
OPERATORS ON HILBERT SPACES

1. Hilbert spaces

1.1. Generalities.

Let X be a vector space over C. An inner product on X is a map 〈·, ·〉 : X×X → C
such that:

(1) 〈x, y〉 = 〈y, x〉, for all x, y ∈ X.
(2) 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉, for all x, y, z ∈ X and all α y β in C.
(3) 〈x, x〉 ≥ 0 for all x ∈ X.
(4) 〈x, x〉 = 0 if and only if x = 0.

The norm associated to the inner product is defined as

‖x‖ = 〈x, x〉1/2 for all x ∈ X.
It is in fact a norm because it satisfies, for x, y ∈ X, and α ∈ C:

(1) ‖x‖ ≥ 0. ‖x‖ = 0 if and only if x = 0.
(2) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
(3) ‖αx‖ = |α| · ‖x‖.

A Hilbert space is a vector space H with an inner product such that it is a complete
metric space for the distance associated to the norm associated to the inner product.
That is, it is Banach space whose norm is associated to an inner product. Along
these notes H will always denote a Hilbert space.

Examples.
1) The Euclidean space Cn is a Hilbert space for usual inner product given by:

〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn

for x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Cn.

2) We denote by `2 the space of sequences x = (xn)n≥1 such that
∑

n |xn|2 < +∞.
This is a Hilbert space for the inner product

〈x, y〉 =
∞∑
n=1

xnyn , x = (xn)n, y = (yn)n ∈ `2 .

3) Let (Ω,Σ, µ) be a measure space. We denote by L2(µ) the space of (classes
of) measurable functions f : Ω → C such that

∫
Ω
|f |2 dµ < +∞. We identify two

functions when they are equal almost everywhere. L2(µ) is a Hilbert space for the
inner product

〈f, g〉 =

∫
fg dµ , f, g ∈ L2(µ) .
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The inner product and the norm of a Hilbert space satisfy:

• Cauchy–Bunyakowski–Schwarz Inequality:

|〈x, y〉| ≤ ‖x‖‖y‖ , for all x, y ∈ H.
• Parallelogram Law:

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 , for all x, y ∈ H.

We recall that a subset A of a vector space is convex if tx + (1 − t)y belongs to A
whenever x, y ∈ A and t ∈ [0, 1].

Theorem 1.1. Every non empty closed convex set E ⊂ H contains an unique
element x0 of minimal norm. We have <〈x− x0, x0〉 ≥ 0, for every x ∈ E.

Proof. You can see the proof of the first part in [Co, 2.6] or [Ru, 12.3]. For the
second part, by convexity we have x0 + t(x−x0) ∈ E, for all t ∈ [0, 1]. The function

f(t) = ‖x0 + t(x− x0)‖2 = ‖x0‖2 + 2t<〈x− x0, x0〉+ t2‖x− x0‖2 , t ∈ [0, 1],

must have a non negative derivative at t = 0. It follows <〈x− x0, x0〉 ≥ 0. �

Consequently given a closed convex set E and any a ∈ H, there is a unique x0 ∈ E
which minimizes the distance to a; that is,

d(a,E) = inf{‖x− a‖ : x ∈ E} = ‖x0 − a‖ .

1.2. Orthogonality.

We say that two vectors x, y in a Hilbert space H are orthogonal if 〈x, y〉 = 0.
Sometimes this will be denoted by x ⊥ y.

Given a subset A of H, the orthogonal complement of A is the set

A⊥ = {x ∈ H : 〈x, a〉 = 0 , for all a ∈ A} .
It is easy to see that A⊥ is a closed linear subspace of H.

When M is a closed linear subspace of H, and x ∈ H, we denote by PMx the element
in M which minimizes the distance to x. One can see that x − PMx is in M⊥. In
fact this yields (see [Co, 2.6] or [Ru, 12.4])

Theorem 1.2. If M is a closed subspace of H, then H = M ⊕M⊥.

Therefore PM is a linear map called the orthogonal projection of H onto M . As a
corollary we have (M⊥)⊥ = M , whenever M is a closed linear subspace.

Another consequence of the previous theorem is the Riesz Representation Theorem.
We denote by H∗ the dual space of H, that is, the space of all continuous linear
functionals Λ: H → C. This is a Banach space for the (dual) norm:

‖Λ‖ = sup{|Λx| : x ∈ H, ‖x‖ ≤ 1} = inf{c > 0 : |Λx| ≤ c‖x‖ for all x ∈ H} .

Proposition 1.3 (Riesz Representation Theorem). There exists a conjugate-linear
isometry y 7→ Λy from H onto H∗ given by

Λyx = 〈x, y〉 , for all x ∈ H.
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Proof. See [Co, 3.4] or [Ru, 12.5]. �

An orthogonal system is a subset A of H formed by pairwise orthogonal elements;
that is,

x, y ∈ A , x 6= y =⇒ x ⊥ y.

If A is an orthogonal system such that ‖x‖ = 1, for every x ∈ A, then we will
say that A is an orthonormal system. We will deal mainly with orthogonal and
orthonormal sequences. If {x1, x2, . . . , xn} is an orthogonal system, we have:

• Pytagorean Theorem:

‖x1 + x2 + · · ·+ xn‖2 = ‖x1‖2 + ‖x2‖2 + · · ·+ ‖xn‖2 .

Proposition 1.4. If {xn} is an orthogonal sequence, the following facts are equiv-
alent:

(a) The series
∑

n xn is convergent (in the norm topology of H).
(b)

∑
n ‖xn‖2 < +∞.

(c) The series
∑

n〈xn, y〉 is convergent in C, for every y ∈ H.

Proof. See [Ru, 12.6]. �

Given an orthonormal sequence {en}n. The Fourier coefficients of an element x ∈ H
is the sequence (〈x, en〉)n. This sequence is in `2, in fact we have:

Proposition 1.5 (Bessel’s Inequality). Let {en} be an orthonormal sequence in H,
and x ∈ H. Then ∑

n

|〈x, en〉|2 ≤ ‖x‖2 .

Proof. See [Co, 4.8]. �

Theorem 1.6. Let {en} be an orthonormal sequence in H. The following facts are
equivalent:

(a) The linear span of {en : n ∈ N} is dense in H.
(b) For every x ∈ H, the fact 〈x, en〉 = 0, for every n, implies x = 0.
(c) x =

∑
n〈x, en〉en, for every x ∈ H.

(d) 〈x, y〉 =
∑

n〈x, en〉〈y, en〉, for all x, y ∈ H.
(e) ‖x‖2 =

∑
n |〈x, en〉|2, for every x ∈ H. (Parseval’s Identity)

Proof. See [Co, 4.13]. �

An orthonormal sequence {en}n (finite or infinite) whose linear span is dense in H is
called an orthonormal basis of H. Every separable Hilbert space has an orthonormal
basis.

Examples.
1) The trigonometric system. Consider the interval [0, 2π] with the normalized
Lebesgue measure, and denote

em(t) = eimt , t ∈ [0, 2π] , m ∈ Z .
In L2[0, 2π] the system {em;m ∈ Z} is an orthonormal basis. This is the trigono-
metric system.
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2) The Rademacher sequence. For every n ∈ N, and t ∈ [0, 1] define

rn(t) = sig
(
sin(2nπt)

)
,

where sig is the sign function given by sig (x) = 1, if x ≥ 0, and sig (x) = −1, if
x < 0. The Rademacher sequence {rn}n∈N is an othonormal system in L2[0, 1] which
is not an orthonormal basis.

3) The Walsh system. Let Pf (N) denote the family of all finite subset of N, and
for every A ∈ Pf (N) define

wA(t) =
∏
n∈A

rn(t) , t ∈ [0, 1].

With the convention w∅(t) = 1, for all t. Thus rn = w{n}, for all n. The system
{wA : A ∈ Pf (N)} is an orthonormal basis of L2[0, 1] called the Walsh system.

1.3. Weak topology.

The weak topology of a Hilbert space H is the locally convex topology generated by
the family of seminorms {pa : a ∈ H} defined by

pa(x) = |〈x, a〉|, x ∈ H.
The weak topology is a linear topology on H. A base of neighbourhood of 0 for this
topology is formed by the sets:

V (x1, x2, . . . , xn; ε) = {y ∈ H : max
1≤j≤n

|〈y, xj〉| < ε} ,

for n ∈ N, x1, x2,. . . ,xn ∈ H, and ε > 0.

The weak topology is the weakest topology on H for which all the functionals
Λ: H → C, Λ ∈ H∗ become continuous functions.

A sequence {xn}n in H converges to a ∈ H for the weak topology if and only if

〈a, x〉 = lim
n→∞
〈xn, x〉 for all x ∈ H.

Every closed subspace E of a Hilbert space is also a Hilbert space (for the same inner
product). In this situation the weak topology of E coincides with the restriction to
E of the weak topology of H.

The weak topology is weaker than the norm topology. Every weak closed set is norm
closed. The reciprocal implication is true for convex sets:

Theorem 1.7 (Mazur). Let E be a convex subset of H, then E
norm

= E
weak

.

Proof. This is a general fact for the weak topology in any Banach space. Let us

see the proof for H Hilbert. The only inclusion we need to prove is E
weak ⊂ E

norm
.

Take a /∈ Enorm
. As translations are continuous for both topologies, we can assume

a = 0. An application of Theorem 1.1 gives us a point x0 ∈ E
norm

such that

<〈x, x0〉 ≥ 〈x0, x0〉 = ‖x0‖2 > 0, for all x ∈ E.
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The set V = {y ∈ H : <〈y, x0〉 < ‖x0‖2} is a weak neighbourhood of a = 0 which

does not meet E. So a /∈ Eweak
. �

Theorem 1.8. The closed unit ball of H is compact for the weak topology of H.

Proof. This is a consequnce of Banach–Alaoglu Theorem ([Co, 3.1] or [Ru, 3.15])
and the fact that H is a reflexive Banach space. In fact, the closed unit ball of a
Banach space X is weakly compact if and only if X is reflexive (see [Co, 4.2]). �

Proposition 1.9. If H is separable, then the unit ball of H is metrizable for the
weak topology.

Proof. Take a sequence {an}n dense in the unit ball of H, and define

d(x, y) =
∞∑
n=1

|〈x− y, an〉|
2n

, for x, y ∈ H.

It is easy to check that d is a metric on H whose generated topology is weaker than
the weak topology of H. On the unit ball BH these topologies coincide because of
the compactness of BH for the weak topology. �

Corollary 1.10. Every bounded sequence in H has a subsequence converging in the
weak topology.

Proof. We can assume that the sequence is contained in the unit ball BH . In the
case H is separable the result is clear since BH is compact and metrizable for the
weak topology. In the general case, one can consider a separable closed subspace
H0 of H containing the sequence, and recall that the weak topology of H0 is the
restriction to H0 of the weak topology of H. �

2. Bounded operators

2.1. Some classes of operators.

A bounded linear operator between two Hilbert spaces H1, H2 is a continuous linear
map T : H1 → H2. We will denote by L(H1, H2) the space of all bounded linear
operator from H1 to H2. L(H1, H2) is a Banach space for the operator norm

‖T‖ = sup{‖Tx‖H2 : x ∈ H1, ‖x‖ ≤ 1} .

When H1 = H2 = H we simply write L(H) for L(H,H). If we take the composition
of operators as multiplication, then L(H) is a (usually non commutative) Banach
algebra with unit (the identity operator).
In particular, ‖S ◦ T‖ ≤ ‖S‖‖T‖ for S, T ∈ L(H).
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Examples.

1) The space L(Cn,Cm) is identified with the n×m complex matrices.

2) If M is a closed subspace of H, then PM , the orthogonal projection onto M ,
belongs to L(H). We have ‖PM‖ = 1, unless M = {0}.

3) The shift or more concretely the forward shift S : `2 → `2 is defined, for x =
(xn)n≥1, by Sx = (yn)n≥1, with y1 = 0 and yn = xn−1, for n ≥ 2. That is,

S : (x1, x2, x3, . . . , xn, xn+1, . . .) 7→ (0, x1, x2, . . . , xn−1, xn . . .) .

S belongs to L(H) and ‖S‖ = 1. The backward shift B is defined by

B : (x1, x2, x3 . . . , xn, xn+1, . . .) 7→ (x2, x3, x4, . . . , xn+1, xn+2 . . .) .

We also have ‖B‖ = 1.

4) Let (Ω,Σ, µ) be a σ-finite measure space. For every g ∈ L∞(µ), we define the
operator of multiplication by g as

Mg : L2(µ)→ L2(µ) , Mgf = g · f , f ∈ L2(µ).

Mg is a bounded operator and

‖Mg‖ = ‖g‖L∞ = inf{C > 0 : |f | ≤ C µ–almost everywhere} .
A particular case of multiplication operators is the case of diagonal operators on `2.
Given a bounded sequence α = (αn)n of complex numbers, we define Mα : `2 → `2

by
Mα : (x1, x2, x3, . . . , xn, , . . .) 7→ (α1x1, α2x2, α3x3, . . . , αnxn, , . . .).

We have ‖Mα‖ = ‖α‖∞ = supn |αn|.

As we are dealing only with complex Hilbert spaces, we have:

Lemma 2.1. If T ∈ L(H) and 〈Tx, x〉 = 0, for every x ∈ H, then T = 0.

Proof. For all x, y ∈ H we have

0 = 〈T (x+ y), x+ y〉 = 〈Tx, x〉+ 〈Ty, y〉+ 〈Tx, y〉+ 〈Ty, x〉 = 〈Tx, y〉+ 〈Ty, x〉.
Changing y for iy we have then −i〈Tx, y〉 + i〈Ty, x〉 = 0, and therefore 〈Tx, y〉 −
〈Ty, x〉 = 0. Summing up the two equalities we get

〈Tx, y〉 = 0 , for all x, y ∈ H.
This yields T = 0. �

The definition of the adjoint operator is given in the following proposition:

Proposition 2.2. Let T : H1 → H2 be a bounded operator between two Hilbert
spaces. There exists a unique operator T ∗ : H2 → H1, called the adjoint operator of
T , such that

〈Tx, y〉H2 = 〈x, T ∗y〉H1 , for x ∈ H1, y ∈ H2.
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We have the following facts about adjoint operators:

• (T + S)∗ = T ∗ + S∗, for S, T ∈ L(H1, H2).
• (αT )∗ = αT ∗, for α ∈ C and T ∈ L(H1, H2).
• (S ◦ T )∗ = T ∗ ◦ S∗, for T ∈ L(H1, H2) and S ∈ L(H2, H3).
• ‖T‖ = ‖T ∗‖, for T ∈ L(H1, H2).

Definition 2.3. An operator T ∈ L(H) is said to be:

(1) nomal if TT ∗ = T ∗T ,
(2) self–adjoint or hermitian if T ∗ = T ,
(3) unitary if TT ∗ = T ∗T = I, where I is the identity on H,
(4) idempotent or a projection if T 2 = T .

Examples.

1) Orthogonal projections are hermitian. We have P ∗M = PM .

2) The adjoint of the backward shift is the forward shift. As they do not commute,
the shift is not a normal operator.

3) For g ∈ L∞(µ), the adjoint of Mg is Mg. Consequently Mg is a normal operator.
If g is almost everywhere real valued, then Mg is self–adjoint.

Proposition 2.4. An operator T ∈ L(H) is normal iff ‖Tx‖ = ‖T ∗x‖, for all
x ∈ H.

Proof. Observing that ‖Tx‖2 = 〈Tx, Tx〉 = 〈T ∗Tx, x〉, we have ‖Tx‖ = ‖T ∗x‖, for
all x ∈ H if and only if 〈(T ∗T −TT ∗)x, x〉, for all x ∈ H, and, by Lemma 2.1, if and
only if T ∗T = TT ∗. �

Proposition 2.5. If T ∈ L(H) is an hermitian operator, then

‖T‖ = sup{|〈Tx, x〉| : x ∈ H, ‖x‖ ≤ 1}.

Proof. Let us write α = sup{|〈Tx, x〉| : x ∈ H, ‖x‖ ≤ 1}. It is plain that α ≤ ‖T‖.
For the reverse inequality, take x, y in the unit ball BH . Since T is self–adjoint, we
have 〈Tx, y〉+ 〈Ty, x〉 = 〈Tx, y〉+ 〈y, Tx〉 = 2<(〈Tx, y〉) By the definition of α, we
have

α‖x± y‖2 ≥ |〈Tx± Ty, x± y〉| = | ± 〈Tx, x〉 ± 〈Ty, y〉+ 2<(〈Tx, y〉)|
Summing the two inequalities without the modules, we have

α(‖x+ y‖2 + ‖x− y‖2) ≥ 4<(〈Tx, y〉) , for all x, y ∈ BH .

By the parallelogram law, we deduce

α ≥ <(〈Tx, y〉) , for all x, y ∈ BH .

Taking y = Tx/‖Tx‖, we have ‖Tx‖ ≤ α, for all x ∈ BH , and ‖T‖ ≤ α. �
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Proposition 2.6. If U ∈ L(H), the following facts are equivalent:

(1) U is unitary.
(2) U(H) = H and 〈Ux, Uy〉 = 〈x, y〉 for all x, y ∈ H.
(3) U(H) = H and ‖Ux‖ = ‖x‖ for all x ∈ H.

Proof. See [Ru, 12.13]. �

Proposition 2.7. If P ∈ L(H) is a projection, then the space P (H) is closed and
P (H) = Ker (I − P ).

Proof. If x ∈ P (H), then there exists y ∈ H such that x = Py. Therefore x = Py =
P (Py) = Px and x ∈ Ker (I −P ). Conversely, if x ∈ Ker (I −P ), then Px = x and
x ∈ P (H). �

Proposition 2.8. Let P ∈ L(H) be a projection and M = P (H), then the following
facts are equivalent:

(1) P is self-adjoint.
(2) P is normal.
(3) M⊥ = Ker (P ).
(4) 〈Px, x〉 = ‖Px‖2 for all x ∈ H.
(5) P is the orthogonal projection over M .

Proof. See [Ru, 12.14]. �

As a consequence, when P and Q are orthogonal projections, then P (H) ⊥ Q(H) if
and only if 0 = 〈Px,Qy〉 = 〈QPx, y〉 for all x, y ∈ H if and only if QP = 0 = PQ.

2.2. Compact operators.

Let us denote by BH the closed unit ball of H. An operator T ∈ L(H1, H2) is

called compact if T (BH1) is a compact subset of H2. This is the general definition
of compact operators between Banach spaces. In our case we can say that T is
compact iff T (BH1) is compact. Indeed every T ∈ L(H1, H2) is continuous from
the weak topology of H1 to the weak topology of H2, and then T (BH1) is weakly
compact and therefore weakly closed and norm closed.

We will denote by K(H1, H2) the space of all compact operators from H1 to H2.
K(H1, H2) is a closed linear subspace of L(H1, H2). We have that the composition
T ◦ S of two bounded operators T and S is compact as soon as one of them is
compact (this is the ideal property).

Finite rank bounded operators are compact. In fact the finite rank bounded opera-
tors from H1 to H2 form a dense subset of K(H1, H2).

A bounded operator T is compact if and only if T ∗ is compact.

Lemma 2.9. Let T ∈ L(H) be a self-adjoint compact operator T 6= 0. Then there
exists x ∈ H, with ‖x‖ = 1 and Tx = λx, for λ = ‖T‖ or λ = −‖T‖.
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Proof. By the Proposition 2.5, there exist a sequence {xn} in BH such that

(1) ‖T‖ = lim
n→∞

|〈Txn, xn〉| .

Passing to a subsequence if necessary, we can suppose that (〈Txn, xn〉)n is convergent
to λ in C, and (xn)n is convergent in the weak topology to x ∈ BH . As T is compact
we have that (Txn)n tends to Tx in the norm topology. Therefore

λ = lim
n→∞
〈Txn, xn〉 = 〈Tx, x〉 .

As T is hermitian, λ = 〈Tx, x〉 = 〈x, Tx〉 is real. By (1), we conclude ‖T‖ = |λ|,
and λ = ‖T‖ or λ = −‖T‖. Since

|λ| = |〈Tx, x〉| ≤ ‖T‖‖x‖‖x‖ ≤ ‖T‖ = |λ| .
All the inequalities are equalities and ‖x‖ = 1. If z = Tx− λx = Tx− 〈Tx, x〉x, we
have z ⊥ x and, by Pytagorean theorem,

‖Tx‖2 = ‖z‖2 + |λ|2‖x‖2 = ‖z‖2 + ‖T‖2 .

In consequence z = 0, and Tx = λx. �

Theorem 2.10. Let T ∈ L(H) be a self-adjoint compact operator. Then, for N ∈ N
or N = ∞, there exist an orthonormal sequence {en}Nn=1 in H and a sequence of
real numbers {λn}Nn=1 such that:

(i) The sequence {|λn|} is decreasing, and if N =∞, limn→∞ λn = 0.

(ii) For every x ∈ H we have Tx =
∑N

n=1 λn〈x, en〉en.

Proof. We assume ‖T‖ > 0. By Lemma 2.9, there exist e1 ∈ H, with ‖e1‖ = 1 and
Te1 = λ1e1 for λ1 = ‖T‖ or λ1 = −‖T‖. Define H2 = {e1}⊥. For x ∈ H2, we have

〈Tx, e1〉 = 〈x, Te1〉 = λ1〈x, e1〉 = 0,

and so Tx ∈ H2. We can then consider the operator T |H2 as a self–adjoint operator
on H2, and, if ‖T |H2‖ > 0, apply again Lemma 2.9. This gives us e2 ∈ H2 such that
Te2 = λ2e2 and λ2 = ‖T |H2‖ or λ2 = −‖T |H2‖. We continue with H3 = {e1, e2}⊥
and so on. There is two possibilities: either there exist N ∈ N such that T |HN+1

= 0
and we stop, or we have ‖T |Hn‖ > 0, for every n, and we put then N =∞.
In both cases, we can define an orthonormal sequence {en}n≤N , and a sequence
{λn}n≤N of real numbers such that

Ten = λnen , |λn| = ‖T |Hn‖, and Hn+1 = {e1, . . . , en}⊥ for all n ≤ N .

Observe that {|λn|} is decreasing, and z = x −
∑n

k=1〈x, ek〉ek belongs to Hn+1 for
every x ∈ H and every n ≤ N , with ‖z‖ ≤ ‖x‖. In consequence

(2)
∥∥∥Tx− n∑

k=1

λk〈x, ek〉ek
∥∥∥≤ ‖T |Hn+1‖‖x‖ = |λn+1|‖x‖ .

This gives directly (ii) in the case N ∈ N.
In the case N =∞, write β = limn |λn|. As we have

‖Ten − Tem‖2 = |λn|2 + |λm|2 ≥ 2β2 , if n 6= m,
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and {Ten} has a convergent subsequence, necessarily we have β = 0. Taking limit
in (2) when n→∞, we obtain (ii). �

Theorem 2.11. Let T ∈ L(H1, H2) be a compact operator. Then, for N ∈ N
or N = ∞, there exist an orthonormal sequence {an}Nn=1 in H1, an orthonormal
sequence {bn}Nn=1 in H2, and a sequence of positive numbers {τn}Nn=1 such that:

(i) The sequence {τn} is decreasing, and if N =∞, limn→∞ τn = 0.

(ii) For every x ∈ H1 we have Tx =
∑N

n=1 τn〈x, an〉bn.

Proof. Apply Theorem 2.10 to the self–adjoint compact operator T ∗T ∈ L(H1). We
get a sequence {λn}n≤N of real numbers and an orthonormal sequence {en}n≤N in
H1 such that

(3) T ∗Tx =
N∑
n=1

λn〈x, en〉en , for all x ∈ H1 .

We have λn = 〈T ∗Ten, en〉 = 〈Ten, T en〉 > 0, for every n ≤ N . If n 6= m, we have
0 = 〈T ∗Tem, en〉 = 〈Tem, T en〉, and then Tem ⊥ Ten.
Define an = en, and bn = Ten/‖Ten‖, for all n ≤ N . The sequences {an}n≤N and
{bn}n≤N are orthonormal and Tan = τnbn for τn =

√
λn. If x ∈ {an : n ≤ N}⊥, by

(3) we have T ∗Tx = 0, 0 = 〈T ∗Tx, x〉 = ‖Tx‖2, and Tx = 0. All these facts allow
to deduce (ii). �

Remark 2.12. In the previous theorem N ∈ N only in the case that T has finite
rank. The number τn coincides with the n’th approximation number of T defined
by

an(T ) = inf{‖T −R‖ : R ∈ L(H1, H2), rank of R < n} .

2.3. Spectral Theory. Analytic functional calculus.

An operator T ∈ L(H) is invertible if there exists an operator S ∈ L(H) such that
TS = ST = I. S is called the inverse of T and denoted by T−1. By the Open
Mapping Theorem, for T ∈ L(H) be invertible is necessary and sufficient that T be
bijective from H onto H.
T ∈ L(H) is invertible if and only if T ∗ is invertible.

Definition 2.13. Let T be in L(H), the spectrum of T is the set σ(T ) of complex
numbers λ such that T − λI is not invertible.
λ ∈ C is an eigenvalue of T if there exists x ∈ H \ {0} such that Tx = λx.
λ ∈ C is an approximate eigenvalue of T if there exists a sequence {xn} in H such
that ‖xn‖ = 1, for every n, and limn→∞ Txn − λxn = 0.

Observe that λ ∈ σ(T ) if and only if λ ∈ σ(T ∗).

Lemma 2.14. If T ∈ L(H) and ‖T‖ < 1, then I − T is an invertible operator and
(I − T )−1 =

∑∞
n=0 T

n.
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Proof. The series converges absolutely since
∑

n ‖T n‖ ≤
∑
‖T‖n < +∞. Define

Sn =
∑n

k=0 T
k. It is easy to check

Sn(I − T ) = (I − T )Sn = I − T n+1.

Taking limit the lemma follows since ‖T n‖ → 0. �

Proposition 2.15. Let G denote the subset of L(H) formed by the invertible oper-
ators. Then G is an open subset of L(H), and the application T 7→ T−1 is differen-
tiable on G.

Proof. Let T0 ∈ G, take R ∈ L(H) with ‖R‖ < 1/‖T−1
0 ‖. Then, by Lemma 2.14,

T0 +R = (I −−RT−1
0 )T0 is invertible since ‖ −RT−1

0 ‖ < 1. We obtain

(T0 +R)−1 = T−1
0

(
I+(−RT−1

0 )+(RT−1
0 RT−1

0 )+ · · ·
)

= T−1
0 −T−1

0 RT−1
0 +O(‖R‖2).

This gives that the open ball of center T0 and radius 1/‖T−1
0 ‖ is contained in G and

the differentiability of the application T 7→ T−1 at T0. The derivative at T0 is the
linear continuous map R 7→ −T−1

0 RT−1
0 from L(H) to L(H). �

Proposition 2.16. The spectrum of T ∈ L(H) is a compact subset of C. In fact
we have |λ| ≤ ‖T‖, for every λ ∈ σ(T ).

Proof. By Proposition 2.15 and the fact that λ 7→ λI−T is continuous, the set σ(T )
is closed. It is easy to check that

(4) (λI − T )−1 =
∞∑
n=0

λ−n−1T n , if |λ| > ‖T‖ .

Then |λ| ≤ ‖T‖, for every λ ∈ σ(T ). It follows that σ(T ) is compact. �

Proposition 2.17. The map λ 7→ (λI−T )−1 is an L(H)-valued holomorphic func-
tion defined on C \ σ(T ).

Proof. Our map is differentiable on C \ σ(T ) because it is the composition of the
map λ 7→ λI − T which is affine, and T 7→ T−1 which is a differentiable map by
Proposition 2.15. �

Corollary 2.18. For every T ∈ L(H) we have σ(T ) 6= ∅.

Proof. If σ(T ) = ∅ we have, by Proposition 2.17, that λ 7→ (T−λI)−1 is holomorphic
on C, an entire function. But this function is bounded since, by (4), we have
limλ→∞ ‖(λI − T )−1‖ = 0. By Liouville’s theorem this function is constant and this
constant has to be 0. This is a contradiction. �

Theorem 2.19 (Spectral radius formula). For every T ∈ L(H) we have

sup{|λ| : λ ∈ σ(T )} = inf
n≥1
‖T n‖1/n = lim

n→∞
‖T n‖1/n .

Proof. For every sequence (αn)n of positive numbers satisfying αn+m ≤ αnαm, it can
be proved that

lim sup
n→∞

α1/n
n = inf

n≥1
α1/n
n .

This gives the second equality of the statement.
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If |λ| > lim supn→∞ ‖T n‖1/n the series in (4) is absolutely convergent, it yields the
inverse of λI − T , and λ /∈ σ(T ). Therefore

sup{|λ| : λ ∈ σ(T )} ≤ lim sup
n→∞

‖T n‖1/n.

Let R = sup{|λ| : λ ∈ σ(T )}. The function Ψ: z 7→ (1
z
I − T )−1 is holomorphic on

the open disk of centre 0 and radius 1/R, and its Taylor series on 0 is, by (4),

Ψ(z) =
∞∑
n=1

znT n−1 .

For every continuous linear functional τ : L(H) → C, τ ◦ Ψ is holomorphic in this
disk, and the radius of convergence of

∞∑
n=1

znτ(T n−1) .

is at least 1/R. Consequently, for every z ∈ C, with |z| < 1/R, the sequence
{τ(znT n−1)}n is bounded, for every τ continuous linear functional. By the uniform
boundedness principle, the sequence {znT n−1}n is bounded in L(H). Therefore,
there exists M > 0 such that

M ≥ |z|n−1‖T n‖ , for all n ∈ N.

Take n’th root and limit when n→∞ and you get

1 ≥ |z| lim ‖T n‖1/n ,

whenever |z| < 1/R. Therefore R ≥ lim ‖T n‖1/n. �

Examples.

1) If M is a nontrivial closed subspace of H (H 6= M 6= {0}), then σ(PM) = {0, 1}.
2) If S is the shift; then σ(S) = D = {z ∈ C : |z| ≤ 1}. Considering the backward
shift B, as we have B = S∗ and σ(S) = {λ : λ ∈ σ(B)}, it is enough to see
σ(B) = D. As ‖B‖ = 1, we have σ(B) ⊂ D. Every α ∈ D is an eigenvalue of B
since

Bx = αx , for x = (αn)n∈N ∈ `2 .

Consequently D ⊂ σ(B) and as the spectrum is closed, D ⊂ σ(B).

3) If (Ω,Σ, µ) is a σ-finite measure space and g ∈ L∞(µ), then Mg is invertible if
and only if there exists ε > 0 such that |g| ≥ ε µ-almost everywhere; that is, if and
only if there exists ε > 0 such that µ

(
g−1(B(0, ε))

)
= 0.

The spectrum of Mg is the essential range of g:

ess rg g = {z ∈ C : µ
(
g−1(B(z, ε))

)
> 0 for all ε > 0}.

It is not difficult to see that ess rg g is compact and that g(ω) ∈ ess rg g for µ–almost
every ω ∈ Ω.
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The functional calculus or symbolic calculus for operators tries to give meaning in
a ”reasonable way” to the expression f(T ) when f is a complex function defined on
(a subset of) C. This reasonable way should satisfy some algebraic conditions such
as (f + g)(T ) = f(T ) + g(T ), (αf)(T ) = αf(T ), and (fg)(T ) = f(T ) ◦ g(T ), and
some convergence conditions too.

The easiest case is consider polynomials. If f is the polynomial

f(z) = a0 + a1z + a2z
2 + · · ·+ anz

n ,

and T ∈ L(H), then we just define

f(T ) = a0I + a1T + a2T
2 + · · ·+ anT

n .

We extend this definition to entire functions f ∈ H(C) considering their Taylor
series at the origin. If

f(z) =
∞∑
n=0

anz
n , for all z ∈ C ,

we can define

f(T ) =
∞∑
n=0

anT
n, (where T 0 = I)

because this series is absolutely convergent in L(H). It is plain to check that this
definition obeys the above algebraic conditions.

If f is a rational function with poles out of σ(T ), we can write

f(z) =
P (z)

(z − λ1)(z − λ2) · · · (z − λn)
, for z ∈ C \ {λ1, λ2, . . . , λn};

where λ1,λ2,. . . ,λn /∈ σ(T ) and they can be repeated. We define then

f(T ) = P (T ) ◦ (T − λ1I)−1 ◦ (T − λ2I)−1 ◦ · · · ◦ (T − λnI)−1 .

Oberve that the different components of the above expression are commuting oper-
ators, since when ST = TS and S is invertible, we also have S−1T = S−1TSS−1 =
S−1STS−1 = TS−1.

We are going to extend the above definitions and give meaning to f(T ) when f is
an holomorphic function defined on an open set containing the spectrum σ(T ). We
need the following lemma.

Lemma 2.20. Suppose T ∈ L(H), α ∈ C\σ(T ), and Γ is a cycle in C\({α}∪σ(T ))
such that Ind Γ(λ) = 1 for every λ ∈ σ(T ) and Ind Γ(α) = 0. Then

1

2πi

∮
Γ

(α− z)m(zI − T )−1 dz = (αI − T )m , m = 0,±1,±2,±3, . . .

Proof. It can be found in [Ru, 10.24] in the setting of Banach algebras. �
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Let T ∈ L(H), if f is an holomorphic function defined on an open set Ω containing
the spectrum of T , we can define f(T ) in the following way: take any cycle Γ in
Ω \ σ(T ) with the property that Ind Γ(λ) = 1 for every λ ∈ σ(T ) and Ind Γ(z) = 0,
for every z ∈ C \ Ω, and put

f(T ) =
1

2πi

∮
Γ

f(z)(zI − T )−1 dz .

This definition does not depend of the choice of Γ and, thanks to Lemma 2.20, when
f is a polynomial, an entire function or a rational function with poles out of σ(T )
coincides with the one given previously.

Proposition 2.21. Let Ω be an open set containing σ(T ), α ∈ C, and f , fn,
g ∈ H(Ω). Then:

(1) (αf + g)(T ) = αf(T ) + g(T ).
(2) If fn → f uniformly on compact sets of Ω, then ‖f(T )− fn(T )‖ → 0.
(3) (f · g)(T ) = f(T ) ◦ g(T ) = g(T ) ◦ f(T ).
(4) f(T ) is invertible iff f(λ) 6= 0, for every λ ∈ σ(T ).
(5) σ

(
f(T )

)
= f

(
σ(T )

)
= {f(λ) : λ ∈ σ(T )}. (Spectral mapping theorem)

Proof. (1) is consequence of the linearity of the integral.
(2). Fix a cycle Γ in Ω \ σ(T ) with the required properties. The trace Γ∗ of Γ is a
compact set in Ω. Then there exists M > 0 such that ‖(zI − T )−1‖ ≤ M for every
z ∈ Γ∗. Let ‖f‖A denote the supremum of |f | on the set A. We have

‖f(T )− fn(T )‖ ≤ 1

2π

∮
Γ

|f(z)− fn(z)|M |dz| ≤ M

2π
‖f − fn‖Γ∗ length(Γ) .

As fn → f uniformly on Γ∗, we get ‖f(T )− fn(T )‖ → 0.
(3) is plain when f and g are rational functions with poles out of σ(T ). The general
case can be deduced from this applying Runge’s theorem. For given f , g ∈ H(Ω),
there exist two sequences (fn)n and (gn)n of rational functions with poles out of Ω
such that fn → f and gn → g uniformly on Γ∗. As (fn · gn)(T ) = fn(T ) ◦ gn(T ) =
gn(T ) ◦ fn(T ), for every n, by (2), we get (3).
(4). If f(λ) = 0, for λ ∈ σ(T ), then there exists h ∈ H(Ω) such that f(z) =
(z − λ)h(z). By (3) we have f(T ) = (T − λI) ◦ h(T ) = h(T ) ◦ (T − λI). As T − λI
is not invertible, then f(T ) is not invertible. In the opposite direction, suppose
f(λ) 6= 0, for all λ ∈ σ(T ). Then h = 1/f is holomorphic in a neighbourhood of
σ(T ), and, by (3), h(T ) is the inverse of f(T ).
(5). Given α ∈ C, by (4) we have f(T )−αI is not invertible iff there exists λ ∈ σ(T )
such that f(λ)− α = 0. That is, α ∈ σ

(
f(T )

)
iff α ∈ f

(
σ(T )

)
. �

Proposition 2.22. Suppose f is holomorphic in a neighbourhood of σ(T ) and g is
holomorphic in a neighbourhood of f

(
σ(T )

)
. Then

(g ◦ f)(T ) = g
(
f(T )

)
.

Proof. It can be found in [Ru, 10.29] in the setting of Banach algebras. �
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2.4. Spectral Theory for normal operators.

Lemma 2.23. If T is a normal operator, then:

(1) Every λ ∈ σ(T ) is an approximate eigenvalue of T .
(2) ‖T‖ = sup{|λ| : λ ∈ σ(T )}.

Proof. (1). Let S = T − λI and observe that S is also a normal operator. If λ is
not an approximate eigenvalue of T , then there exists ε > 0 such that ‖Sx‖ ≥ ε‖x‖
for every x ∈ H. This implies that S is injective and S(H) is closed in H. By
Proposition 2.4, we also have ‖S∗x‖ ≥ ε‖x‖ for every x ∈ H. Then S(H)⊥ = {0}
and S(H) is dense in H. As S(H) is closed and dense, S is onto. Therefore S is
invertible and λ /∈ σ(T ).
(2). As 〈T ∗Tx, x〉 = ‖Tx‖2, for every x ∈ H, taking supremum for x in BH , we get
‖T‖2 ≤ ‖T ∗T‖, for all T ∈ L(H). This yields, by induction, that for all T normal

‖T‖2n+1 ≤ ‖(T ∗)2nT 2n‖ ≤ ‖T 2n‖2 , for n = 0, 1, 2, . . .

This implies ‖T‖ ≤ ‖T 2n‖1/2n , for all n. Using the spectral radius formula, we get
‖T‖ ≤ sup{|λ| : λ ∈ σ(T )}. The reverse inequality is true for every operator. �

Proposition 2.24. Let T ∈ L(H):

(1) If T is hermitian and λ ∈ σ(T ), then λ ∈ R.
(2) If T is unitary and λ ∈ σ(T ), then |λ| = 1.

Proof. (1). Suppose λ /∈ R. Then λ = α + iβ, with β 6= 0. For every x ∈ H, we
have 〈Tx, x〉 ∈ R since T is self–adjoint. Then, for all x ∈ H,

|〈(T − λI)x, x〉| = |〈Tx, x〉 − α〈x, x〉 − iβ〈x, x〉| ≥ |β|‖x‖2 ,

and λ is not an approximate eigenvalue. By (1) in Lemma 2.23, λ /∈ σ(T ).
(2). If T is unitary, then ‖Tx‖ = ‖x‖, for all x ∈ H. For any λ ∈ C we have

‖Tx− λx‖ ≥
∣∣‖x‖ − |λ|‖x‖∣∣ =

∣∣1− |λ|∣∣‖x‖.
Therefore, if |λ| 6= 1, then λ is not an approximate eigenvalue, and by (1) in
Lemma 2.23, λ /∈ σ(T ). �

Definition 2.25. Let Σ be a σ-algebra of subsets of Ω and H a Hilbert space. A
resolution of the identity or spectral measure is a mapping E : Σ → L(H) with the
properties:

(1) E(∅) = 0, E(Ω) = I.
(2) E(A) is a self-adjoint projection (an orthogonal projection) for every A ∈ Σ.
(3) E(A1 ∩ A2) = E(A1) ◦ E(A2) = E(A2) ◦ E(A1), for all A1, A2 ∈ Σ.
(4) If A1 ∩ A2 = ∅, then E(A1 ∪ A2) = E(A1) + E(A2).
(5) For all x, y ∈ H, if Ex,y(A) = 〈E(A)x, y〉, for A ∈ Σ, then Ex,y is a complex

measure on Σ.
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Example. Let (Ω,Σ, µ) be a σ-finite measure space. For A ∈ Σ, let XA be the
closed subspace of L2(µ) formed by the functions vanishing almost everywhere in
Ω \ A. Then

E(A) = PXA
= the orthogonal projection onto XA , A ∈ Σ,

defines a resolution of the identity in L
(
L2(µ)

)
.

Observe that every projection E(A) is a multiplication operator. Indeed, if χA
denotes the characteristic function of A, then E(A) = MχA

.

Suppose E is a resolution of the identity. Let us call, for every A ∈ Σ, XA the
range of the projection E(A); that is, E(A) is the orthogonal projection onto the
closed subspace XA. If A1, A2 ∈ Σ are disjoint sets, then, by (1) and (3), we have
XA1 ⊥ XA2 , and by (4),

XA1∪A2 = XA1 ⊕XA2 .

We have the same, for {Ak}1≤k≤n a finite family of pairwise disjoint sets in Σ:

XA = XA1 ⊕XA2 ⊕ · · · ⊕XAn , for A =
n⋃
k=1

Ak .

As a consequence of (2) in the following proposition, the same is true for {An}n∈N
a pairwise disjoint sequence in Σ:

XA = XA1 ⊕XA2 ⊕ · · · ⊕XAn ⊕ · · · , for A =
∞⋃
n=1

An .

Proposition 2.26. Let E be a resolution of the identity in L(H) defined on (Ω,Σ):

(1) Ex,x is a positive measure for every x ∈ H.
(2) For x ∈ H, the map A 7→ E(A)x is a countably additive H-valued measure.
(3) If {An} ⊂ Σ, and E(An) = 0, for all n, then E

(⋃∞
n=1An

)
= 0.

Proof. (1). If P is an orthogonal projection, then Px ⊥ x − Px, for every x ∈ H,
and so 〈x, Px〉 = 〈Px, Px〉 ≥ 0. We deduce that Ex,x(A) ≥ 0, for all A ∈ Σ and all
x ∈ H.
(2). Take {An}n∈N a sequence of pairwise disjoint sets in Σ. Let A =

⋃∞
n=1An. By

(5) in Definition 2.25, we have

(5) 〈E(A)x, y〉 =
∞∑
n=1

〈E(An)x, y〉 , for all y ∈ H .

As we said before, the sequence {E(An)x}n is orthogonal. Then using (5) and Propo-
sition 1.4, we have that the series

∑
nE(An)x is convergent in the norm topology

of H, and its sum is E(A)x.
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(3). Define B1 = A1, and Bn = An \
⋃n−1
k=1 Ak, for n ≥ 2. Then {Bn}n are pairwise

disjoint, Bn ⊂ An, for all n, and

A =
∞⋃
n=1

An =
∞⋃
n=1

Bn .

As E(An) = 0, and the range of the projection E(Bn) is included in the range of
E(An), we have E(Bn) = 0 too. Since Ex,y is countably additive, we have

〈E(A)x, y〉 =
∞∑
n=1

〈E(Bn)x, y〉 = 0 , for all x, y ∈ H .

Therefore E(A) = 0. �

We define L∞(E) as the space of (classes of) measurable functions f : Ω→ C which
are essentially bounded; that is, there exist C > 0 such that E

(
{|f | ≤ C}

)
= 0.

This is a Banach space with the essential supremum norm.

We are going to give the definition of
∫
f dE. If f is a simple function and

(6) f =
n∑
k=1

αkχAk
, αk ∈ C , Ak ∈ Σ ,

we define ∫
f dE =

n∑
k=1

αkE(Ak) ∈ L(H) .

It is easy to check, thanks to the finite additivity of E, that the above definition
only depends on f , and not on the expression of f used in (6). We can choose in (6)
the sets {Ak} pairwise disjoint, and suppose that E(Ak) = 0 iff k > l, for certain
1 ≤ l ≤ n. Then∥∥∥(∫ f dE

)
x
∥∥∥2

=
n∑
k=1

|αk|2‖E(Ak)x‖2 =
l∑

k=1

|αk|2‖E(Ak)x‖2

≤
(

max
1≤k≤l

|αk|2
) l∑
k=1

‖E(Ak)x‖2 ≤ ‖f‖2
L∞(E)‖x‖2 .

In consequence we have ‖
∫
f dE‖ ≤ ‖f‖L∞(E). In fact, if k ≤ l, and x 6= 0 belongs

to the range of E(Ak), then (
∫
f dE)x = αkx, and ‖

∫
f dE‖ ≤ |αk|. Therefore

‖
∫
f dE‖ = ‖f‖L∞(E), for every simple function f .

The map f 7→
∫
f dE is then a continuous linear map that can be extended, by

the density of simple functions in L∞(E), to an unique continuous linear map
Φ: L∞(E)→ L(H). Then define

∫
f dE = Φ(f), for all f ∈ L∞(E).

Observe that given f ∈ L∞(E), the operator T =
∫
f dE is the unique operator

satisfying

〈Tx, y〉 =

∫
f dEx,y , for all x, y ∈ H.
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In fact this is trivial to check for simple functions, and follows, by density, for every
f ∈ L∞(E).

Proposition 2.27. Let E be a resolution of the identity, f , g ∈ L∞(E), T =
∫
f dE

and S =
∫
g dE. Then:

(1) T ∗ =
∫
f dE.

(2) If f is essentially real-valued, then T is self-adjoint.
(3) T ◦ S = S ◦ T =

∫
fg dE.

(4) ‖T‖ = ‖f‖L∞(E).
(5) σ(T ) is the E-essential range of f ; that is, C\σ(T ) is the biggest open subset

G of C such that E
(
f−1(G)

)
= 0.

Proof. (1), (2) and (3) are easily checked if f and g are simple functions. By density
they follow for all f , g ∈ L∞(E).
(4) has been already proved for f simple, and follows by density for all f ∈ L∞(E).
(5) We claim that T is invertible iff there exists ε > 0 such that |f | ≥ ε, E-almost
everywhere. As a consequence, λ ∈ σ(T ) iff E

[
f−1
(
B(λ, ε)

)]
6= 0, for all ε > 0, that

is, iff λ is in the E-essential range of f .
Suppose that |f | ≥ ε, E-almost everywhere, and ε > 0. Defining h(ω) = 1/f(ω), if
|f(ω)| ≥ ε and h(ω) = 0 elsewhere, we have h ∈ L∞(E) and fh = 1 E-a.e.. By (3)
we have that

∫
h dE is the inverse of T , and T is invertible.

Suppose now that T is invertible, 0 < ε < 1/‖T−1‖, and consider A = {ω ∈ Ω :
|f(ω)| ≤ ε}. It is enough to check E(A) = 0 for proving our claim. If E(A) 6= 0,
take x 6= 0 in the range of E(A), and obseve that ‖χAf‖L∞(E) ≤ ε. Then we would
have

‖Tx‖ = ‖T (E(A)x)‖ =
∥∥∥(∫ fχA dE

)
x
∥∥∥ ≤ ε‖x‖ ≤ ε‖T−1‖‖Tx‖ ,

a contradiction to the fact ε−1 > ‖T−1‖. �

By definition, or as a consequence of (1) and (3) in the previous Proposition, we
have that

∫
f dE is a normal operator for every f ∈ L∞. Now we are going to see

that every normal operator T induces a resoution of the indentity E on the Borel
subsets of σ(T ) such that

T =

∫
σ(T )

z dE(z) .

We will use the following lemma:

Lemma 2.28. Let T be a normal operator and p ∈ C[X, Y ] a complex polynomial
in two variables. Then we have

‖p(T, T ∗)‖ = sup{|p(λ, λ)| : λ ∈ σ(T )}.

Proof. The proof of this lemma is elementary in the case T is self-adjoint and more
complicated in the general case. First let us see the case T self-adjoint. If T ∗ = T ,
then p(T, T ∗) becomes q(T ) for certain polynomial q ∈ C[X], such that p(x, x) =
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q(x), for every x ∈ R. As σ(T ) ⊂ R, by (2) in Lemma 2.23 and by the spectral
mapping theorem ((5) in Proposition 2.21), we conclude∥∥q(T )

∥∥ = sup{|λ| : λ ∈ σ
(
q(T )

)
} = sup{|q(λ)| : λ ∈ σ(T )} .

The proof of the general case needs some elaborated facts about commutative Ba-
nach algebras. Let A0 be the subset of L(H):

A0 = {p(T, T ∗) : p ∈ C[X, Y ]} .
It is easy to see that p(T, T ∗) is well defined thanks to the fact that T is normal.
By the same reason, A0 is a commutative subalgebra of L(H). Taking its closure
A = A0 in the norm topology we get a commutative Banach algebra A. This algebra
is closed by taking adjoint and satisfies

‖S∗S‖ = ‖S‖2 , for all S ∈ A .
In fact this is true for all S ∈ L(H). So A is a commutative B∗-algebra (see [Ru,
11.17]). By the Gelfand-Naimark Theorem (see [Ru, 11.18]), if

∆ = {φ : A → C : φ is an algebra homomorphism},
then

‖S‖ = sup{|φ(S)| : φ ∈ ∆} , and φ(S∗) = φ(S) , for all S ∈ A .

In particular, for p ∈ C[X, Y ], as φ
(
p(T, T ∗)

)
= p
(
φ(T ), φ(T ∗)

)
for all φ ∈ ∆,

(7) ‖p(T, T ∗)‖ = sup{|p(λ, λ)| : λ = φ(T ), φ ∈ ∆} .
But, as A is a commutative Banach algebra, we have that λ = φ(T ) for some φ ∈ ∆
if and only if λ ∈ σA(T ); that is, iff T −λI is not invertible in A (see [Ru, 11.5 (e)]).
But, it can be proved (see [Ru, page 321]) that, given S ∈ A, S has an inverse in
L(H) if and only if it has an inverse in A. Then, by (7), we conclude

‖p(T, T ∗)‖ = sup{|p(λ, λ)| : λ ∈ σ(T )} .
�

Theorem 2.29 (Spectral Theorem). Let T ∈ L(H) be a normal operator. There
exists a unique spectral measure E defined on the σ-algebra B of Borel subsets of
σ(T ) such that: ∫

σ(T )

z dE(z) = T .

Moreover, T commutes with the projection E(A), for every Borel subset A of σ(T ).

Proof. Let A be now the subalgebra of C(σ(T )) formed by the functions

z 7→ p(z, z) , p ∈ C[X, Y ] .

Lemma 2.28 allows to see that the map

Φ: p(z, z) 7→ p(T, T ∗)
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is a well defined linear isometry from A to L(H) that satisfies

(8) Φ(f)∗ = Φ(f) and Φ(fg) = Φ(f) ◦ Φ(g) ,

for all f , g ∈ A. But A is a subalgebra of C(σ(T )) that contains the constants, that
is closed by conjugation and that separates the points. By the Stone-Weierstrass
Theorem, A is dense in C(σ(T )) and Φ can be extended to an unique linear isometry
Φ: C(σ(T ))→ L(H) satisfying (8) for all f , g ∈ C(σ(T )).
For every x, y ∈ H, the map

f 7→ 〈Φ(f)x, y〉
defines a continuous linear map on C(σ(T )). By the Riesz Theorem, there exists a
unique complex measure µx,y defined on B such that

(9) 〈Φ(f)x, y〉 =

∫
σ(T )

f dµx,y , for all f ∈ C(σ(T )) .

We let the reader check the following properties:

(i) µαx+z,y = αµx,y + µz,y, for x, y, z ∈ H, and α ∈ C.

(ii) µy,x = µx,y, for all x, y ∈ H. (Use Φ(f)∗ = Φ(f)).
(iii) ‖µx,y‖ ≤ ‖x‖‖y‖, for all x, y ∈ H. (Use ‖Φ(f)‖ ≤ ‖f‖).
(iv) µx,x ≥ 0, and ‖µx,x‖ = ‖x‖2, for all x ∈ H. (Use

∫
1dµx,x = 〈x, x〉 = ‖x‖2).

Let X be the Banach space formed by all bounded measurable functions f : σ(T )→
C with the norm

‖f‖X = sup{|f(λ)| : λ ∈ σ(T )} ,
and, for f ∈ X , define Ψ(f) ∈ L(H) as the unique operator such that

〈Ψ(f)x, y〉 =

∫
σ(T )

f dµx,y , for all f ∈ X .

This can be done thanks to (i), (ii) and (iii). Using (ii) we see that Ψ(f)∗ = Ψ(f),
and that Ψ(f) is self-adjoint if f ∈ X is real-valued. Then Ψ(f) is a normal operator
for every f ∈ X . By (9) we have Ψ(f) = Φ(f), for all f ∈ C(σ(T )).
To finish the proof we will use the following

Claim. We have Ψ(fg) = Ψ(f) ◦Ψ(g) = Ψ(g) ◦Ψ(f), for all f , g ∈ X .

We prove the claim later. Defining E(A) = Ψ(χA), for all Borel set A ∈ B, we have
that E(A) is an orthogonal projection for E(A) is self-adjoint and idempotent since
χA is real-valued and χA = χAχA. E is a resolution of the identity:

• E(∅) = Ψ(0) = 0, and E(σ(T )) = Ψ(1) = Φ(1) = I.
• χA1∩A2 = χA1χA2 yields E(A1 ∩ A2) = E(A1) ◦ E(A2) = E(A2) ◦ E(A1), for

all A1, A2 ∈ B.
• χA1∪A2 = χA1 +χA2 , when A1∩A2 = ∅, yields E(A1∪A2) = E(A1) +E(A2).
• Ex,y(A) = 〈E(A)x, y〉 = µx,y(A), for all x, y ∈ H and all A ∈ B.

As we have, for all x, y ∈ H,∫
σ(T )

z dEx,y =

∫
σ(T )

z dµx,y = 〈Φ(z)x, y〉 = 〈Tx, y〉,
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we conclude that
∫
σ(T )

z dE(z) = T .

Uniqueness of E follows from the fact that, if
∫
σ(T )

z dE(z) = T , for a resolution of

the identity E, then ∫
σ(T )

f(z) dE(z) = Φ(f),

for all f ∈ A by algebraic properties and, by density, for all f ∈ C(σ(T )). Necessarily
we should have Ex,y = µx,y, for all x, y ∈ H, and this determines E. �

Proof of the Claim. Take ϕ ∈ C(σ(T )), and let S = Φ(ϕ) = Ψ(ϕ). Then we have

(10)

∫
ψϕdµx,y = 〈Φ(ϕψ)x, y〉 = 〈Φ(ψ)Sx, y〉 =

∫
ψ dµSx,y,

for every ψ ∈ C(σ(T )) and all x, y ∈ H. In the same way we have

(11)

∫
ψϕdµx,y = 〈SΦ(ψ)x, y〉 = 〈Φ(ψ)x, S∗y〉 =

∫
ψ dµx,S∗y.

Therefore, for all x, y ∈ H, we have

(12) ϕdµx,y = dµSx,y = dµx,S∗y.

By integration, the equalities (12) yields Ψ(ϕf) = Ψ(ϕ) ◦ Ψ(f) = Ψ(f) ◦ Ψ(ϕ), for
all ϕ ∈ C(σ(T )), and all f ∈ X . And this yields, by similar calculation that (10)
and (11), if S = Ψ(f),

(13) f dµx,y = dµSx,y = dµx,S∗y,

for all f ∈ X , and all x, y ∈ H. Integrating now g in (13) we finally obtain

Ψ(fg) = Ψ(f) ◦Ψ(g) = Ψ(g) ◦Ψ(f), for all f, g ∈ X .

�

The previous theorem allows us to extend, for a normal operator T , the analytic
functional calculus to bounded measurable functions f : σ(T )→ C. We define

f(T ) =

∫
σ(T )

f(z) dE(z)

for E the spectral measure associated to T .

Proposition 2.30. Let T be a normal operator, E the spectral measure associated
to T , and f , g, fn : σ(T )→ C bounded measurable functions:

(1) (fg)(T ) = f(T ) ◦ g(T ) and (f + g)(T ) = f(T ) + g(T ).
(2) f(T ) =

(
f(T )

)∗
.

(3) If fn → f uniformly on σ(T ), then ‖f(T )− fn(T )‖ → 0.
(4) If G is an open subset of C such that G ∩ σ(T ) 6= ∅, then E

(
G ∩ σ(T )

)
6= 0.

(5) If f is continuous, then σ
(
f(T )

)
= {f(λ) : λ ∈ σ(T )}.
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Proof. (1), (2) and (3) follows from the general properties of the integral with respect
to spectral measures that we have seen in Proposition 2.27.
(4). There exists λ ∈ σ(T ) and ε > 0, such that

A := {z ∈ σ(T ) : |z − λ| < ε} ⊂ G ∩ σ(T ) .

If E(A) were 0, then |z − λ| ≥ ε, for E-almost every z ∈ σ(T ), and, as in the proof
of Proposition 2.27, λI −T would be invertible. This would be a contradiciton with
the fact that λ ∈ σ(T ).
(5). From (4) we deduce that, for any continuous function f , the E-essential range
of f coincides with its range {f(λ) : λ ∈ σ(T )}. The result follows using (5) in
Proposition 2.27. �

Corollary 2.31. Let T be a normal operator. Then

(1) T is unitary iff |λ| = 1 for every λ ∈ σ(T ).
(2) T is self-adjoint iff λ ∈ R for every λ ∈ σ(T ).

Proof. Proposition 2.24 gives the implications T self-adjoint =⇒ σ(T ) ⊂ R, and T
unitary =⇒ |λ| = 1 for all λ ∈ σ(T ).
Assume now that T is normal and σ(T ) ⊂ R. Let E be the spectral measure
associated to T . Then the map z 7→ z is real-valued on σ(T ), and by (2) in Propo-
sition 2.30,

T ∗ =

∫
σ(T )

z dE(z) =

∫
σ(T )

z dE(z) = T .

In the same way, if T is normal and |λ| = 1 for all λ ∈ σ(T ). Then zz = 1, for every
z ∈ σ(T ). By (1) in Proposition 2.30,

T ∗T = TT ∗ =

∫
zz dE(z) =

∫
1 dE(z) = I

�
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