
OPERATORS ON HILBERT SPACES

3. Part II. Hilbert spaces of analytic functions on the unit disc

3.1. Notation. Let H(D) denote the algebra of all analytic functions in the unit disc D = {z :
|z| < 1}. Let T be the boundary of D, let D(a, r) = {z : |z − a| < r} denote the Euclidean disc
of center a and radius r and let D(a, r) = {z : |z − a| ≤ r} the corresponding closed disc.
Throughout these notes we shall write f(z) =

�∞
n=0

anzn, g(z) =
�∞

n=0
bnzn ∈ H(D). We will

write �T�(X,Y ) for the norm of an operator T : X → Y , and if no confusion arises with regards
to X and Y , we will simply write �T�. Moreover, for two real-valued functions E1, E2 we write
E1 � E2, or E1 � E2, if there exists a positive constant k independent of the argument such
that 1

kE1 ≤ E2 ≤ kE1, respectively E1 ≤ kE2.

3.2. Hardy spaces. If 0 < r < 1 and f ∈ H(D), we set

Mp(r, f) =

�
1

2π

�
2π

0

|f(reit)|p dt

�1/p

, 0 < p < ∞,

M∞(r, f) = sup
|z|=r

|f(z)|.

Whenever 0 < p ≤ ∞ the Hardy space Hp consists of those f ∈ H(D) such that

�f�Hp = sup
0<r<1

Mp(r, f) < ∞.

Since, Mp(r, f) is an non-decreasing function of r, �f�Hp = limr→1− Mp(r, f).
We observe that � · �H2 is the norm induced by the inner product

�f, g�H2 = lim
r→1−

1

2π

�
2π

0

f(reit)g(reit) dt

=
1

2π

�
2π

0

f(eit)g(eit) dt =
∞�

n=0

anbn, f, g ∈ H2.

(3.1)

It is useful for the study of a several questions (and operators acting on H2) to provide an
equivalent norm in terms of the derivative. In this case, the classical Littlewood-Paley [20]
formula says that

�f�2H2 = |f(0)|2 + 2

�

D
|f �(z)|2 log

1

|z|
dA(z) (3.2)

dA(z) = dx dy
π is the normalized Lebesgue area measure on D. Since log 1

|z| � (1 − |z|2),
1

2
≤ |z| < 1, sometimes H2 is equipped with the equivalent norm

�f�2 = |f(0)|2 +

�

D
|f �(z)|2(1− |z|2) dA(z) (3.3)

We refer to [17, 20] for the theory of Hardy spaces.
1



2 OPERATORS ON HILBERT SPACES

3.3. Weighted Bergman spaces. A function ω : D → (0,∞), integrable over D, is called a
weight function or simply a weight. It is radial if ω(z) = ω(|z|) for all z ∈ D.
For 0 < p < ∞ and a weight ω, the weighted Bergman space Ap

ω consists of those f ∈ H(D) for
which

�f�p
Ap

ω
=

�

D
|f(z)|pω(z) dA(z) < ∞,

where dA(z) = dx dy
π is the normalized Lebesgue area measure on D.

As usual, we write Ap
α for the classical weighted Bergman space induced by the standard radial

weight ω(z) = (1− |z|2)α, −1 < α < ∞ and simply Ap for Ap
0
.

It is clear that � · �A2
ω
is the norm induced by the inner product

�f, g�A2
ω
=

�

D
f(z)g(z)ω(z) dA(z), f, g ∈ A2

ω (3.4)

Mainly, we shall deal with radial continuous weights. In that case,

�f�2A2
ω
= 2

�
1

0

M2

2
(r, f)ω(r) rdr = 2

�
1

0

� ∞�

n=0

|an|
2r2n

�
ω(r) rdr

=
∞�

n=0

|an|
2

�
2

�
1

0

r2n+1ω(r) dr

�

and

�f, g�A2
ω
=

∞�

n=0

anbn

�
2

�
1

0

r2n+1ω(r) dr

�
(3.5)

There exists a Littlewood-Paley type inequality for weighted Bergman spaces Ap
α, 0 < p < ∞

−1 < β < ∞ [19, 44]

�f�p
Ap

β
� |f(0)|p +

�

D
|f �(z)|p (1− |z|)p+β dA(z), (3.6)

which gives an equivalent norm for Ap
β.

For generalizations of (3.6) see [3, 34, 40] and for the theory of the classical weighted Bergman
spaces, see [18, 24, 44].
It is worth to comment that functions in weighted Bergman spaces Ap

α may have wild bound-
ary behavior, their zero-sets are difficult to fathom, there is no obvious analogue of Blaschke
products, the invariant subspaces (of Mz(f) = zf) need not be singly generated as they are
(according to Beurling’s theory) for the Hardy spaces.
Further results on weighted Bergman spaces induced by several classes of radial weights or
Bekollé-Bonami weights can be found in [3, 9, 10, 35, 38].

3.4. Classical weighted Dirichlet spaces. For α > −1, the weighted Dirichlet-type space
Dp

α consists of those functions f ∈ H(D) for which

�f�pDp
α
= |f(0)|p +

�

D
|f �(z)|p(1− |z|2)α dA(z) < ∞.

We simply write Dα for the space D2

α. We have that � · �Dα is the norm induced by the inner
product

�f, g�Dα = f(0)g(0) +

�

D
f �(z) g�(z)(1− |z|2)α dA(z), f, g ∈ Dα. (3.7)

Since for any α > −1, �
1

0

r2n+1(1− r2)α dr � n−(α+1),
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it follows

||f�2Dα
= |a0|

2 + 2

�
1

0

M2

2
(r, f �)r(1− r2)α dr

= |a0|
2 + 2

�
1

0

� ∞�

n=0

(n+ 1)2|an+1|
2r2n+1

�
(1− r2)α dr

= |a0|
2 +

∞�

n=0

(n+ 1)2|an+1|
2

�
2

�
1

0

r2n+1(1− r2)α dr

�
�

∞�

n=0

(n+ 1)1−α
|an|

2,

that is

||f�2Dα
�

∞�

n=0

(n+ 1)1−α
|an|

2

which provides an equivalent norm in Dα in terms of Taylor coefficients.

Basic inclusions or identities for Dirichlet-type spaces

Lemma 3.1. (i) Dp
α ⊂ H∞, if −1 < α < p− 2.

(ii) Dp
α = Ap

α−p, if p− 1 < α.

Proof. (i) Take f ∈ Dp
α. Then, for any 0 < r < 1

∞ > ||f�Dp
α
�

�
1

r

Mp
p (s, f

�)s(1− s2)α ds

� Mp
p (r, f

�)

�
1

r

s(1− s2)α ds

� Mp
p (r, f

�)(1− r)α+1,

that is, Mp(r, f �) � (1− r)
−(α+1)

p .
On the other hand, for any g ∈ H(D) and 0 < p ≤ q ≤ ∞ [17, Chapter 5]

Mq(r, g) � Mp

�
1 + r

2
, g

�
(1− r)

1
q−

1
p , 0 < r < 1.

So,

M∞(r, f �) � Mp

�
1 + r

2
, f �

�
(1− r)−

1
p � (1− r)

−(α+2)
p ,

which gives

M∞(r, f) � |f(0)|+

� r

0

M∞(s, f �) ds � |f(0)|+

� r

0

(1− s)
−(α+2)

p ds ≤ C < ∞,

(ii) follows taking β = α− p in (3.6). This finishes the proof. �

So Dp
α becames a “proper”Dirichlet space for the range p − 2 ≤ α ≤ p − 1. In particular, for

p = 2, the interesting range is 0 ≤ α ≤ 1. We recall that H2 = D2

1
(3.2). On the other hand,

D0 is just the classical Dirichlet space and, as usual, will be simply denoted by D. See [37, 7]
for the theory of the classical Dirichlet space.



4 OPERATORS ON HILBERT SPACES

3.5. Point evaluations and uniform convergence on compact subsets.

Lemma 3.2. If −1 < α ≤ 1, then

D
2

α ⊂ H2
⊂

�

β>−1

A2

β,

indeed

||f ||A2
β
≤ ||f ||H2 � ||f ||D2

α
, f ∈ H(D), β > −1.

Lemma 3.3. If ω is a continuous weight,

|f(a)|2 ≤
4

(1− |a|)2 inf
z∈D(0, 1+|a|

2 ) ω(z)

�

D(a, 1−|a|
2 )

|f(z)|2ω(z) dA(z) ≤
4||f ||2A2

ω

(1− |a|)2 inf
z∈D(0, 1+|a|

2 ) ω(z)

For any z ∈ D, let us consider the point evaluation Lz(f) = f(z).

Corollary 3.4. If ω is a continuous weight, point evaluations Lz are bounded functionals on

A2

ω.

Corollary 3.5. If ω is a continuous weight and limn→∞ ||fn − f ||A2
ω
= 0, then {fn} converges

uniformly to f on compact subsets of D.

Corollary 3.6. (1) Point evaluations Lz are bounded functionals on H2
and D2

α, 0 ≤ α <
1.

(2) If limn→∞ ||fn − f ||H2 = 0 or limn→∞ ||fn − f ||D2
α
= 0 then {fn} converges uniformly to

f on compact subsets of D.

Corollary 3.7. If ω is a continuous weight, the following H2,D2

α, A
2

ω are Hilbert spaces.

A proof follows from the previous results, Fatou’s lemma and standard arguments.

3.6. Kernel functions and reproducing formulas. Let X = H2,Dα, A2

ω, where ω is a
continuous weight, and let �·, ·�X the associated inner product. Since the point evaluations are
bounded functionals on X, by the Riesz representation theorem, for each z ∈ D there exists a
unique function KX

z ∈ X such that

f(z) = �f,KX
z �X . (3.8)

Theorem 3.8. Suppose that {en(z)}∞n=0
is an orthonormal basis of X. Then,

KX
z (ζ) =

∞�

n=0

en(ζ)en(z)

and the series converges uniformly on compact subsets of D × D. In particular, KX
z (ζ) is

independent of the choice of the orthonormal basis {en(z)}∞n=0
.

Proof. Bearing in mind Lemmas 3.2 and 3.3, for any compact S ⊂ D, we have

sup






� ∞�

n=0

|en(z)|
2

� 1
2

: z ∈ S






= sup

������

∞�

n=0

anen(z)

����� : z ∈ S,
∞�

n=0

|an|
2 = 1

�

= sup {|f(z)| : z ∈ S, ||f ||X = 1} ≤ CS.
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So, it follows from the Cauchy-Schwarz inequality that the series
∞�

n=0

en(ζ)en(z)

converges uniformly whenever ζ and z stay in compact subsets of D.
Now, for any f ∈ X,

f(z) =
∞�

n=0

�f, en�X en(z)

This series converges inX and by Corollaries 3.5 and 3.6, it also converges uniformly on compact
subsets of D. Therefore, for any z ∈ D, we have

f(z) =
∞�

n=0

�f, en�X en(z) = �f(·),
∞�

n=0

en(z)en(·)�X .

Since the series,
�∞

n=0
en(z)en(ζ) converges to a function hz(ζ) ∈ X, the uniqueness of Riesz

representation theorem shows that

KX
z (ζ) =

∞�

n=0

en(ζ)en(z)

. �
In particular, by (3.8)

||KX
z ||

2

X = �KX
z , KX

z �H2 = KX
z (z) =

∞�

n=0

|en(z)|
2, (3.9)

for any orthonormal basis.

• Hardy spaces. It is clear that {en}∞n=0
, where

en(z) = zn, n ∈ N ∪ {0}

is a basis of H2. So

KH2

z (ζ) =
∞�

n=0

(ζz)n =
1

1− ζz
, z, ζ ∈ D. (3.10)

Moreover

f(z) = �f,KH2

z �H2 =
1

2π

�
2π

0

f(eit)KH2

z (eit) dt =
1

2π

�
2π

0

f(eit)

1− e−itz
dt, f ∈ H2, (3.11)

and

||KH2

z ||
2

H2 =
1

1− |z|2
.

The reproducing formula (3.11) remains true for any f ∈ H1, [17, Theorem 3.6].
• Weighted Bergman spaces. It follows from (3.5) that {en}∞n=0

, where

en(z) =
zn�

2
�

1

0
r2n+1ω(r) dr

, n ∈ N ∪ {0}

is a basis of A2

ω whenever ω is a radial weight.
By Theorem 3.8 and (3.8)

f(z) = �f,KA2
ω

z �A2
ω
=

�

D
f(ζ)KA2

ω
z (ζ)ω(ζ) dA(ζ), f ∈ A2

ω,



6 OPERATORS ON HILBERT SPACES

where

KA2
ω

z (ζ) =
∞�

n=0

(ζz)n

2
�

1

0
r2n+1ω(r) dr

. (3.12)

It seems difficult to obtain a more concrete expression of KA2
ω

z for any radial weight,
however it can be done for standard radial weight ω(r) = (1− r2)α, α > −1

• Classical weighted Bergman spaces.
First, we recall some know facts on special functions.

Lemma 3.9. (i) Γ(x) =
�∞
0

tx−1e−t dt, x > 0.
(ii) Γ(x+ 1) = xΓ(x), x > 0.
(iii) Γ(n+ 1) = n!,n ∈ N ∪ {0}.
(iv) β(x, y) =

�
1

0
tx−1(1− t)y−1 dt, x > 0, y > 0.

(v) β(x, y) = Γ(x)Γ(y)
Γ(x+y)

(vi) If λ is neither zero nor a negative integer, then

1

(1− z)λ
=

∞�

n=0

Γ(n+ λ)

Γ(n+ 1)Γ(λ)
zn, z ∈ D.

If ω(r) = (1− r2)α, then

2

�
1

0

r2n+1ω(r) dr = 2

�
1

0

r2n+1(1− r2)α dr =

�
1

0

tn(1− t)α dt

= β(n+ 1,α + 1) =
Γ(α + 1)Γ(n+ 1)

Γ(n+ α + 2)
=

Γ(α + 2)Γ(n+ 1)

(α + 1)Γ(n+ α + 2)
,

so by (3.12)

KA2
ω

z (ζ) = (α + 1)
∞�

n=0

Γ(n+ α + 2)

Γ(n+ 1)Γ(α + 2)
(ζz)n =

(α + 1)

(1− ζz)α+2
.

We also deduce

f(z) = (α + 1)

�

D

f(ζ)

(1− zζ)α+2
(1− |ζ|2)α dA(ζ), f ∈ A2

α, (3.13)

and

||KA2
α

z ||
2

A2
α
=

(α + 1)

(1− |z|2)α+2
.

The reproducing formula (3.13) is valid for any f ∈ A1

α, [18, 44].
• Classical weighted Dirichlet spaces. Bearing in mind the reproducing formula

f(z) = �f,KDα
z �Dα

= f(0)KDα
z (0) +

�

D
f �(ζ)

∂

∂ζ
KDα

z (ζ)(1− |ζ|2)α dA(ζ), f ∈ Dα,
(3.14)

the fact that f ∈ Dα ⇔ f � ∈ A2

α and (3.13), we deduce that

KDα
z (w) = 1 +

� w

0

� z̄

0

dζ

(1− ηζ)2+α
dη. (3.15)

In particular, for α = 0,

KD
z (w) = 1 + log

1

1− z̄w
.
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Also, it is easy to see that

�KDα
z �

2

Dα
= KDα

z (z) �

�
log e

1−|z|2 if α = 0
(1− |z|2)−α if α > 0.

(3.16)

4. Operators on Hilbert spaces of analytic functions

The main aim of this section consists of introducing classical operators on Hilbert spaces of
analytic functions on D, providing descriptions on the boundedness and compactness of these
operators.

4.1. Preliminaries. We shall write

kX
z (ζ) =

KX
z (ζ)

||KX
z ||X

.

The Carleson square associated with an interval I ⊂ T is the set S(I) = {reit : eit ∈

I, 1 − |I| ≤ r < 1}, where |E| denotes the normalized Lebesgue measure of the set E ⊂ T.
For our purposes it is also convenient to define for each a ∈ D \ {0} the interval Ia =�
eiθ : | arg(ae−iθ)| ≤ π(1− |a|)

�
, and denote S(a) = S(Ia).

For a ∈ D, define ϕa(z) = (a− z)/(1− az). The automorphism ϕa of D is its own inverse and
interchanges the origin and the point a ∈ D. The pseudohyperbolic and hyperbolic distances

from z to w are defined as �(z, w) = |ϕz(w)| and

�h(z, w) =
1

2
log

1 + �(z, w)

1− �(z, w)
, z, w ∈ D,

respectively. The pseudohyperbolic disc of center a ∈ D and radius r ∈ (0, 1) is denoted
by ∆(a, r) = {z : �(a, z) < r}. It is clear that ∆(a, r) coincides with the hyperbolic disc

∆h(a,R) = {z : �h(a, z) < R}, where R = 1

2
log 1+r

1−r ∈ (0,∞).
The following results will be used. Proofs can be found in [18, 44].

Lemma 4.1. Let 0 < r < 1. Then there exist positive constants C1, C2 C3 and C4 which

depend only on r such that for every z ∈ ∆(a, r),

1− |a|2 ≤ C1(1− |z|2) ≤ C2|1− az| ≤ C3 (A(∆(a, r)))1/2 ≤ C4(1− |a|2), (4.1)

here A(∆(a, r)) denotes the Lebesgue area measure of ∆(a, r).

Lemma 4.2. For each pseudohyperbolic radius r (0 < r < 1), there exist a sequence {ak}∞k=0

of points of D and an integer N = N(r) such that

D =
∞�

k=1

∆(ak, r)

and no point z ∈ D belongs to more than N of the dilated discs ∆(ak, R), R = 1+r
2
.

Lemma 4.3. Suppose that 0 < p < ∞, γ ∈ R and 0 < r < 1. Then, there is a positive constant

C = C(γ, r) such that

|f(a)|p ≤
C

(1− |a|2)2+γ

�

∆(a,r)

|f(z)|p(1− |z|2)γ dA(z).
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4.2. The identity operator. For a given Banach space (or a complete metric space) X of
analytic functions on D, a positive Borel measure µ on D is called a q-Carleson measure for

X if the identity operator Id : X → Lq(µ) is bounded. It is known that a characterization of
q-Carleson measures for a space X ⊂ H(D) can be an effective tool, for example, in the study
of different questions related to operators acting on X.
We shall focus our attention on the case Id : X → L2(µ), where X is a Hilbert space of analytic
functions on D.

Theorem 4.4. Let µ be a positive Borel measure on D. Then the following assertions hold:

(i) Id : H2 → L2(µ) if and only if

Kµ = sup
I⊂T

µ (S(I))

|I|
< ∞. (4.2)

Moreover, if the identity operator Id : H2 → L2(µ) is bounded then

�Id�
q
(H2,L2(µ)) � sup

I⊂T

µ (S(I))

|I|
.

(ii) The identity operator Id : H2 → L2(µ) is compact if and only if

lim
|I|→0

µ (S(I))

|I|
= 0. (4.3)

A proof of part (i) of this result hinges on the fact that (1 − |a|)1/2kH2

a is bounded above and
below on S(a), on the properties of a Hörmander-type maximal function and a (1, 1)-weak type
inequality for this function. Part (ii) can be proved following these ideas, part (i) and standard
techniques (some of them will appear below). In particular, the next result.

Lemma 4.5. Let µ be a positive Borel measure on D satisfying (4.3). If

dµr(z) = χ{r≤|z|<1}dµ,

then limr→1− Kµr = 0.

See [17, 12, 13, 11, 35, 29] for further details on the proofs and descriptions on q-Carleson
measures for Hp, 0 < q, p < ∞.
Now, we turn our attention to classical weighted Bergman spaces.

Theorem 4.6. Let µ be a positive Borel measure on D and α > −1. Then the following

assertions are equivalent;

(i) Id : A2

α → L2(µ) is bounded
(ii) the measure µ satisfies

sup
a∈D

µ (∆(a, r))

(1− |a|)2+α
< ∞, (4.4)

for some (any) 0 < r < 1.

Moreover, if the identity operator Id : A2

α → L2(µ) is bounded then

�Id�
2

(A2
α,L

2(µ)) � sup
a∈D

µ (∆(a, r))

(1− |a|)2+α
.
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Proof. (i)⇒(ii). Consider the test functions kA2
α

a (z) = (α + 1)1/2
�
(1−|a|2)

1/2

1−az

�2+α

. Bearing in

mind Lemma 4.1,

µ(∆(a, r))

(1− |a|2)2+α �

�

∆(a,r)

|kA2
α

a (z)|2 dµ(z)

≤

�

D
|kA2

α
a (z)|2 dµ(z) � �Id�

2

(A2
α,L

2(µ))�k
A2

α
a (z)�2A2

α
� 1

for all a ∈ D and 0 < r < 1. Thus µ satisfies (4.4) and

sup
a∈D

µ (∆(a, r))

(1− |a|)2+α
� �Id�

2

(A2
α,L

2(µ))

(ii)⇒(i). Fixed 0 < r < 1, let {ak} the sequence given by Lemma 4.2 and M = supa∈D
µ(∆(a,r))
(1−|a|)2+α .

Then, by Lemmas 4.2, 4.3 and 4.1

�

D
|f(z)|2 dµ(z) �

�

k

�

∆(ak,r)

|f(z)|2 dµ(z)

�
�

k

sup
�
|f(z)|2 : z ∈ ∆(ak, r)

�
µ (∆(ak, r))

≤ M
�

k

max
�
|f(z)|2 : z ∈ ∆(ak, r)

�
(1− |ak|

2)2+α

� M
�

k

�
∆(ak,R)

|f(ξ)|2 dA(ξ)

(1− |ak|)2
(1− |ak|

2)2+α

� M(1− |ak|
2)α

�

k

�

∆(ak,R)

|f(ξ)|2 dA(ξ)

� M
�

k

�

∆(ak,R)

|f(ξ)|2 (1− |ξ|2)α dA(ξ)

� M

�

D
|f(ξ)|2 (1− |ξ|2)α dA(ξ),

which proves (i) and implies that �Id�2(A2
α,L

2(µ)) � M = supa∈D
µ(∆(a,r))
(1−|a|)2+α . �

It is not difficult to see [17, 23, 35]

sup
I⊂T

µ (S(I))

|I|2+α
� sup

a∈D

µ (∆(a, r))

(1− |a|)2+α
, α > −1.

That is 2-Carleson measures for A2

α, α > −1, as it happens for 2-Carleson measures for H2,
can also be neatly characterized by a L∞-type condition involving Carleson squares.

Theorem 4.7. Let µ be a positive Borel measure on D and α > −1. Then the following

assertions are equivalent,

(i) Id : A2

α → L2(µ) is compact

(ii) the measure µ satisfies

lim
|a|→1−

µ (∆(a, r))

(1− |a|)2+α
= 0, (4.5)

for some (any) 0 < r < 1.
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Proof. (i)⇒(ii). Since supa∈D ||k
A2

a
a ||A2

a
= 1 < ∞ and

lim
|a|→1−

kA2
a

a (z) = 0

uniformly on compact subsets of D, then an standard argument gives that

lim
|a|→1−

||kA2
a

a ||L2(µ) = 0

so reasoning as in the proof of Theorem 4.6 we deduce (4.5).
(ii)⇒(i) follows bearing in mind Corollary 3.5 and the fact that the sequence {ak}∞k=0

con-
structed in Lemma 4.2 has the property limk→∞ |ak| = 0. �

We also have that that for any α > −1, (4.5) is equivalent to

lim
|I|→0

µ (S(I))

|I|2+α
= 0. (4.6)

Going further, since KA2
a

α are analytic zero free functions on D, taking as test functions
�
KA2

a
α

� 2
p

and using the same techniques, it can be proved that (4.4) and (4.5) describe the boundedness
and respectively the compactness of the operator Id : Ap

α → Lp(µ), 0 < p < ∞, α > −1,
which in particular says that p-Carleson measures for Ap

α do not depend on p. This is also true
for p-Carleson measures for Hp, a result which was proved by L. Carleson [12, 13]. Hastings,
Luecking, Oleinik and Pavlov [23, 27, 30, 32], among others, have characterized q-Carleson
measures for Ap

α. Constantin [14] have given an extension of these classical results to the
case when ω(z)

(1−|z|)η belongs to the class Bp0(η) of Bekollé-Bonami weights. We recall that for

1 < p0, p�0 < ∞ such that 1

p0
+ 1

p�0
= 1 and η > −1, a weight ω : D → (0,∞) satisfies the Bekollé-

Bonami Bp0(η)-condition denoted by ω ∈ Bp0(η), if there exists a constant C = C(p0, η,ω) > 0
such that

��

S(I)

ω(z)(1− |z|)η dA(z)

���

S(I)

ω(z)
−p�0
p0 (1− |z|)η dA(z)

� p0
p�0

≤ C|I|(2+η)p0

(4.7)

for every interval I ⊂ T.
A description for q-Carleson measures for Ap

ω, where 0 < q, p < ∞ and ω is a rapidly decreasing
weight can be found in [33]. The case 0 < p ≤ q for rapidly increasing weights has been recently
solved in [35].

Finally, we introduce the modified Carleson box

S̃(a) =
�
z ∈ D : 1− |z| ≤ 2(1− |a|),

���
arg(az̄)

2π

��� ≤
1− |a|

2

�
.

Theorem 4.8. Let −1 < α < 1. Then µ is a Carleson measure for D2

α if and only if there is

a positive constant C such that for all a ∈ D
�

S̃(a)

(µ(S(z) ∩ S(a)))2
dA(z)

(1− |z|2)2+α
≤ C µ(S(a)).

Theorem 4.8 is a particular case a more general result proved in [6] which is proved using
“measures on trees”.
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4.3. Integral operators. Let us consider the integral operator

Tg(f)(z) =

� z

0

f(ζ) g�(ζ) dζ, g ∈ H(D).

Pommerenke was probably one of the first authors to consider the operator Tg. He used it
in [36] to study the space BMOA, which consists of those functions in the Hardy space H1 that
have bounded mean oscillation on the boundary T [8, 21], that is if mI(f) =

1

|I|
�
I f(e

iθ) dθ

sup
I⊂T

1

|I|

�

I

|f(eiθ)−mI(f)| dθ < ∞.

The space BMOA can be equipped with several different equivalent norms [21]. We will use
the one given by

�g�2
BMOA

= sup
a∈D

�
S(a) |g

�(z)|2(1− |z|2) dA(z)

1− |a|
+ |g(0)|2.

The space VMOA consists of those functions in the Hardy space H1 that have vanishing mean

oscillation on the boundary T, that is,

lim
|I|→0+

1

|I|

�

I

|f(eiθ)−mI(f)| dθ = 0.

It is known that this space is the closure of polynomials in BMOA and is characterized by the
condition

lim
|a|→1−

�
S(a) |g

�(z)|2(1− |z|2) dA(z)

1− |a|
= 0.

By using the Litlewood-Paley formula (3.3),

||Tg(f)||
2

H2 �

�

D
|f(z)g�(z)|2 (1− |z|2) dA(z),

so Tg : H2 → H2 is bounded if and only if
�

D
|f(z)g�(z)|2 (1− |z|2) dA(z) ≤ C||f ||2H2 ,

that is, µg = |g�(z)|2 (1 − |z|2) dA(z) is a 2-Carleson measure for H2, which together Theorem
4.4 gives the first part of the next result.

Theorem 4.9. Let g ∈ H(D). Then,
(i) Tg : H2 → H2

is bounded if and only if g ∈ BMOA.
(ii) Tg : H2 → H2

is compact if and only if g ∈ VMOA.

In order to present a detailed proof of Theorem 4.9 (ii), we shall use the following well-known
result [42, 22].

Lemma A. Let X and Y be two Banach spaces (or complete metric spaces) of analytic func-

tions on D, and let T : X → Y be a linear operator. Suppose that the following conditions are

satisfied:

(a) The point evaluation functionals on Y are bounded.

(b) For every bounded sequence in X, there is a subsequence which converges uniformly to

an element of X on compact subsets of D.
(c) If {fn} ⊂ X converges uniformly to zero on compact subsets of D, then {T (fn)} con-

verges uniformly to zero on compact subsets of D.



12 OPERATORS ON HILBERT SPACES

Then T is a compact operator from X to Y if and only if for any bounded sequence {fn} in X
such that fn → 0 uniformly on compact subsets of D, the sequence {T (fn)} converges to zero

in the norm (or in the metric) of Y .

We note that ⇒ only uses (a) and (c). ⇐ only uses (b).

Lemma 4.10. Let X = H2, A2

β or Dα, β,α > −1. Assume that g ∈ H(D) and Tg : X → X is

bounded. Then, (a), (b) and (c) of Lemma A hold.

Proof. (a) and (b) follow from Corollaries 3.5, 3.6 and 3.7. Now, take {fn} ⊂ X a sequence
converging uniformly to zero on compact subsets of D, and fix K a compact subset of D. Since
there exists r0 ∈ (0, 1) such that K ⊂ D(0, r0). For any ε > 0 there is and n0 = n0(r0, ε) such
that

|fn(z)| < ε, for any z ∈ D(0, r0) and n ≥ n0.

So, if n ≥ n0 and z ∈ K,

|Tgfn(z)| ≤

� |z|

0

|fn(ζ)||g
�(ζ)||dζ| ≤ M∞(r0, g

�)

� |z|

0

|fn(ζ)||dζ| ≤ M∞(r0, g
�)ε,

which implies (c). This finishes the proof. �

Proof of Theorem 4.4. Part (ii)

Observe that Lemmas A and 4.10 imply that, Tg : H2 → H2 is compact if and only if for any
bounded sequence {fn} in H2 such that fn → 0 uniformly on compact subsets of D, then

lim
n→∞

||Tg(fn)||
2

H2 � lim
n→∞

�

D
|fn(z)g

�(z)|2 (1− |z|2) dA(z) = 0, (4.8)

where in the last equivalence we have used (3.3).
Assume that Tg : H2 → H2 is compact. Since supa∈D ||k

H2

a ||A2
a
= 1 < ∞, lim|a|→1− kH2

a (z) = 0
uniformly on compact subsets of D and

|kH2

a (z)| �
(1− |a|2)1/2

|1− az|
�

1

(1− |a|2)1/2
, z ∈ S(a) (4.9)

it follows from (4.8)

lim
|a|→1−

�
S(a) |g

�(z)|2(1− |z|2) dA(z)

1− |a|
� lim

|a|→1−

�

S(a)

|g�(z)kH2

a (z)|2(1− |z|2) dA(z)

≤ lim
|a|→1−

�

D
|g�(z)kH2

a (z)|2(1− |z|2) dA(z) = 0,

so g ∈ VMOA.
On the other hand, assume that g ∈ VMOA and {fn} is a bounded sequence in H2 such that
fn → 0 uniformly on compact subsets of D.
Fix ε > 0, and let us write µg = |g�(z)|2 (1− |z|2) dA(z). By Lemma 4.5, there is r0 such that
K(µg)r

< ε2 for any r ∈ [r0, 1). Moreover, there is n0 = n0(r0, ε) such that

|fn(z)| < ε, for any z ∈ D(0, r0) and n ≥ n0.
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So, bearing in mind Theorem 4.4, for n ≥ n0

�

D
|fn(z)g

�(z)|2 (1− |z|2) dA(z)

≤ ε2
�

|z|≤r0

|g�(z)|2 (1− |z|2) dA(z) + ||fn||
2

L2((µg)r0
)

≤ ε2||g||2H2 + CKµgr0
||fn||

2

H2

≤ Cε2(||g||2BMOA + sup
n

||fn||
2

H2) � ε2,

that is limn→∞ ||Tg(fn)||2H2 = 0. This finishes the proof. ✷
We recall that the Bloch space B [5] consists of those f ∈ H(D) such that

�f�B = |f(0)|+ sup
z∈D

(1− |z|2) |f �(z)| < ∞.

and f ∈ B0 (the little Bloch space) if

lim
|z|→1−

(1− |z|2) |f �(z)| = 0.

See [5, 44] for theory of these spaces.

Lemma 4.11. Assume that g ∈ H(D), γ ∈ R and 0 < r < 1. Then

(i) g ∈ B if and only

sup
a∈D

1

(1− |a|2)γ

�

∆(a,r)

|g�(z)|2(1− |z|2)γ dA(z) < infty.

(ii) g ∈ B0 if and only

lim
|a|→1−

1

(1− |a|2)γ

�

∆(a,r)

|g�(z)|2(1− |z|2)γ dA(z) = 0

With these tools in our hands, and reasoning as in Theorem 4.9 we can prove the following.

Theorem 4.12. Let g ∈ H(D) and α > −1. Then,

(i) Tg : A2

α → A2

α is bounded if and only if g ∈ B.

(ii) Tg : A2

α → A2

α is compact if and only if g ∈ B0.

Finally, as a direct byproduct of Theorem 4.8 we obtain a description of those symbols g ∈ H(D)
such that the integral operator is bounded on Dα.

Theorem 4.13. Let g ∈ H(D) and −1 < α < 1. Then, Tg : D2

α → D2

α is bounded if and only if

�

S̃(a)

��

S(z)∩S(a)
|g�(ζ)|2(1− |ζ|2)αdA(ζ)

�2 dA(z)

(1− |z|2)2+α

≤ C

�

S(a)

|g�(ζ)|2(1− |ζ|2)αdA(ζ).

(4.10)

We refer to [1, 3, 41, 35] and the references therein for the theory of these operators.



14 OPERATORS ON HILBERT SPACES

4.4. Multiplication operators. For g ∈ H(D), the multiplication operator Mg is defined by

Mg(f)(z) = g(z)f(z), f ∈ H(D), z ∈ D.
If X and Y are two spaces of analytic function in D (which will always be assumed to be Banach
or F -spaces continuously embedded in H(D)) and g ∈ H(D), then g is said to be a multiplier
from X to Y if Mg : X → Y is bounded. The space of all multipliers from X to Y will be
denoted by M(X, Y ) and M(X) will stand for M(X,X).
Firstly, we shall prove an easy but useful lemma [43, Lemma 1.10].

Lemma 4.14. Assume that X is an space of analytic functions on D such that the point

evaluations are bounded on X. Then M(X) ⊂ H∞
and

||g||H∞ ≤ ||Mg||(X,X).

Proof. Take f ∈ X, f �= 0 and a �∈ Z(f) = {z ∈ D : f(z) = 0}. Then, there is Ca > 0 such that

|f(a)| ≤ Ca||f ||X .

So, for each n ∈ N and g ∈ M(X),

|gn(a)f(a)| ≤ Ca||g
nf ||X ≤ Ca||Mg||(X,X) · ||g

n−1f ||X ≤ Ca||Mg||
n
(X,X)

· ||f ||X ,

that is
|g(a)|f(a)|1/n ≤ ||Mg||(X,X)(Ca||f ||X)

1/n,

which implies
|g(a)| ≤ ||Mg||(X,X).

Since g is continuous on D and Z(f) is a discrete set, the proof follows. �
The previous result and trivial calculations give that

M(Hp) = H∞, 0 < p ≤ ∞

and M(Ap
ω) = H∞ if ω is a continuous weight and 0 < p < ∞.

A description of those symbols g ∈ H(D) of the operator Mg : Dα → Dα, 0 < α < 1, is a bit
more complicated. With this aim, we introduce the operator Ig, defined as follows:

Ig(f)(z) =

� z

0

g(ξ)f �(ξ)dξ, f ∈ H(D), z ∈ D.

We remark also that
Ig(f) + Jg(f) = Mg(f)− f(0)g(0). (4.11)

Thus if two of the operators Ig, Jg,Mg are bounded from X to Y , so is the third one.

Lemma 4.15. Assume that g ∈ H(D) and 0 < α < ∞. Then Ig : Dα → Dα is bounded if and

only if g ∈ H∞
.

Proof. If g ∈ H∞, then it is clear that Ig : Dα → Dα is bounded. On the other hand, assume
that Ig : Dα → Dα is bounded. If α > 0, let us consider the family of test functions

fa(z) =
(1− |a|2)

α
2

(1− az)α
, z ∈ D.

Bearing in mind our previous results on reproducing kernels, direct calculations or [44, Lemma
3.10], we have that

sup
a∈D

||fa||Dα < ∞ and |f �
a(a)| �

1

(1− |a|2)1+
α
2
, if |a| ≥

1

2
.
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Consequently, by Lemmas 4.3 and 4.1, we deduce

|g(a)|2

(1− |a|)2+α
� |g(a)f �

a(a)|
2 � 1

(1− |a|2)2

�

∆(a,r)

|g(z)f �
a(z)|

2 dA(z)

�
1

(1− |a|2)2+α

�

∆(a,r)

|g(z)f �
a(z)|

2(1− |z|2)α dA(z)

� 1

(1− |a|2)2+α

�

D
|g(z)f �

a(z)|
2(1− |z|2)α dA(z)

�
1

(1− |a|2)2+α
||Ig(fa)||

2

Dα

�
1

(1− |a|2)2+α
||Ig||

2

(Dα,Dα)
||(fa)||

2

Dα

� 1

(1− |a|2)2+α
||Ig||

2

(Dα,Dα)
,

which implies that g ∈ H∞ and ||g||H∞ � ||Ig||(Dα,Dα). This finishes the proof. �
Theorem 4.16. Assume that g ∈ H(D) and 0 < α < 1. Then Mg : Dα → Dα is bounded if

and only if g ∈ H∞
and (4.10) holds.

Proof. A proof follows from Theorem 4.12, Lemma 4.15, (4.11) and Lemma 4.14. �
4.5. Composition operators. Every analytic self-map ψ of D induce a composition operator
Cψ(f) = f ◦ ψ acting on H(D). With regards to the theory of composition operators we refer
to [15, 39], see also [26] and the references therein for recent further results.
It follows from the Littlewood’s subordination theorem that every analytic self-map ψ of D
such that ψ(0) = 0, induces a bounded composition operator Cψ on H2 or A2

α, α > −1. This
does not remain true for Dirichlet spaces Dα, −1 < α < 1.
On the other hand, a simple change variables gives that any automorphism of D, ϕa(z) =

a−z
1−az ,

a ∈ D, induces a bounded composition operator on H2, A2

α and Dα, α > −1.
Finally, if ψ(0) �= 0, we write

ψ = ϕψ(0) ◦ T, where T = ϕψ(0) ◦ ψ ,

that is, Cψ = CTCϕψ(0)
where T (0) = 0. Therefore we conclude the following.

Theorem 4.17. Every analytic self-map ψ of D induces a bounded composition operator Cψ

on H2
or A2

α, α > −1.

In order to give some light on the compactness of Cψ on these spaces, let us recall the definition
of finite angular derivative and the Julia-Carathéodory theorem.

We say that ψ has finite angular derivative at ξ on the unit circle if there exists η ∈ T such that
ψ(z)−η
z−ξ has finite nontangential limit as z → ξ. When, it exists (as a finite complex number),

the limit is denoted ψ�(ξ).

Theorem 4.18. (Julia-Carathéodory theorem)

Assume that ψ is a analytic self-map of D and ξ ∈ T. Then, the following assertions are

equivalent;

(i) d(ξ) = lim infz→ξ
1−|ψ(z)|
1−|z| < ∞, where the limit is taken as z approaches ξ unrestrictedly

in D.
(ii) ψ has finite angular derivative ψ�(ξ) at ξ.
(iii) Both ψ and ψ�

have (finite) nontangential limits at ξ, with |η| = 1 for η = limr→1− ψ(rξ).
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Moreover, when these conditions hold, we have limr→1− ψ�(rξ) = ψ�(ξ) = d(ξ)ξ̄η, and d(ξ) is

the nontangential limit limz→ξ
1−|ψ(z)|
1−|z| .

Proposition 4.19. Let ψ be an analytic self-map of D. If Cψ : X → X (X = H2, A2

α) is

compact, then ϕ has no finite angular derivative at any point of T.
Proof. We have seen that in both cases (X = H2 and X = A2

α), the reproducing kernels
{kX

a }a∈D, satisfies that

sup
a∈D

||kX
a ||X = 1 < ∞ and lim

|a|→1−
|kX

a (z)| = 0 uniformly on compact subsets of D,

this together with the fact that the adjoint operator C�
ψ is compact, implies that (this step

needs some calculation, see [39, p. 44] )

0 = lim
|a|→1−

||C�
ψ(k

X
a )||2X = lim

|a|→1−

||KX
ψ(a)||

2

X

||KX
a ||2X

.

So bearing in mind our previous results on kernels, we deduce that

lim
|a|→1−

1− |a|

1− |ψ(a)|
= 0,

then by Julia-Carathéodory Theorem, ψ has no finite angular derivative at any point of T. �
With some more effort, it can be proved the following.

Theorem 4.20. Let −1 < α < ∞. Then Cψ : A2

α → A2

α is compact if and only if ψ has no

finite angular derivative at any point of T.
Theorem 4.21. Let ψ be a bounded valent analytic self-map of D. Then Cψ : H2 → H2

is

compact if and only if ψ does not have finite angular derivative at any point of T.
There are analytic self-maps ψ of D, that has an angular derivative at no point of T, but induces
a non-compact operator Cψ on H2 (see [39, Section 10.2]).
In order to describe those symbols ψ such that Cψ : H2 → H2 is compact, the following change
of variable formula, which proof pass through (3.2), will be used.

||Cψ(f)||
2

H2 = |f(ψ(0))|2 + 2

�

D
|f �(ω)|2Nψ(ω) dA(ω), (4.12)

where

Nψ(ω) =
�

z∈ψ−1(ω)

log
1

|z|

is the classical Nevanlinna counting function of ψ.
This function is not subharmonic on D, however it has nice properties.

Lemma 4.22. Let ψ be a analytic self-map of D. Then,

(i) Nψ(ω) = O
�
log 1

|ω|

�
, as |ω| → 1−.

(ii) If ψ(0) �= 0, then

Nψ(0) ≤
1

R2

�

D(0,R)

Nψ(ω) dA(ω), 0 < R < |ψ(0)|.

(iii) For each a ∈ D, Nψ(ϕa(z)) = Nϕa◦ψ(z).

Theorem 4.23. Let ψ be a analytic self-map of D. Then Cψ : H2 → H2
is compact if and

only if Nψ(ω) = o
�
log 1

|ω|

�
, as |ω| → 1−.
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Proof. It is clear thatH2 and Cψ satisfies the hypotheses (a), (b) and (c) of Lemma A. Therefore,
Cψ : H2 → H2 is a compact operator if and only if for any bounded sequence {fn} in H2 such
that fn → 0 uniformly on compact subsets of D, the sequence {fn ◦ψ} converges to zero in the
norm of H2.
Assume that Nψ(ω) = o

�
log 1

|ω|

�
, as |ω| → 1−, and let {fn} be a bounded sequence {fn} in H2

such that fn → 0 uniformly on compact subsets of D. Let ε > 0 be given, then by hypotheses,
there is r0 ∈ (0, 1) such that

Nψ(ω) < ε log
1

|ω|
, whenever r0 < |ω| < 1.

Moreover, we can choose n0 = n0(r0, ε,ψ) such that

|fn(ω)| < ε1/2 if n0 ≤ n and ω ∈ D(0, r0) ∪ {ψ(0)}.

Thus, by the change of variable formula (4.12),

||Cψ(fn)||
2

H2 = |fn(ψ(0))|
2 + 2

�

|ω|≤r0

+

�

r0<|ω|<1

|f �
n(ω)|

2Nψ(ω) dA(ω)

≤ ε+ 2ε

�

|ω|≤r0

Nψ(ω) dA(ω) + 2ε

�

r0<|ω|<1

|f �
n(ω)|

2 log
1

|ω|
dA(ω)

≤ ε+ 2ε

�

D
Nψ(ω) dA(ω) + 2ε

�

D
|f �

n(ω)|
2 log

1

|ω|
dA(ω)

≤ ε+ ε||z||2H2 + ε||fn||
2

H2

� ε,

that is, Cψ : H2 → H2 is compact.
Reciprocally, assume that Cψ : H2 → H2 is compact and consider the family of normalized
reproducing kernels,

kH2

a (z) =
(1− |a|2)1/2

1− āz
, a, z ∈ D.

By, our first observation

lim
|a|→1−

||Cψ(k
H2

a )||2H2 = 0. (4.13)
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Next, by (4.12), a new change of variable and Lemma 4.22, we deduce that whenever |a| ≥ 1

2

and |ϕa(ψ(0))| >
1

2

||Cψ(kH2

a )||2H2 ≥ 2

�

D
|(kH2

a )�(ω)|2Nψ(ω) dA(ω)

= 2

�

D

|a|2(1− |a|2)

|1− āω|4
Nψ(ω) dA(ω)

=
2|a|2

1− |a|2

�

D
|(ϕa)

�(ω)|2Nψ(ω) dA(ω)

=
2|a|2

1− |a|2

�

D
Nψ(ϕa(ω)) dA(ω)

=
2|a|2

1− |a|2

�

D
Nϕa◦ψ(ω) dA(ω)

≥
2|a|2

1− |a|2

�

|z|< 1
2

Nϕa◦ψ(ω) dA(ω)

≥
8|a|2

1− |a|2
Nϕa◦ψ(0)

=
8|a|2

1 + |a|

Nψ(a)

1− |a|

≥
4

3

Nψ(a)

1− |a|
,

which together (4.13), implies

lim
|a|→1−

Nψ(a)

1− |a|
= 0.

This finishes the proof. �

4.6. Schatten Classes. Let H and K be separable Hilbert spaces. Given 0 < p < ∞, let
Sp(H,K) denote the Schatten p-class of operators from H to K. If H = K we simply shall
write Sp(H). The class Sp(H,K) consists of those compact operators T from H to K with its
sequence of singular numbers

λn(T ) = inf{�T −R� : R ∈ L(H,K), rank of R < n} .

belonging to �p, the p-summable sequence space. We recall that the singular numbers of a
compact operator T are the square root of the eigenvalues of the positive operator T ∗T , where
T ∗ denotes the Hilbert adjoint of T . Finite rank operators belong to every Sp(H), and the
membership of an operator in Sp(H) measures in some sense the size of the operator. We
remind the reader that T ∈ Sp(H) if and only if T ∗T ∈ Sp/2(H). Also, the compact operator
T admits a decomposition of the form

T =
�

n

λn �·, en�H σn,

where {λn} are the singular numbers of T , {en} is an orthonormal set in H, and {σn} is an
orthonormal set in H.
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For p ≥ 1, the class Sp(H,K) is a Banach space equipped with the norm

�T�Sp =

�
�

n

|λn|
p

�1/p

,

while for 0 < p < 1 one has the inequality �S + T�pSp
≤ �S�pSp

+ �T�pSp
. We refer to [16] or [44,

Chapter 1] for a brief account on the theory of Schatten p-classes.
Toeplitz operators
For a positive Borel measure µ on D and a Hilbert space X of analytic functions with repro-
ducing kernel KX

z let us consider the operator

Tµ(f)(w) =

�

D
f(z)KX

z (w) dµ(z), f ∈ X (4.14)

Some calculations based on Fubini’s theorem and the reproducing formulas (3.11), (3.13) and
(3.14), give that

�Tµ(g), f�X = �g, f�L2(µ) (4.15)

where X = H2, A2

ω, or D
2

α. Consequently,

Theorem 4.24. Tµ is bounded on X if and only if Id : X → L2(µ) is bounded.

Next, we shall offer a description obtained by Luecking [28] of those measures µ such that
Tµ ∈ Sp(X). Let Υ denote the family of all dyadic arcs of T. Every dyadic arc I ⊂ T is of the
form

In,k =

�
eiθ :

2πk

2n
≤ θ <

2π(k + 1)

2n

�
,

where k = 0, 1, 2, . . . , 2n − 1 and n = 0, 1, 2, . . . . For each I ⊂ T, set

R(I) =

�
z ∈ D :

z

|z|
∈ I, 1− |I| ≤ |z| < 1−

|I|

2

�
.

Then the family {R(I) : I ∈ Υ} consists of pairwise disjoint sets whose union covers D. For
Ij ∈ Υ \ {I0,0}, we will write zj for the unique point in D such that zj = (1 − |Ij|)aj, where
aj ∈ T is the midpoint of Ij. For convenience, we associate the arc I0,0 with the point 1/2. For
simplicity, we shall write Rj for R(Ij).

Theorem 4.25. Let 0 < p < ∞ and 0 < α such that p(1 − α) < 1. Let µ be a positive Borel

measure on D. If

�

Rj∈Υ

�
µ(Rj)

(1− |zj|)α

�p

< ∞, (4.16)

then Tµ ∈ Sp(Dα), and there exists a constant C > 0 such that

|Tµ|
p
p ≤ C

�

Rj∈Υ

�
µ(Rj)

(1− |zj|)α

�p

. (4.17)

Conversely, if µ is a positive Borel measure on D and Tµ ∈ Sp(Dα), then (4.16) is satisfied.

We recall that D2

1
= H2 and D2

α = A2

α−2
, α > 1. The above deep result is of independent

interest and going further it can be applied to characterize those symbols such that the integral
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operators Tg and composition operators Cψ belong to Sp(Dα). Indeed, let us observe that

T �
g Tgf(z) = �T �

g Tgf,K
Dα
z �Dα

= �Tgf, TgK
Dα
z �Dα =

�

D
f(ω)KDα

z (ω)|g�(ω)|2(1− |ω|2)α dA(ω)

=

�

D
f(ω)KDα

ω (z)|g�(ω)|2(1− |ω|2)α dA(ω) = Tµg(f)(z)

where dµg(ω) = |g�(ω)|2(1− |ω|2)α dA(ω). So by Luecking’s theorem,

Theorem 4.26. Let g ∈ H(D), 0 < p < ∞ and 0 < α such that p(1 − α) < 2. Then

Tg ∈ Sp(Dα) if and only if

�

Rj∈Υ

��
Rj

|g�(ω)|2(1− |ω|2)α dA(ω)

(1− |zj|)α

�p/2

< ∞, (4.18)

We recall that, for p > 1, the Besov space Bp is the space of all analytic functions g in D such
that �

D
|g�(z)|p(1− |z|2)p dλ(z) < ∞,

where dλ(z) = dA(z)
(1−|z|2)2 is the hyperbolic measure on D.

Using Theorem 4.26, the properties of the net Υ, the properties of the pseudohyperbolic metric,
subharmonocity of |g�|p and Hölder’s inequality, the following result can be proved.

Theorem A. Let g ∈ H(D). We have the following:

(a) Let 0 < α and p > 1 with p(1 − α) < 2. Then Tg ∈ Sp(Dα) if and only if g belongs to

Bp.

(b) If 0 < p ≤ 1 and 0 < α, then Tg ∈ Sp(Dα) if and only if g is constant.

In particular, this result characterizes those g ∈ H(D) such that Tg ∈ Sp(H2) or Tg ∈ Sp(A2

β)
for any 0 < p < ∞ and β > −1.
Finally, it is worth to mention that using a similar approach based on Theorem 4.25 and the
good properties of the classical Nevanlinna counting function, Luecking and Zhu [31] proved

Theorem 4.27. Let 0 < p < ∞, and ψ an analytic self-map of D. Then the following assertions

are equivalent:

(1) Cψ ∈ Sp(H2);

(2) Nψ

1−|z|2 ∈ L
p
2

�
1

(1−|z|)2

�
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[9] D. Bekollé and A. Bonami, Inégalités á poids pour le noyau de Bergman, (French) C. R. Acad. Sci. Paris
Sér. A-B 286 (1978), no. 18, 775—778.

[10] A. Borichev, R. Dhuez and K. Kellay Sampling and interpolation in large Bergman and Fock spaces, J.
Funct. Anal. 242 (2007), 563–606.

[11] O. Blasco and H. Jarchow, A note on Carleson measures for Hardy spaces, Acta Sci. Math. (Szeged) 71
(2005), 371–389.

[12] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 1958 921-–930.
[13] L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76

1962 547-–559.
[14] O. Constantin, Carleson embeddings and some classes of operators on weighted Bergman spaces, J. Math.

Anal. Appl. 365 (2010), no. 2, 668—682
[15] C. C. Cowen, and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in

Advanced Mathematics, CRC Press, Boca Raton, FL 1995.
[16] N. Dunford and J. T. Schwartz, Linear operators I, Wiley, New York, 1988.
[17] P. Duren, Theory of Hp Spaces, Academic Press, New York-London 1970.
[18] P. L. Duren and A. P. Schuster, Bergman Spaces, Math. Surveys and Monographs, Vol. 100, American

Mathematical Society: Providence, Rhode Island, 2004.
[19] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math.

Anal. Appl. 38 (1972), 756–765.
[20] J. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
[21] D. Girela, Analytic functions of bounded mean oscillation, in Complex functions spaces, (R. Aulaskari,

editor), Univ. Joensuu Dept. Math. Report Series No. 4, 61–171 (2001).
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