a domain Ω
with the properties (i)–(iv) indicated in Lemma 29. Let f be a Riemann
map of D onto Ω that fixes the origin.
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Now let zn be the points in D for which wn = f(zn). Since |wn| → ∞
as n → ∞, it follows that |zn| → 1. By applying estimate (16) for hyper-
bolic metric, the triangle inequality, inequality (17) and property (iv) from
Lemma 29, as well as the properties (21) of the points wn respectively, we
obtain the following chain of inequalities:

1

2
log

1

1− |zn|
≤ ρΩ(0, wn)

≤
n∑

k=1

ρΩ(wk−1, wk)

≤
n∑

k=1

∫
[wk−1,wk]

|dw|
dΩ(w)

=
n∑

k=1

∫
[wk−1,wk]

|dw|
δ

=
1

δ

n∑
k=1

|wk − wk−1|

≤ 3

δ
|wn| .

This shows that

(27) |wn| ≥
δ

6
log

1

1− |zn|
.

It follows from (26) and (27) that

(28) |φ(wn)| ≥ exp

(
εδ

6
· log 1

1− |zn|

)
=

1

(1− |zn|)(εδ)/6
.

On the other hand, f ∈ B, hence by assumption (a): φ ◦ f ∈ Ap. By
Lemma 5, we have

(29) |φ(wn)| = |(φ ◦ f)(zn)| ≤
∥φ ◦ f∥p

(1− |zn|)2/p
,

for all n. However, (28) and (29) contradict each other since ε δ/6 > 2/p
by our initial choice of δ. This completes the proof. �

5.5. Superpositions between two Besov spaces. Our next result is tech-
nically more complicated as it requires controlling the derivative of the
function in the initial space instead of the function itself. Also, the test
function should be chosen as a univalent map inBp onto a certain domain
whose exact shape is known only roughly but not completely. Thus, one
needs maps similar to the ones constructed in Subsection 4.6 only slightly
more general. The following class of examples was given in [BFV01].
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PROPOSITION 31. Let 1 < p <∞, (wn) be a sequence of complex numbers, and
let (rn) and (hn) be sequences of positive numbers with the following properties:

(a) 0 ≤ argwn < π/4 and |wn| ≤ |wn+1|/2, n ∈ N;
(b) rn < |wn|/4 and |hn| < min{rn, rn+1}/3, n ∈ N.

Let Dn = D(wn, rn) = {z : |z − wn| < rn} and let Rn be the rectangle whose
longer symmetry axis is the segment [wn, wn+1] and whose shorter side has
length 2hn. Then the domain Ω = ∪∞

n=1 (Dn ∪ Rn) is simply connected and,
if f is a Riemann map of D onto Ω, then f ∈ Bp if and only if

∞∑
n=1

rpn +
∞∑
n=1

|wn+1 − wn|hp−1
n <∞ .

The proof resembles that of Proposition 18.
Armed with this new tool, we are now ready to give a characteriza-

tion of all entire maps that transform one Besov space into another (or
into the Bloch space) via superposition. Intuitively, it is clear that Bp is
smaller thanBq when p < q, but “not much smaller”. How should this be
expressed in terms of the superposition operators acting from one space
into another? The answer is fairly simple to state. This result is also from
[BFV01].

THEOREM 32. Let 1 < p, q ≤ ∞, where B∞ = B. Then we have the following
conclusions.

(a) If p ≤ q, then Sφ : Bp → Bq if and only if φ is a linear function.
(b) If p > q, then Sφ : Bp → Bq if and only if φ is a constant function.

Proof. The reasoning we are about to use applies equally to (a) and (b)
throughout, except at the end of the proof where we will have to distin-
guish between the two cases.

We first show that φmust be linear in either case. Assume the contrary:
φ′ is not identically constant, and let rn = 2−n. In view of Liouville’s
theorem, φ′ is unbounded, so we can select inductively a sequence (wn)
of complex numbers so that |w1| > 2 and

|wn+1| ≥ 2|wn|, |φ′(wn)| ≥ r−2
n

for all n. As in the proof of Theorem 27, at least one of the eight basic
octants contains infinitely many points wn. By a rotation if necessary, we
may therefore assume that 0 ≤ argwn < π/4, and so Proposition 31 is
applicable. Define

hn = 2−n−2|wn+1 − wn|−1/(p−1) .

Let Ω be the domain defined in Proposition 31 using the sequences (wn),
(rn), and (hn) as data and let f : D → Ω be a univalent map of D onto Ω.
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By Proposition 31, we know that F ∈ Bp. Let f(zn) = wn. It is easily seen
that |zn| → 1 as n→ ∞. Applying Lemma 13, we obtain

|φ′(wn)| |f ′(zn)| (1− |zn|) ≍ |φ′(wn)| dΩ(wn) ≥ C/rn → ∞ ,

which tells us that φ ◦ f /∈ B, a contradiction. This tells us that Sφ(B
p) ⊂

Bq implies that φ is linear, independently of the values of p and q.
(a) Since Bp ⊂ Bq when p ≤ q, it is clear that every linear function acts

by superposition from Bp into Bq.
(b) We already know that φ has to be linear but it cannot contain the

z-term (otherwise it would easily follow that Bp ⊂ Bq, which is not the
case. Thus, φ ≡ const. �

The following statement was not recorded in [BFV01] but is rather easy
to prove.

PROPOSITION 33. Let 1 < p, q ≤ ∞. If Sφ acts from Bp into Bq, it is also a
bounded operator.

Proof. In the case (b) of Theorem 32, the range Sφ(B
p) is a singleton, hence

the superposition operator is trivially bounded.
In the case (a), we have φ(z) = az + b, where a, b ∈ C. The key point

consists in observing that the injection map fromBp intoBq (allowing the
possibility ofB∞ = B) is a bounded linear operator. This is a consequence
of the Closed Graph Theorem. Namely, by Lemma 16 the convergence
in Bp implies uniform convergence on compact subsets of D; this also
applies to the Bloch space by Lemma 14. Thus, assuming that fn → f in
Bp and fn → g in Bq, p ≤ q, we deduce that fn ⇒ f , as well as to g, on
all K b D, whence f ≡ g. This shows that the injection map from Bp into
Bq (possibly B) has closed graph and is therefore a bounded operator:
∥f∥Bq ≤ C ∥f∥Bp . Now if ∥f∥Bp ≤M then

∥Sφ(f)∥Bq ≤ |a| ∥f∥Bq + |b| ≤ CM |a|+ |b| ,
showing that Sφ maps bounded sets into bounded sets and is, thus, a
bounded operator from Bp into Bq. �

As was also the case with [DGV02], due to limitations in space we were
only able to give here a glimpse of results obtained in [BFV01]. There are
further theorems there regarding superpositions between other spaces
of Dirichlet type. In certain cases, such results require slightly more in-
volved examples of conformal maps as well as certain inequalities of
Trudinger-Moser type due to Chang and Marshall. However, these re-
sults will not be presented here.

5.6. Some other superpositions. The three examples given here (Theo-
rem 27, Theorem 32, and Theorem 30) should not mislead the reader to
expect that whenever Sφ acts from one space to another it should also be
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bounded. Since Sφ is a nonlinear operator if φ(z) ̸≡ cz, we cannot always
expect the continuity and boundedness to be equivalent.

There are actually examples that show that this is clearly not the case.
Namely, the above proof was modified in a number of places in [BV08] to
prove similar but actually somewhat different results for superpositions
operators from the smaller spaces Bp into Bergman spaces. If we denote
by E(t) the class of entire functions of order less than a positive number
t, or of order t and finite type, the result can be formulated as follows.

THEOREM 34. Suppose 1 < p < ∞ and 0 < q < ∞. Then Sφ(B
p) ⊂ Aq if

and only if φ ∈ E(p/(p − 1)), and Sφ(B0) ⊂ Aq if and only if φ ∈ E(1). All
superposition operators from Bp or B0 to Aq are continuous (as maps between
metric spaces).

Indeed, there exist continuous unbounded superposition operators from
Bp toAq, as can be deduced from the following characterization of bound-
edness and compactness. Below, we denote by E0(t) the class of entire
functions of order less than t, or of order t and type zero.

THEOREM 35. Suppose 1 < p < ∞ and 0 < q < ∞. Then Sφ is bounded
from Bp to Aq if and only if φ ∈ E0(p/(p − 1)), and Sφ is bounded from B0 to
Aq if and only if φ ∈ E0(1). All such bounded operators are Montel compact
(meaning that they map bounded sets into relatively compact sets).

The proofs are too technical to be presented here as they require cer-
tain generalized Trudinger-type inequalities; we refer the reader to the
original paper [BV08].

A number of varied results on superpositions between different spaces
of Dirichlet type had been obtained earlier in [BFV01]. In some cases the
proofs require the Chang-Marshall inequality discussed earlier and the
constructions of domains similar to the ones given above. To get a taste
of what was proved there, we enunciate the following theorem proved
there and prove only one of the two implications. HereDp will denote the
general Dirichlet-type space of analytic functions in D for which f ′ ∈ Ap,
equipped with the obvious norm, 1 ≤ p <∞.

THEOREM 36. If q < 2 and φ is entire, then Sφ(D) ⊂ Dq if and only if φ ∈
E(2).

Proof. We only prove sufficiency. Let φ ∈ E(2). By the standard fact
about entire functions and their derivatives [Ti88, p. 265], we also have
φ′ ∈ E(2), and so there exists β > 0 such that |φ′(w)| ≤ eβ |w|2 for all
sufficiently large |w|.
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Recall that by Garnett’s observation (10) related to the Chang-Marshall
theorem, the integral ∫ 2π

0

exp(α|f(eiθ)|2) dθ

is finite for any α > 0. Applying first Hölder’s inequality and this fact,
we obtain∫
D
|f ′|q|φ′ ◦ f |q dA ≤

(∫
D
|f ′|2 dA

)q/2 (∫
D
|φ′ ◦ f |2q/(2−q) dA

)(2−q)/2

≤ ∥f∥qD
(
K +

∫
D
exp[2qβ|f |2/(2− q)] dA

)(2−q)/2

<∞ ,

for all f ∈ D. Note that above we have also used the following fact:∫
D
eβ|f |

2

dA =
∞∑
n=0

βn

n!

∫
D
|f |2n dA ≤

∞∑
n=0

βn

n!

∫
T
|f |2n dθ =

∫
T
eβ|f |

2

dθ .

The necessity is more involved but the constructions needed are quite
similar to the ones given by Proposition 31. �

The subject of superposition operators has not been exhausted yet and
several other papers have appeared in print over the last ten years. We
mention, among others, [Xi05], [BV06], and [Xu07]. Nice results on super-
positions between Qp and Hardy spaces have been obtained in [GM10].
Recently, superposition operators between weighted spaces of Hardy type
have been studied in [BoV13] and [Ra13]. Relationship of certain super-
positions with universal functions, maximal ideals, and composition op-
erators on the disk has been covered in [Mo13].
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6. EXERCISES

(1) Prove the following lemma used implicitly in the proof of Theo-
rem 2: the union of an ascending chain of simply connected do-
mains is again simply connected. That is, if Ωn are simply con-
nected for all n ∈ N and Ω1 ⊂ Ω2 ⊂ Ω3 ⊂ . . . then Ω = ∪∞

n=1Ωn is
simply connected. (Hint: Use the Cauchy integral formula.)

(2) In the estimate used in Lemma 24, find a correct value of the con-
stant Cα. (Hint: Consider the square 1

2
Q of the same center as Q

but half the diameter and estimate dΩ(w) for the points w ∈ 1
2
Q.)

(3) Order the rational numbers in [0, 1) in a sequence (rk)
∞
k=1 and con-

sider the sequence of points

zn,k = (1− 1

2n+k
) e2πirk , n, k ∈ N .

Check that this sequence satisfies the Blaschke condition:∑
n

∑
k

(1− |zn,k|) <∞ .

and accumulates at all points of the unit circle. Why doesn’t this
contradict the fact that the corresponding Blaschke product must
have radial limits of modulus one almost everywhere?

(4) Prove formula (3), justifying the convergence of the series where
necessary.

(5) Complete the proof of Lemma 4. (Hint: For the Ap lemma, inte-
grate in polar coordinates centered at z = 1, so that z = 1 + reiθ.
What are the limits of integration? For the Hp lemma, work with
the boundary values of fc and use the fact that cos θ ≍ 1− θ2/2 for
small θ.)

(6) Supply the details of the proof of Lemma 5.
(7) Let f ∈ Hp and let |Eλ| be the distribution function of the bound-

ary values of f as defined in Subsection 3.2. Show that

|Eλ| ≤
∥f∥pHp

λp
, λ > 0 .

(8) Give an example of an unbounded univalent function in the Dirich-
let space D. (It is OK to use existence theorems such as the Rie-
mann mapping theorem, for example.)

(9) Show that H∞ ⊂ B. (Hint: Use the Schwarz-Pick lemma for the
analytic functions σ from the unit disk into itself: 1 − |σ(z)|2 ≤
(1− |z|2)|σ′(z)|, for all z ∈ D.)

(10) (a) Let φ be an entire function. Show that the ψ(z) = φ(z) is also
an entire function and has the same order and type as φ.
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(b) Compute the order and type of the entire function φ(z) = eπz
3

and determine the corresponding ψ. Does it differ from φ?
(11) Verify that every polynomial P of degree n ≤ [p/q] induces a

bounded superposition operator from Ap into Aq. In other words,
show that for every R with 0 < R < ∞, there exists a constant
C = C(R) such that ∥f∥Ap ≤ R implies ∥P ◦ f∥Aq ≤ C.

(12) (a) Show that B ⊂ Aq for any q > 0.
(b) Show that Sφ maps Ap into B if and only if φ ≡ const. (Hint:
Use Theorem 27.)
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in Möbius-invariant spaces, J. d’Analyse Math. 112 (2010), 237260.

[Du70] P.L. Duren, Theory of Hp Spaces, Academic Press, New York-London 1970.
Reprint: Dover, Mineola, New York 2000.

[Du83] P.L. Duren, Univalent Functions, Springer-Verlag, Berlin-New York 1983.



ANALYTIC FUNCTIONS, DOMAINS, AND SUPERPOSITION 43

[DS04] P.L. Duren and A.P. Schuster, Bergman Spaces, Graduate Studies in Mathemat-
ics, American Mathematical Society, Providence, RI, 2004.

[GM10] D. Girela, M. A. Mrquez, Superposition operators between Qp spaces and
Hardy spaces, J. Math. Anal. Appl. 364 (2010), no. 2, 463472.

[HKZ00] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Gradu-
ate Texts in Mathematics 199, Springer, New York, Berlin, etc. 2000.

[Jo82] P.W. Jones, A geometric localization theorem, Adv. in Math. 46 (1982), 71–79.
[Jo95] P.W. Jones, On removable sets for Sobolev spaces in the plane, in Essays on

Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991), pp. 250–267,
Princeton Math. Ser. 42, Princeton Univ. Press, Princeton, NJ 1995.

[Ki84] H.O. Kim, Derivatives of Blaschke products, Pacific J. Math. 114 (1984), 175–
190.

[Ko98] P. Koosis, Introduction to Hp spaces, Second edition, Cambridge University
Press, Cambridge 1998.

[Le96] B.Ya. Levin, Lectures on Entire Functions, Translations of Mathematical Mono-
graphs 150, Amer. Math. Soc., Providence, RI, 1996.

[Mar89] D. Marshall, A new proof of a sharp inequality concerning the Dirichlet inte-
gral, Ark. Mat. 27 (1989) No. 1, 131–137.
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[Vu04A] D. Vukotić, On the growth of Hardy and Bergman norms of functions in the
Dirichlet space, In: Proceedings of the First Advanced Course in Operator Theory
and Complex Analysis (Seville, June 2004), Colección Actas 59, University of
Seville, 2006 (A. Montes-Rodrı́guez, editor), pp. 147–154.



44 D. VUKOTIĆ
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