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Resumen

Esta tesis está dedicada al estudio de ciertos operadores actuando en espacios de

funciones anaĺıticas en el disco unidad.

Sea D = {z ∈ C : |z| < 1} el disco unidad. Sea también Hol(D) el espacio

de todas las funciones anaĺıticas en D dotado de la topoloǵıa de la convergencia

uniforme en compactos.

Un subespacio X de Hol(D) puede ser visto como un espacio de sucesiones

identificando a una función f ∈ X con la sucesión de sus coeficientes de Taylor:

f(z) =
∞∑
n=0

anz
n ↔ {an}∞n=0.

Sea H la matriz de Hilbert,

H =

(
1

n+ k + 1

)
n,k≥0

=


1 1/2 1/3 1/4 · · ·

1/2 1/3 1/4 1/5 · · ·
1/3 1/4 1/5 1/6 · · ·
1/4 1/5 1/6 1/7 · · ·

...
...

...
...

. . .

 .

La matriz de Hilbert puede ser considerada como un operador entre espacios de

sucesiones. Formalmente, se define su acción como

H ({an}∞n=0) =


1 1/2 1/3 1/4 · · ·

1/2 1/3 1/4 1/5 · · ·
1/3 1/4 1/5 1/6 · · ·
1/4 1/5 1/6 1/7 · · ·

...
...

...
...

. . .




a0

a1

a2

a3

...

 ,

{an}∞n=0 7→

{
∞∑
k=0

ak
n+ k + 1

}∞
n=0

.

v



De la misma forma, H puede ser considerado como un operador (al que llamamos

el operador de Hilbert) entre espacios de funciones anaĺıticas identificando cada

función anaĺıtica con la sucesión de sus coeficientes de Taylor.

Si f(z) =
∑∞

n=0 anz
n entonces

H(f)(z) =
∞∑
n=0

(
∞∑
k=0

ak
n+ k + 1

)
zn,

cuando el segundo miembro tenga sentido.

El operador de Hilbert está bien definido en H1, es acotado en Hp para 1 < p <

∞ pero no lo es en H1 o H∞ [34]. En un art́ıculo reciente [65] Lanucha, Nowak y

Pavlović consideran la cuestión de encontrar subespacios de H1 cuya imagen por el

operador H está contenida en H1. Dostanić, Jevtić y Vukotić [37] encontraron la

norma exacta de H como operador de Hp en Hp (1 < p <∞).

Sea µ una medida de Borel positiva en [0, 1) y sea {µn}∞n=0 la sucesión de sus mo-

mentos: µn =
∫

[0,1)
tn dµ(t). La matriz de Hilbert puede generalizarse considerando

la matriz de Hankel Hµ con entradas (µn+k)n,k≥0,

Hµ =


µ0 µ1 µ2 µ3 · · ·
µ1 µ2 µ3 µ4 · · ·
µ2 µ3 µ4 µ5 · · ·
µ3 µ4 µ5 µ6 · · ·
...

...
...

...
. . .

 .

Al igual que anteriormente, la matriz Hµ induce formalmente el operador de

Hilbert generalizado Hµ en espacios de funciones anaĺıticas:

Si f(z) =
∑∞

n=0 anz
n entonces

Hµ(f)(z) =
∞∑
n=0

(
∞∑
k=0

µn+kak

)
zn,

cuando el segundo miembro tenga sentido.

Widom [99, Theorem 3. 1] y Power [89, Theorem 3] (véase también Peller [83,

p. 42, Theorem 7. 2]) probaron que Hµ es un operador bien definido y acotado ac-

tuando de H2 en śı mismo si y sólo si µ es una medida de Carleson, µ ([t, 1)) ≤
C(1− t), 0 < t < 1.
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Galanopoulos y Peláez [48] estudiaron la acción del operador Hµ en H1. Por su

parte, Chatzifountas, Girela y Peláez [28] estudiaron Hµ como operador de Hp en

Hq (0 < p, q <∞).

Si los pasos tomados a continuación fuesen correctos tendŕıamos lo siguiente:

Para f(z) =
∑∞

n=0 anz
n,

Hµ(f)(z) =
∞∑
n=0

(
∞∑
k=0

µn+kak

)
zn

=
∞∑
n=0

(
∞∑
k=0

ak

∫
[0,1)

tn+kdµ(t)

)
zn

=
∞∑
k=0

ak

(
∞∑
n=0

∫
[0,1)

tn+kzndµ(t)

)

=
∞∑
k=0

ak

∫
[0,1)

tk

1− tz
dµ(t) =

∫
[0,1)

f(t)

1− tz
dµ(t).

Para µ una medida de Borel finita y positiva en [0, 1) y f ∈ Hol(D) se define

Iµ(f)(z) =

∫
[0,1)

f(t)

1− tz
dµ(t), z ∈ D,

cuando el segundo miembro tenga sentido para todo z ∈ D y defina una función

anaĺıtica en D.

De esto se deduce que los operadores Hµ e Iµ están estrechamente relacionados,

si f es suficientemente buena Hµ(f) e Iµ(f) están bien definidos y coinciden. En

[48] Galanopoulos y Peláez prueban lo siguiente.

Sea µ una medida de Borel positiva en [0, 1). Entonces:

(i) El operador Iµ está bien definido enH1 si y sólo si µ es una medida de Carleson.

(ii) Si µ es una medida de Carleson, entonces el operador Hµ está también bien

definido en H1 y además,

Hµ(f) = Iµ(f), para toda f ∈ H1.

(iii) El operador Iµ es acotado de H1 en śı mismo si y sólo si µ es una medida

1-logaŕıtmica 1-Carleson.
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Más tarde en [28] Chatzifountas, Girela y Peláez probaron lo siguiente.

Supongamos que 1 < p < ∞ y sea µ una medida de Borel positiva en [0, 1).

Entonces:

(i) El operador Iµ está bien definido en Hp si y sólo si µ es una medida 1-Carleson

para Hp.

(ii) Si µ es una medida 1-Carleson para Hp, entonces el operador Hµ está también

bien definido en Hp y además,

Hµ(f) = Iµ(f), para toda f ∈ Hp.

(iii) El operador Iµ es acotado de Hp en śı mismo si y sólo si µ es una medida de

Carleson.

El Caṕıtulo 2 está dedicado al estudio de los operadores Hµ e Iµ en distintos

espacios de funciones anaĺıticas. Empezamos extendiendo los resultados anteriores

a algunos espacios conformemente invariantes como el espacio de Bloch, BMOA,

los espacios de Besov o las clases Qs. Todos estos resultados se encuentran en el

trabajo conjunto con Girela [54].

En el primer resultado caracterizamos las medidas µ para las que el operador Iµ

está bien definido o está acotado en BMOA y en el espacio de Bloch.

Para una medida µ de Borel positiva en [0, 1) tenemos que el operador Iµ está

bien definido en cualquiera de estos dos espacios si y sólo si∫
[0,1)

log
2

1− t
dµ(t) < ∞,

y si esto ocurre entonces las siguientes tres condiciones son equivalentes:

(i) La medida µ es una medida 1-logaŕıtmica 1-Carleson.

(ii) El operador Iµ es acotado de B en BMOA.

(iii) El operador Iµ es acotado de BMOA en śı mismo.
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Además, si se satisface (i) entonces el operadorHµ está bien definido en el espacio

de Bloch y

Hµ(f) = Iµ(f), para toda f ∈ B,

por lo que el operador Hµ es acotado de B en BMOA.

También tenemos el siguiente resultado sobre compacidad:

Sea µ una medida de Borel positiva en [0, 1) con
∫

[0,1)
log 2

1−t dµ(t) < ∞. Si µ

es una medida vanishing 1-logaŕıtmica 1-Carleson entonces:

(i) El operador Iµ es un operador compacto de B en BMOA.

(ii) El operador Iµ es un operador compacto de BMOA en śı mismo.

Las condiciones que debe cumplir una medida µ para que el operador Iµ esté bien

definido o esté acotado en BMOA y en el espacio de Bloch siguen siendo ciertas

para todos los espacios Qs con s > 0. Tenemos lo siguiente:

Para cualquier s ∈ (0,∞) y para una medida de Borel positiva µ, el operador Iµ

está bien definido en Qs si y sólo si∫
[0,1)

log
2

1− t
dµ(t) < ∞,

y si esto ocurre entonces las siguientes condiciones son equivalentes:

(i) La medida µ es una medida 1-logaŕıtmica 1-Carleson.

(ii) Para cualquier s ∈ (0,∞), el operador Iµ es acotado de Qs en BMOA.

Además, si se satisface (i), se tiene que para cualquier s ∈ (0,∞) el operador Hµ

coincide con Iµ en Qs y por tanto, también es acotado de Qs en BMOA.

Hemos estudiado también el operador Iµ actuando en los espacios de Besov.

Como es usual, para 1 < p <∞, p′ denotará al exponente conjugado de p, es decir,
1
p

+ 1
p′

= 1. Hemos probado los siguientes resultados.

Sea 1 < p <∞ y sea µ una medida de Borel positiva en [0, 1). Se tiene que:
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(i) Si
∫

[0,1)

(
log 2

1−t

)1/p′
dµ(t) < ∞, entonces el operador Iµ está bien definido en

Bp.

(ii) Si el operador Iµ está bien definido en Bp, entonces
∫

[0,1)

(
log 2

1−t

)γ
dµ(t) < ∞

para todo γ < 1
p′
.

(iii) Si µ es una medida 1/p′-logaŕıtmica 1-Carleson entonces el operador Iµ es

acotado de Bp en BMOA.

(iv) Si µ es una medida vanishing 1/p′-logaŕıtmica 1-Carleson entonces el operador

Iµ es compacto de Bp en BMOA.

Trabajando directamente con el operador Hµ hemos obtenido lo siguiente:

Si µ es una medida de Borel finita y positiva en [0, 1) entonces:

(i) Si 1 < p ≤ 2 y
∑∞

k=1

µp
′
k

k
< ∞, entonces el operador Hµ está bien definido

en Bp.

(ii) Si 2 < p < ∞ y
∑∞

k=1

µp
′
k

kp
′/p < ∞, entonces el operador Hµ está bien definido

en Bp.

En [16], Bao y Wulan probaron que existen medidas de Borel positivas µ en [0, 1)

que son medidas de Carleson pero para las que ocurre que Hµ(B2) 6⊂ B2. También

probaron que si Hµ es un operador acotado de B2 en śı mismo entonces µ es una

medida de Carleson. Estos resultados los mejoramos y los extendemos para todos

los espacios Bp con 1 < p <∞.

Si 1 < p <∞ entonces:

(i) Si 0 < β ≤ 1
p

entonces existe una medida de Borel positiva µ en [0, 1) que es

β-logaŕıtmica 1-Carleson pero tal que Hµ(Bp) 6⊂ Bp.

(ii) Si µ es una medida de Borel positiva en [0, 1) tal que el operadorHµ es acotado

de Bp en śı mismo entonces µ es una medida 1/p′-logaŕıtmica 1-Carleson [55].

(iii) Si γ > 1 y µ es una medida de Borel positiva en [0, 1) que es γ-logaŕıtmica

1-Carleson entonces el operador Hµ es acotado de Bp en śı mismo.
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Más tarde centramos nuestra atención en la acción de Hµ en los espacios de

Hardy. Los resultados mencionados anteriormente de Galanopoulos y Peláez y de

Chatzifountas, Girela y Peláez implican lo siguiente.

(i) Si µ es una medida de Carleson, entonces el operador Hµ es acotado de H1 en

śı mismo si y sólo si µ es una medida 1-logaŕıtmica 1-Carleson.

(ii) Si 1 < p < ∞ y µ es una medida 1-Carleson para Hp, entonces el operador

Hµ es un operador acotado de Hp en śı mismo si y sólo si µ es una medida de

Carleson.

Estos resultados no cierran completamente la cuestión sobre la caracterización

de las medidas µ para las que Hµ es un operador acotado de Hp en śı mismo. En

efecto, en estos trabajos los autores sólo consideran medidas 1-Carleson para Hp.

En principio, podŕıa existir una medida µ que no fuera 1-Carleson para Hp pero

para la que el operador Hµ estuviera bien definido y fuese acotado en Hp. Hemos

probado que éste no es el caso. De hecho, se ha probado el siguiente resultado:

Sea µ una medida de Borel positiva en [0, 1).

(i) El operador Hµ es acotado de H1 en śı mismo si y sólo si µ es una medida

1-logaŕıtmica 1-Carleson.

(ii) Si 1 < p <∞ entonces el operador Hµ es acotado de Hp en śı mismo si y sólo

si µ es una medida de Carleson.

En [28] el parámetro p se tomaba finito. También damos un resultado para el

caso p =∞.

Sea µ una medida de Borel positiva en [0, 1). Las siguientes condiciones son

equivalentes.

(i)
∫

[0,1)
dµ(t)
1−t < ∞.

(ii)
∑∞

n=0 µn < ∞.

(iii) El operador Iµ es acotado de H∞ en śı mismo.
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(iv) El operador Hµ es acotado de H∞ en śı mismo.

Estos resultados sobre la acción de Hµ en los espacios de Hardy han sido publi-

cados en [55] y están contenidos en la Sección 2.1 de esta tesis.

En la Sección 2.2 mencionamos el siguiente resultado de Galanopoulos y Peláez.

Sea µ una medida Borel positiva en [0, 1). Si µ es una medida de Carleson

entonces Hµ(H1) ⊂ C , donde C es el espacio de las funciones holomorfas en el

disco que son la integral de Cauchy de una medida de Borel compleja en ∂D .

Llegados a este punto nos preguntamos qué puede decirse acerca de la imagen

Hµ(H1) de H1 bajo la acción del operador Hµ si la medida µ es 1-logaŕıtmica

1-Carleson en [0, 1).

Con respecto a esta cuestión, observamos que es fácil de ver que el espacio de

tipo Dirichlet D1
0 está incluido en H1. Probaremos que si µ es una medida 1-

logaŕıtmica 1-Carleson en [0, 1) entonces Hµ(H1) está contenido en el espacio D1
0.

De hecho, hemos probado un resultado más potente.

Sea µ una medida positiva de Borel en [0, 1). Entonces, las siguientes condi-

ciones son equivalentes:

(i) µ es una medida 1-logaŕıtmica 1-Carleson.

(ii) Hµ es un operador acotado de H1 en śı mismo.

(iii) Hµ es un operador acotado de H1 en D1
0.

(iv) Hµ es un operador acotado de D1
0 en D1

0.

Hay un salto entre las condiciones de los dos últimos resultados, por lo que es

natural estudiar el rango de H1 bajo la acción de Hµ cuando µ es una medida

α-logaŕıtmica 1-Carleson con 0 < α < 1. Probaremos el siguiente resultado.

Sea µ una medida positiva de Borel en [0, 1). Supongamos que 0 < α < 1 y

que µ es una medida α-logaŕıtmica 1-Carleson. Entonces Hµ aplica el espacio H1

en el espacio D1(logα−1) definido como:

D1(logα−1) =

{
f ∈ Hol(D) :

∫
D
|f ′(z)|

(
log

2

1− |z|

)α−1

dA(z) <∞

}
.
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Todos estos resultados se encuentran en un trabajo conjunto con Girela [56].

Enunciamos anteriormente un resultado acerca de la acotación del operador Hµ

actuando de Qs (con 0 < s <∞) en BMOA. Es natural buscar una caracterización

para las medidas µ tales que Iµ y/o Hµ es acotado de B en śı mismo o más gene-

ralmente de Qs en śı mismo para cualquier s > 0. Tenemos el siguiente resultado.

Sea µ una medida de Borel positiva en [0, 1). Las siguientes condiciones son

equivalentes.

(i) El operador Iµ es acotado de Qs en śı mismo para algún s > 0.

(ii) El operador Iµ es acotado de Qs en śı mismo para todo s > 0.

(iii) El operador Hµ es acotado de Qs en śı mismo para algún s > 0.

(iv) El operador Hµ es acotado de Qs en śı mismo para todo s > 0.

(v) La medida µ es 1-logaŕıtmica 1-Carleson.

De hecho somos capaces de probar un resultado más fuerte que no hace distin-

ciones entre diferentes espacios Qs.

Sea µ una medida de Borel positiva en [0, 1) y sean 0 < s1, s2 < ∞. Las

siguientes condiciones son equivalentes:

(i) El operador Iµ está bien definido en Qs1 y, además, es acotado de Qs1 en Qs2 .

(ii) El operador Hµ está bien definido en Qs1 y, además, es acotado de Qs1 en Qs2 .

(iii) La medida µ es 1-logaŕıtmica 1-Carleson.

Este resultado se deduce de un teorema que hemos probado más general en el

que aparece el espacio de Lipschitz en media Λ2
1/2.

Sea µ una medida de Borel positiva en [0, 1) y sea X un espacio de Banach

de funciones anaĺıticas en D con Λ2
1/2 ⊂ X ⊂ B. Las siguientes condiciones son

equivalentes:
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(i) El operador Iµ está bien definido en X y, además, es acotado de X en Λ2
1/2.

(ii) El operador Hµ está bien definido en X y, además, es acotado de X en Λ2
1/2.

(iii) La medida µ es 1-logaŕıtmica 1-Carleson.

(iv)
∫

[0,1)
tn log 1

1−tdµ(t) = O
(

1
n

)
.

Todos estos resultados se encuentran publicados en [55] y están incluidos en la

Sección 2.3 de la tesis.

La Sección 2.4 está dedicada a extender el resultado anterior a una clase más ge-

neral de espacios de Lipschitz en media. Los resultados de esta sección se encuentran

en [72].

En primer lugar, mejoraremos el último resultado cambiando Λ2
1/2 por Λp

1/p para

cualquier p > 1.

Supongamos que 1 < p < ∞. Sea µ una medida de Borel positiva en [0, 1) y

sea X un espacio de Banach de funciones anaĺıticas en D con Λp
1/p ⊂ X ⊂ B. Las

siguientes condiciones son equivalentes.

(i) El operador Hµ está bien definido en X y, además, es acotado de X en el

espacio de Bloch B.

(ii) El operador Hµ está bien definido en X y, además, es acotado de X en Λp
1/p.

(iii) La medida µ es 1-logaŕıtmica 1-Carleson.

(iv)
∫

[0,1)
tn log 1

1−tdµ(t) = O
(

1
n

)
.

Los espacios Λp
1/p están contenidos en BMOA. El siguiente paso es estudiar el

operadorHµ actuando en espacios de Lipschitz en media generalizados no contenidos

en BMOA. Trabajamos con los espacios Λ(p, ω) definidos como

Λ(p, ω) =

{
f anaĺıtica en D : Mp(r, f

′) = O

(
ω(1− r)

1− r

)
, as r → 1

}
,

donde 1 < p < ∞ y ω es un peso admisible ω : [0, π] → [0,∞) en el sentido de

Blasco y de Souza [22, 23]. Hemos probado lo siguiente.

xiv



Sea 1 < p <∞ y sea ω un peso admisible con ω(δ)

δ1/p
↗∞ cuando δ ↘ 0 (condición

que implica que Λ(p, ω) no está contenido en BMOA ni en el espacio de Bloch).

Las siguientes condiciones son equivalentes.

(i) El operador Hµ está bien definido en Λ(p, ω) y además es acotado de Λ(p, ω)

en śı mismo.

(ii) La medida µ es de Carleson.

En el comienzo de nuestra investigación empezamos a estudiar espacios conforme-

mente invariantes. BMOA tiene un papel muy importante entre estos espacios. Con

el objetivo de continuar nuestro trabajo nos hemos concentrado en los espacios de

Morrey, una generalización de BMOA. Para 0 < λ ≤ 1 el espacio de Morrey L2,λ

se define como

L2,λ =

f ∈ H2 : ‖f‖λ,∗ = sup
I⊂T

I intervalo

(
1

|I|λ

∫
I

∣∣f(eiθ)− fI
∣∣2 dθ)1/2

<∞

 .

Es claro que para λ = 1 el espacio de Morrey L2,1 coincide con BMOA. Para

λ ∈ (0, 1), el espacio de Morrey L2,λ es un espacio propio entre BMOA y el espacio

de Hardy H2.

El Caṕıtulo 3 está dedicado a esta clase de espacios. Se ha dividido el estudio en

dos secciones. La Sección 3.1 trata sobre la estructura de estos espacios caracteri-

zando para algunas clases t́ıpicas de funciones anaĺıticas C cuáles son las funciones

de C que residen en los espacios de Morrey, prestando atención a las diferencias y

similitudes con los espacios de Hardy y BMOA. La Sección 3.2 está dedicada a la

acción de semigrupos de operadores de composición en los espacios de Morrey.

En la Sección 3.1 presentamos algunos resultados conocidos para los espacios

de Morrey tales como el crecimiento de sus funciones, sus series de potencias la-

gunares, aśı como una caracterización de ciertas series de potencias aleatorias en

L2,λ. También damos una caracterización de las funciones en los espacios de Morrey

mediante sus coeficientes de Taylor.

Sea 0 < λ ≤ 1 y sea f(z) =
∞∑
n=0

anz
n una función anaĺıtica, tenemos que f ∈ L2,λ

si y sólo si

sup
w∈D

∞∑
n=0

(1− |w|2)2−λ

(n+ 1)2

∣∣∣∣∣
n∑
k=0

(k + 1)ak+1w
n−k

∣∣∣∣∣
2

<∞.
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Si nos restringimos al caso en el que los coeficientes de Taylor de la función f

son no negativos tenemos lo siguiente.

Sea 0 < λ ≤ 1 y sea f(z) =
∞∑
n=0

anz
n una función anaĺıtica con an ≥ 0 para todo

n ≥ 0, se tiene que f ∈ L2,λ si y sólo si

sup
n≥1

1

n1−λ

∞∑
k=0

(k+1)n−1∑
j=kn

aj

2

<∞.

También damos una sencilla caracterización de las funciones en los espacios de

Morrey que tienen coeficientes de Taylor no negativos y no crecientes.

Sea 0 < λ < 1 y sea f(z) =
∞∑
n=0

anz
n una función anaĺıtica con an ≥ 0 para todo

n ≥ 0 y {an} no creciente, tenemos que

f ∈ L2,λ ⇔ an . n−
1+λ
2 .

Gracias a este resultado probamos que los espacios de Morrey contienen fun-

ciones con el máximo crecimiento posible en estos espacios y que las funciones con

coeficientes de Taylor no negativos y no crecientes que pertenecen a L2,λ pertenecen

también a todos los espacios de Hardy Hp con p < 2
1−λ , esto es:

Para 0 < λ < 1 tenemos que

L2,λ ∩ P ⊂
⋂

p< 2
1−λ

Hp,

siendo P la clase de funciones anaĺıticas en el disco con coeficientes de Taylor no

negativos y no crecientes,

P =

{
f(z) =

∞∑
n=0

anz
n ∈ Hol(D) : an ≥ 0 y {an} no creciente

}
.
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Al igual que con las funciones con coeficientes de Taylor no negativos y no crecientes

probamos que la intersección del espacio de Morrey L2,λ con la clase de funciones

univalentes está contenida en todos los espacios de Hardy Hp con p < 2
1−λ , es decir,

tenemos que:

Para 0 < λ < 1 se tiene que

L2,λ ∩ U ⊂
⋂

p< 2
1−λ

Hp.

No sabemos si estos dos resultados se pueden extender a todo el espacio de

Morrey. Dejamos esta cuestión como conjetura.

Sea 0 < λ < 1. ¿Es cierto que

L2,λ ⊂
⋂

p< 2
1−λ

Hp ?

Como dijimos anteriormente, la Sección 3.2 está dedicada al estudio de semigru-

pos de operadores de composición en los espacios de Morrey. Este estudio aparece

en el trabajo [47] realizado en colaboración con P. Galanopoulos y A. Siskakis.

Un semigrupo (uniparamétrico) de funciones anaĺıticas es un homomorfismo con-

tinuo Φ : t 7→ Φ(t) = ϕt del semigrupo aditivo de los números reales no negativos al

semigrupo de composición de todas las funciones anaĺıticas que llevan D en D.

En otras palabras, Φ = (ϕt) consiste en funciones anaĺıticas en D con ϕt(D) ⊂ D y

para las que se satisfacen las siguientes tres condiciones:

(i) ϕ0 es la identidad en D,

(ii) ϕt+s = ϕt ◦ ϕs, para todo t, s ≥ 0,

(iii) ϕt → ϕ0, cuando t→ 0, uniformemente en subconjuntos compactos de D.

Cada semigrupo de funciones anaĺıticas da lugar a un semigrupo (Ct) de opera-

dores de composición en Hol(D),

Ct(f)
def
= f ◦ ϕt, f ∈ Hol(D).
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Existe un buen número de trabajos acerca de semigrupos de operadores de com-

posición centrados en la restricción de (Ct) a ciertos subespacios lineales de Hol(D).

Dado un espacio de Banach X de funciones de Hol(D) y un semigrupo (ϕt), deci-

mos que (ϕt) genera un semigrupo de operadores de composición en X si (Ct) es un

semigrupo de operadores acotados en X bien definido y fuertemente continuo. Esto

significa exactamente que para toda f ∈ X, se tiene que Ct(f) ∈ X para todo t ≥ 0

y

lim
t→0+
‖Ct(f)− f‖X = 0.

A continuación presentamos algunos resultados conocidos sobre este tema en

espacios clásicos de funciones anaĺıticas.

(i) Cada semigrupo de funciones anaĺıticas genera un semigrupo de operadores

en los espacios de Hardy Hp (1 ≤ p < ∞) [17], los espacios de Bergman Ap

(1 ≤ p < ∞) [92], el espacio de Dirichlet [93], y en los espacios VMOA y el

espacio pequeño de Bloch B0 [100].

(ii) Ningún semigrupo no trivial genera un semigrupo de operadores en el espacio

H∞ de funciones anaĺıticas acotadas [5, 19].

(iii) Existen bastantes semigrupos (pero no todos) que generan un semigrupo de

operadores en el álgebra del disco. De hecho, estos pueden ser caracterizados

de varias formas [31].

Recientemente, se ha descubierto [5, 19, 18] que BMOA y el espacio de Bloch

son del segundo tipo. Nuestro trabajo aqúı es probar que para 0 < λ < 1 los espacios

de Morrey L2,λ son también del mismo tipo.

Introduzcamos un poco notación y propiedades básicas de semigrupos.

Dado un semigrupo (ϕt) y un espacio de Banach X, notaremos como [ϕt, X]

al máximo subespacio lineal cerrado de X tal que (ϕt) genera un semigrupo de

operadores en él.

Otra herramienta importante en el estudio de semigrupos es el generador in-

finitesimal. Éste se define de la forma

G(z)
def
= lim

t→0+

ϕt(z)− z
t

, z ∈ D.
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Esta convergencia es uniforme en compactos de D aśı que G ∈ Hol(D). Es más, G

tiene una única representación

G(z) = (bz − 1)(z − b)P (z), z ∈ D,

donde b ∈ D y P ∈ Hol(D) con Re P (z) ≥ 0 para todo z ∈ D. Si G no es

idénticamente nula, esto es, si (ϕt) no es trivial, el par (b, P ) está únicamente deter-

minado por (ϕt) y al punto b se le llama el punto de Denjoy-Wolff del semigrupo.

Probamos un resultado acerca de la existencia del subespacio maximal referido

anteriormente para todo semigrupo (ϕt) y también una caracterización del subespa-

cio maximal mediante el generador infinitesimal.

Supongamos que 0 < λ < 1 y sea (ϕt) un semigrupo de funciones anaĺıticas.

Existe un subespacio cerrado Y ⊂ L2,λ tal que (ϕt) genera un semigrupo de ope-

radores en Y y tal que cualquier otro subespacio de L2,λ con esta propiedad está

contenido en Y . En nuestra notación, Y = [ϕt,L2,λ].

Además, si G es el operador infinitesimal del semigrupo (ϕt) entonces

[ϕt,L2,λ] = {f ∈ L2,λ : Gf ′ ∈ L2,λ}.

También probamos el siguiente resultado para los espacios pequeños de Morrey.

Para 0 < λ < 1, todo semigrupo (ϕt) genera un semigrupo de operadores en

L2,λ
0 .

Particularmente, en nuestra notación esto es,

L2,λ
0 ⊂ [ϕt,L2,λ] ⊂ L2,λ,

para todo 0 < λ < 1 y todo semigrupo (ϕt).

Podemos probar que para las contracciones y las rotaciones, la primera con-

tención es una igualdad. Esto es,

L2,λ
0 = [eitz,L2,λ] = [e−tz,L2,λ], para 0 < λ < 1.
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Aunque en general la primera inclusión en esta cadena de contenciones puede ser

estricta, hemos obtenido una condición suficiente para la igualdad y también una

condición necesaria para semigrupos con punto de Denjoy-Wolff interior.

Sea (ϕt) un semigrupo con operador infinitesimal G y sea 0 < λ < 1.

(i) Si

lim
|I|→0

1

|I|

∫
S(I)

1− |z|
|G(z)|2

dA(z) = 0

entonces L2,λ
0 = [ϕt,L2,λ].

(ii) Si L2,λ
0 = [ϕt,L2,λ] y el punto de Denjoy-Wolff b ∈ D, entonces

lim
|z|→1

(1− |z|)
3−λ
2

G(z)
= 0.

Finalmente, cerramos este caṕıtulo con un resultado acerca de la posibilidad de

tener igualdad en la contención

[ϕt,L2,λ] ⊂ L2,λ.

Sea X un espacio de Banach de funciones anaĺıticas. Sea 0 < λ < 1 y supon-

gamos que L2,λ ⊂ X ⊂ B 3−λ
2 y sea (ϕt) un semigrupo de funciones anaĺıticas no

trivial. Entonces [ϕt, X] ( X.

En particular no existen semigrupos no triviales tal que [ϕt,L2,λ] = L2,λ.

El Caṕıtulo 4 está dedicado a explorar una clase de espacios de funciones anaĺıticas

que comparte propiedades con los espacios de Dirichlet y los de Morrey. La mayor

parte de los resultados en esta ĺınea aparecen en [46].

Sean λ, p ∈ [0, 1]. Decimos que f ∈ Hol(D) pertenece al espacio de Dirichlet-

Morrey Dλp si

‖f‖Dλp = |f(0)|+ sup
a∈D

(1− |a|2)
p
2

(1−λ)‖f ◦ ϕa − f(a)‖Dp <∞.
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Primero presentamos algunos resultados sobre la estructura de estos espacios

en la Sección 4.1 y más tarde estudiamos también los multiplicadores puntuales en

estos espacios en la Sección 4.2.

Los espacios Dirichlet-Morrey pueden ser caracterizados usando medidas de Car-

leson.

Sean 0 < p, λ < 1 y sea f ∈ Hol(D). Se tiene que f ∈ Dλp si y sólo si

‖f‖p,λ,∗ = sup
I⊂T

I intervalo

(
1

|I|pλ

∫
S(I)

|f ′(z)|2(1− |z|2)p dA(z)

)
<∞,

y la norma ‖f‖Dλp es comparable a |f(0)|+ ‖f‖p,λ,∗.

También damos un resultado sobre el crecimiento radial de funciones en los

espacios Dirichlet-Morrey y probamos que esta condición no se puede mejorar.

Sea 0 < p, λ < 1. Se tiene que:

(i) Existe una constante C = C(p, λ) tal que cualquier f ∈ Dλp satisface

|f(z)| ≤
C‖f‖Dλp

(1− |z|) p2 (1−λ)
, z ∈ D.

(ii) La función fp,λ(z) = (1− z)−
p
2

(1−λ) pertenece a Dλp .

Observemos que ambas partes de la proposición anterior son válidas cuando p = 1

para 0 < λ < 1.

En el siguiente resultado establecemos una condición necesaria y suficiente para

que un espacio Dirichlet-Morrey esté contenido en otro.

Sean λ1, p1, λ2, p2 ∈ (0, 1). Se tiene que

Dλ1p1 ⊆ D
λ2
p2

⇐⇒ p1 ≤ p2 y p1(1− λ1) ≤ p2(1− λ2).

Para finalizar esta sección, estudiamos la caracterización de las funciones de los

espacios Dirichlet-Morrey en términos de los valores frontera.
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Supongamos que f ∈ H2 y 0 < p, λ < 1. Entonces f ∈ Dλp si y sólo si

sup
I⊂T

1

|I|pλ

∫
I

∫
I

|f(u)− f(v)|2

|u− v|2−p
|du| |dv| <∞.

Sea X un espacio de Banach de funciones anaĺıticas en D. Se dice que una

función g ∈ Hol(D) es un multiplicador de X si el operador de multiplicación

Mg(f)(z) = g(z)f(z), f ∈ X

es un operador acotado enX. Para esto generalmente basta comprobar queMg(X) ⊂
X y aplicar el teorema del grafo cerrado. Denotamos al espacio de todos los multi-

plicadores de X como M(X). Los operadores de multiplicación están estrechamente

relacionados con los operadores de integración Jg e Ig. Éstos están inducidos por el

śımbolo g ∈ Hol(D) como sigue

Jg(f)(z) =

∫ z

0

f(w)g′(w) dw, z ∈ D,

Ig(f)(z) =

∫ z

0

f ′(w)g(w) dw, z ∈ D,

y actúan en funciones f ∈ Hol(D). Su relación con Mg viene de la fórmula de

integración por partes

Jg(f)(z) = Mg(f)(z)− f(0)g(0)− Ig(f)(z).

Tenemos una caracterización completa para que el operador Ig sea acotado en

los espacios Dλp .

Sea 0 < p, λ < 1 y g ∈ Hol(D). Se tiene que Ig : Dλp → Dλp es acotado si y sólo

si g ∈ H∞.

Con respecto a la acción de Jg en Dλp tenemos la siguiente condición necesaria.

Sea 0 < p, λ < 1 y g ∈ Hol(D). Si Jg : Dλp → Dλp es acotado entonces g ∈ Qp.

También hemos obtenido condiciones en g suficientes para que Jg sea acotado en

Dλp .

Supongamos que 0 < p < 1.
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(i) Si 0 < q < p y g ∈ Qq entonces Jg : Dq/pp → Dq/pp es acotado.

(ii) Si 0 < λ < 1 y g ∈ Wp entonces Jg : Dλp → Dλp es acotado.

Donde Wp es el espacio de funciones g ∈ Hol(D) tal que la medida

dµg(z) = |g′(z)|2(1− |z|2)p dA(z)

es una medida Dp-Carleson, esto es, existe una constante C = C(g) tal que∫
D
|f(z)|2 dµg(z) ≤ C‖f‖2

Dp , f ∈ Dp.

Los teoremas anteriores en combinación con la relación entre los operadores Mg,

Ig y Jg dan lugar al siguiente corolario sobre multiplicadores de Dλp .

Supongamos que 0 < p, λ < 1 y g ∈ Hol(D). Se tiene que

(i) Si g ∈ Wp ∩H∞ entonces Mg : Dλp → Dλp es acotado.

(ii) Si g ∈ Qpλ ∩H∞ entonces Mg : Dλp → Dλp es acotado.

(iii) Si Mg : Dλp → Dλp es acotado entonces g ∈ Qp ∩H∞.

La descripción completa del espacio de multiplicadores M(Dλp ) y de los śımbolos

g para las que Jg es acotada en Dλp parece ser un problema complicado.
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Introduction

This thesis is devoted to study certain operators acting on spaces of analytic

functions in the unit disc.

Let D = {z ∈ C : |z| < 1} be the unit disc. We shall also let Hol(D) be the space

of all analytic functions in D endowed with the topology of uniform convergence in

compact subsets.

A subspace X ofHol(D) can be seen as a sequence space by identifying a function

f ∈ X with its sequence of Taylor coefficients:

f(z) =
∞∑
n=0

anz
n ↔ {an}∞n=0.

Let H be the Hilbert matrix,

H =

(
1

n+ k + 1

)
n,k≥0

=


1 1/2 1/3 1/4 · · ·

1/2 1/3 1/4 1/5 · · ·
1/3 1/4 1/5 1/6 · · ·
1/4 1/5 1/6 1/7 · · ·

...
...

...
...

. . .

 .

The Hilbert matrix can be viewed as an operator between spaces of sequences.

Formally, we define its action as

H ({an}∞n=0) =


1 1/2 1/3 1/4 · · ·

1/2 1/3 1/4 1/5 · · ·
1/3 1/4 1/5 1/6 · · ·
1/4 1/5 1/6 1/7 · · ·

...
...

...
...

. . .




a0

a1

a2

a3

...

 ,

{an}∞n=0 7→

{
∞∑
k=0

ak
n+ k + 1

}∞
n=0

.
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In the same way, H can be seen as an operator (called the Hilbert operator)

between spaces of analytic functions identifying every analytic function with its

sequence of Taylor coefficients.

If f(z) =
∑∞

n=0 anz
n then

H(f)(z) =
∞∑
n=0

(
∞∑
k=0

ak
n+ k + 1

)
zn,

when the right hand side has sense.

The Hilbert operator is well defined in H1, it is bounded on Hp for 1 < p <∞,

but it is not bounded on H1 or H∞ [34]. In a recent paper [65] Lanucha, Nowak, and

Pavlović have considered the question of finding subspaces of H1 which are mapped

by H into H1. Dostanić, Jevtić and Vukotić [37] found the exact norm of H as an

operator from Hp to Hp (1 < p <∞).

Let µ be a finite positive Borel measure on [0, 1) and let {µn}∞n=0 be its sequence

of moments: µn =
∫

[0,1)
tn dµ(t). The Hilbert matrix can be generalized considering

the Hankel matrix Hµ with entries (µn+k)n,k≥0,

Hµ =


µ0 µ1 µ2 µ3 · · ·
µ1 µ2 µ3 µ4 · · ·
µ2 µ3 µ4 µ5 · · ·
µ3 µ4 µ5 µ6 · · ·
...

...
...

...
. . .

 .

As before, the matrix Hµ formally induces the generalized Hilbert operator Hµ

on spaces of analytic functions:

If f(z) =
∑∞

n=0 anz
n then

Hµ(f)(z) =
∞∑
n=0

(
∞∑
k=0

µn+kak

)
zn,

when the right hand side has sense.

Widom [99, Theorem 3. 1] and Power [89, Theorem 3] (see also Peller [83, p. 42,

Theorem 7. 2]) proved that Hµ is a well defined bounded operator from H2 into itself

if and only if µ is a Carleson measure, µ ([t, 1)) ≤ C(1− t), 0 < t < 1.

Galanopoulos and Peláez [48] studied the action of Hµ on H1. Chatzifountas,

Girela and Peláez [28] studied Hµ as an operator from Hp into Hq (0 < p, q <∞).

xxvi



If everything we wished were OK, we would have:

For f(z) =
∑∞

n=0 anz
n,

Hµ(f)(z) =
∞∑
n=0

(
∞∑
k=0

µn+kak

)
zn

=
∞∑
n=0

(
∞∑
k=0

ak

∫
[0,1)

tn+kdµ(t)

)
zn

=
∞∑
k=0

ak

(
∞∑
n=0

∫
[0,1)

tn+kzndµ(t)

)

=
∞∑
k=0

ak

∫
[0,1)

tk

1− tz
dµ(t) =

∫
[0,1)

f(t)

1− tz
dµ(t).

For µ a finite positive Borel measure on [0, 1) and f ∈ Hol(D) we define

Iµ(f)(z) =

∫
[0,1)

f(t)

1− tz
dµ(t), z ∈ D,

whenever the right hand side makes sense for all z ∈ D and defines an analytic

function in D.

It turns out that the operators Hµ and Iµ are closely related. If f is good

enough Hµ(f) and Iµ(f) are well defined and coincide. In [48] Galanopoulos and

Peláez proved the following.

Let µ be a positive Borel measure on [0, 1). Then:

(i) The operator Iµ is well defined on H1 if and only if µ is a Carleson measure.

(ii) If µ is a Carleson measure, then the operator Hµ is also well defined on H1

and, furthermore,

Hµ(f) = Iµ(f), for every f ∈ H1.

(iii) The operator Iµ is a bounded operator from H1 into itself if and only if µ is a

1-logarithmic 1-Carleson measure.

Later in [28] Chatzifountas, Girela and Peláez proved the following.

Suppose that 1 < p <∞ and let µ be a positive Borel measure on [0, 1). Then:
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(i) The operator Iµ is well defined on Hp if and only if µ is a 1-Carleson measure

for Hp.

(ii) If µ is a 1-Carleson measure for Hp, then the operator Hµ is also well defined

on Hp and, furthermore,

Hµ(f) = Iµ(f), for every f ∈ Hp.

(iii) The operator Iµ is a bounded operator from Hp into itself if and only if µ is a

Carleson measure.

Chapter 2 is devoted to study the operators Hµ and Iµ on several spaces of

analytic functions. We started extending the above results to some conformally

invariant spaces as the Bloch space, BMOA, Besov spaces or the Qs classes. All

these results can be found in a joint work with Girela [54].

In the first result we characterize those measures µ for which the operator Iµ is

well defined or bounded in BMOA and in the Bloch space.

For µ a positive Borel measure on [0, 1) we have that the operator Iµ is well

defined in any of these spaces if and only if∫
[0,1)

log
2

1− t
dµ(t) < ∞,

and if this holds, then the following three conditions are equivalent:

(i) The measure µ is a 1-logarithmic 1-Carleson measure.

(ii) The operator Iµ is bounded from B into BMOA.

(iii) The operator Iµ is bounded from BMOA into itself.

Moreover, if (i) holds, then the operator Hµ is also well defined on the Bloch

space and

Hµ(f) = Iµ(f), for all f ∈ B,

and hence the operator Hµ is bounded from B into BMOA.

We have also the following result regarding compactness:

Let µ be a positive Borel measure on [0, 1) with
∫

[0,1)
log 2

1−t dµ(t) < ∞. If µ is

a vanishing 1-logarithmic 1-Carleson measure then:
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(i) The operator Iµ is a compact operator from B into BMOA.

(ii) The operator Iµ is a compact operator from BMOA into itself.

The results concerning the well definition and boundedness of Iµ in BMOA and

in the Bloch space remain true for all the Qs spaces with s > 0. That is, we have:

For any given s ∈ (0,∞) and for a positive Borel measure µ, the operator Iµ is

well defined in Qs if and only if∫
[0,1)

log
2

1− t
dµ(t) < ∞,

and if this holds, then the following condition are equivalent:

(i) The measure µ is a 1-logarithmic 1-Carleson measure.

(ii) For any given s ∈ (0,∞), the operator Iµ is bounded from Qs into BMOA.

Moreover, if (i) holds, then for any given s ∈ (0,∞) the operator Hµ coincide with

Iµ in Qs, and, hence, it is also bounded from Qs into BMOA.

We have also studied the operator Iµ acting on Besov spaces. As usual, for

1 < p <∞, p′ will denote the exponent conjugate to p, that is, 1
p

+ 1
p′

= 1. We have

proved the following results:

Let 1 < p <∞ and let µ be a positive Borel measure on [0, 1). We have:

(i) If
∫

[0,1)

(
log 2

1−t

)1/p′
dµ(t) < ∞, then the operator Iµ is well defined in Bp.

(ii) If the operator Iµ is well defined in Bp, then
∫

[0,1)

(
log 2

1−t

)γ
dµ(t) < ∞ for

all γ < 1
p′
.

(iii) If µ is a 1/p′-logarithmic 1-Carleson measure then the operator Iµ is bounded

from Bp into BMOA.

(iv) If µ is a vanishing 1/p′-logarithmic 1-Carleson measure then the operator Iµ

is compact from Bp into BMOA.

Working directly with the operator Hµ we have obtained that:

If µ is a finite positive Borel measure on [0, 1) then:
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(i) If 1 < p ≤ 2 and
∑∞

k=1

µp
′
k

k
< ∞, then the operator Hµ is well defined in Bp.

(ii) If 2 < p < ∞ and
∑∞

k=1

µp
′
k

kp
′/p < ∞, then the operator Hµ is well defined in

Bp.

In [16], Bao and Wulan proved that there exists a positive Borel measure µ on

[0, 1) which is a Carleson measure but such that Hµ(B2) 6⊂ B2. They also proved

that if Hµ is a bounded operator from B2 into itself then µ is a Carleson measure.

We improve these results and extend them to all Bp spaces with 1 < p <∞.

If 1 < p <∞ then:

(i) If 0 < β ≤ 1
p

then there exists a positive Borel measure µ on [0, 1) which is a

β-logarithmic 1-Carleson measure but such that Hµ(Bp) 6⊂ Bp.

(ii) If µ is a positive Borel measure on [0, 1) such that the operator Hµ is bounded

from Bp into itself. Then µ is a 1/p′-logarithmic 1-Carleson measure [55].

(iii) If γ > 1 and µ is a positive Borel measure on [0, 1) which is a γ-logarithmic

1-Carleson measure. Then the operator Hµ is a bounded operator from Bp

into itself.

Next, we turned our attention to the action of Hµ on Hardy spaces. The above

mentioned results of Galanopoulos and Peláez and Chatzifountas, Girela and Peláez

imply the following.

(i) If µ is a Carleson measure, then the operator Hµ is a bounded operator from

H1 into itself if and only if µ is a 1-logarithmic 1-Carleson measure.

(ii) If 1 < p < ∞ and µ is a 1-Carleson measure for Hp, then the operator Hµ is

a bounded operator from Hp into itself if and only if µ is a Carleson measure.

These results do not close completely the question of characterizing the measures

µ for which Hµ is a bounded operator from Hp into itself. Indeed, in these works the

authors only consider 1-Carleson measures for Hp. In principle, there could exist a

measure µ which is not a 1-Carleson measures for Hp but so that the operator Hµ is
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well defined and bounded on Hp. We have proved that this is not the case. Indeed,

we have proved the following result.

Let µ be a positive Borel measure on [0, 1).

(i) The operator Hµ is a bounded operator from H1 into itself if and only if µ is

a 1-logarithmic 1-Carleson measure.

(ii) If 1 < p <∞ then the operator Hµ is a bounded operator from Hp into itself

if and only if µ is a Carleson measure.

In [28] the parameter p was only taken to be finite. We also give a result for the

case p =∞.

Let µ be a positive Borel measure on [0, 1). Then the following conditions are

equivalent.

(i)
∫

[0,1)
dµ(t)
1−t < ∞.

(ii)
∑∞

n=0 µn < ∞.

(iii) The operator Iµ is a bounded operator from H∞ into itself.

(iv) The operator Hµ is a bounded operator from H∞ into itself.

These results about the action of Hµ on Hardy spaces have been published in

[55] and they are contained in Section 2.1 of the thesis.

In Section 2.2 we recall the following result of Galanopoulos and Peláez.

Let µ be a positive Borel measure on [0, 1). If µ is a Carleson measure then

Hµ(H1) ⊂ C , where C is the space of those analytic functions in the disc which are

the Cauchy transform of a complex Borel measure on ∂D.

At this point we ask ourselves what can we say about image Hµ(H1) of H1

under the action of the operator Hµ if the measure µ is a 1-logarithmic 1-Carleson

measure on [0, 1).

Regarding this question, let us notice that it is easy to see that the space of

Dirichlet type D1
0 is included in H1. We shall prove that if µ is a 1-logarithmic
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1-Carleson measure on [0, 1) then Hµ(H1) is contained in the space D1
0. Actually,

we have the following stronger result.

Let µ be a positive Borel measure on [0, 1). Then the following conditions are

equivalent.

(i) µ is a 1-logarithmic 1-Carleson measure.

(ii) Hµ is a bounded operator from H1 into itself.

(iii) Hµ is a bounded operator from H1 into D1
0.

(iv) Hµ is a bounded operator from D1
0 into D1

0.

There is a gap between the last two results above and so it is natural to discuss

the range of H1 under the action of Hµ when µ is an α-logarithmic 1-Carleson

measure with 0 < α < 1. We shall prove the following result.

Let µ be a positive Borel measure on [0, 1). Suppose that 0 < α < 1 and

that µ is an α-logarithmic 1-Carleson measure. Then Hµ maps H1 into the space

D1(logα−1) defined as follows:

D1(logα−1) =

{
f ∈ Hol(D) :

∫
D
|f ′(z)|

(
log

2

1− |z|

)α−1

dA(z) <∞

}
.

All these results can be found in a joint work with Girela [56].

We gave before a result about the boundedness of the operator Hµ acting from

Qs spaces (with 0 < s <∞) into BMOA. It is natural to look for a characterization

of those µ for which Iµ and/or Hµ is a bounded operator from B into itself or, more

generally, from Qs into itself for any s > 0. We have the following result.

Let µ be a positive Borel measure on [0, 1). Then the following conditions are

equivalent.

(i) The operator Iµ is bounded from Qs into itself for some s > 0.

(ii) The operator Iµ is bounded from Qs into itself for all s > 0.
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(iii) The operator Hµ is bounded from Qs into itself for some s > 0.

(iv) The operator Hµ is bounded from Qs into itself for all s > 0.

(v) The measure µ is a 1-logarithmic 1-Carleson measure.

In fact, we are able to prove a stronger result which does not distinguish between

different Qs spaces.

Let µ be a positive Borel measure on [0, 1) and let 0 < s1, s2 < ∞. Then the

following conditions are equivalent.

(i) The operator Iµ is well defined in Qs1 and, furthermore, it is a bounded oper-

ator from Qs1 into Qs2 .

(ii) The operator Hµ is well defined in Qs1 and, furthermore, it is a bounded

operator from Qs1 into Qs2 .

(iii) The measure µ is a 1-logarithmic 1-Carleson measure.

This result follows from a more general theorem which we have proved where the

mean Lipschitz space Λ2
1/2 shows up.

Let µ be a positive Borel measure on [0, 1) and let X be a Banach space of

analytic functions in D with Λ2
1/2 ⊂ X ⊂ B. Then the following conditions are

equivalent.

(i) The operator Iµ is well defined in X and, furthermore, it is a bounded operator

from X into Λ2
1/2.

(ii) The operatorHµ is well defined inX and, furthermore, it is a bounded operator

from X into Λ2
1/2.

(iii) The measure µ is a 1-logarithmic 1-Carleson measure.

(iv)
∫

[0,1)
tn log 1

1−tdµ(t) = O
(

1
n

)
.
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All these results are published in [55] and they are included in Section 2.3 of the

thesis.

Section 2.4 is devoted to extend the above result to a more general class of mean

Lipschitz spaces. The results in this section can be found in [72].

First of all, we improve the last result changing Λ2
1/2 by Λp

1/p for any p > 1.

Suppose that 1 < p < ∞. Let µ be a positive Borel measure on [0, 1) and let

X be a Banach space of analytic functions in D with Λp
1/p ⊂ X ⊂ B. Then the

following conditions are equivalent.

(i) The operatorHµ is well defined inX and, furthermore, it is a bounded operator

from X into the Bloch space B.

(ii) The operatorHµ is well defined inX and, furthermore, it is a bounded operator

from X into Λp
1/p.

(iii) The measure µ is a 1-logarithmic 1-Carleson measure.

(iv)
∫

[0,1)
tn log 1

1−tdµ(t) = O
(

1
n

)
.

The spaces Λp
1/p are included in BMOA. Our next step is to study the operator

Hµ acting in generalized mean Lipschitz spaces not included in BMOA. We work

with the spaces Λ(p, ω) defined as

Λ(p, ω) =

{
f analytic in D : Mp(r, f

′) = O

(
ω(1− r)

1− r

)
, as r → 1

}
,

where 1 < p < ∞ and ω is an admissible weight ω : [0, π] → [0,∞) in the sense of

Blasco and de Souza [22, 23]. We have proved the following.

Let 1 < p <∞ and let ω an admissible weight with ω(δ)

δ1/p
↗∞ when δ ↘ 0 (this

condition implies that Λ(p, ω) is not included in the Bloch space). The following

conditions are equivalent:

(i) The operator Hµ is well defined in Λ(p, ω) and, furthermore, it is a bounded

operator from Λ(p, ω) into itself.

(ii) The measure µ is a Carleson measure.
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In the beginning of our research we started to study conformally invariant spaces.

BMOA has a very important role among these spaces. In order to continue our work,

we have focused in Morrey spaces, a generalization of BMOA. For 0 < λ ≤ 1 the

Morrey space L2,λ is defined as

L2,λ =

f ∈ H2 : ‖f‖λ,∗ = sup
I⊂T

I interval

(
1

|I|λ

∫
I

∣∣f(eiθ)− fI
∣∣2 dθ)1/2

<∞

 .

It is clear that for λ = 1 the Morrey space L2,1 coincides with BMOA. For

λ ∈ (0, 1), the Morrey space L2,λ is a proper space between BMOA and the Hardy

space H2.

Chapter 3 is devoted to this class of spaces. We have divided the study in two

sections. In Section 3.1 we speak about the structure of these spaces characterizing

for some typical classes of analytic functions C those functions in C which lie in

the Morrey spaces, and paying attention to the differences and similarities with

Hardy spaces and BMOA. Section 3.2 is devoted to the action of semigroups of

composition operators on Morrey spaces.

In Section 3.1 we present some known results for Morrey spaces such as the

growth of functions, their power series with Hadamard gaps, or a characterization of

certain random power series in L2,λ. We also give a characterization of the functions

in Morrey spaces in term of its Taylor coefficients.

For 0 < λ ≤ 1 and for an analytic function f(z) =
∞∑
n=0

anz
n we have that f ∈ L2,λ

if and only if

sup
w∈D

∞∑
n=0

(1− |w|2)2−λ

(n+ 1)2

∣∣∣∣∣
n∑
k=0

(k + 1)ak+1w
n−k

∣∣∣∣∣
2

<∞.

If we restrict to the case that the Taylor coefficients of the function f are non-

negative, we have the following.

For 0 < λ ≤ 1 and for an analytic function f(z) =
∞∑
n=0

anz
n with an ≥ 0 for every

n ≥ 0, we have that f ∈ L2,λ if and only if

sup
n≥1

1

n1−λ

∞∑
k=0

(k+1)n−1∑
j=kn

aj

2

<∞.
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We give also an easy characterization of functions in Morrey spaces with non-

negative and non-increasing Taylor coefficients.

For 0 < λ < 1 and for an analytic function f(z) =
∞∑
n=0

anz
n with an ≥ 0 for every

n ≥ 0 and {an} non-increasing, we have that

f ∈ L2,λ ⇔ an . n−
1+λ
2 .

Thanks to this result, we also prove that Morrey spaces contain functions with

the maximum possible growth and that the functions with non-negative and non-

increasing Taylor coefficients which belong to L2,λ belong also to all Hardy spaces

Hp with p < 2
1−λ , that is:

Let 0 < λ < 1. We define P as the class of analytic functions in the disc with

non-negative and non-increasing Taylor coefficients,

P =

{
f(z) =

∞∑
n=0

anz
n ∈ Hol(D) : an ≥ 0 and {an} non-increasing

}
.

Then

L2,λ ∩ P ⊂
⋂

p< 2
1−λ

Hp.

In the same way as what happens with functions with non-negative and non-

increasing Taylor coefficients, we prove that the intersection of the Morrey space

L2,λ with the class of univalent functions is contained in all Hardy spaces Hp with

p < 2
1−λ , that is, we have:

For 0 < λ < 1 we have that

L2,λ ∩ U ⊂
⋂

p< 2
1−λ

Hp.
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We do not know if these two results can be extended to the whole Morrey space.

We leave this question as a conjecture.

Let 0 < λ < 1. It is true that

L2,λ ⊂
⋂

p< 2
1−λ

Hp ?

As we said before, Section 3.2 is devoted to the study of semigroups of com-

position operators on Morrey spaces. This appears in [47], a joint work with

P. Galanopoulos and A. Siskakis.

A (one-parameter) semigroup of analytic functions is a continuous homomor-

phism Φ : t 7→ Φ(t) = ϕt from the additive semigroup of nonnegative real numbers

into the composition semigroup of all analytic functions which map D into D.

In other words, Φ = (ϕt) consists of analytic functions on D with ϕt(D) ⊂ D and

for which the following three conditions hold:

(i) ϕ0 is the identity in D,

(ii) ϕt+s = ϕt ◦ ϕs, for all t, s ≥ 0,

(iii) ϕt → ϕ0, as t→ 0, uniformly on compact subsets of D.

Each such semigroup gives rise to a semigroup (Ct) consisting of composition

operators on Hol(D),

Ct(f)
def
= f ◦ ϕt, f ∈ Hol(D).

There is a good number of works about semigroups of composition operators

focused on the restriction of (Ct) to certain linear subspaces of Hol(D). Given a

Banach space X consisting of functions in Hol(D) and a semigroup (ϕt), we say

that (ϕt) generates a semigroup of operators on X if (Ct) is a well-defined strongly

continuous semigroup of bounded operators in X. This exactly means that for every

f ∈ X, we have Ct(f) ∈ X for all t ≥ 0 and

lim
t→0+
‖Ct(f)− f‖X = 0.

Some known results about this topic in classical spaces of analytic functions are

the following:
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(i) Every semigroup of analytic functions generates a semigroup of operators on

the Hardy spaces Hp (1 ≤ p <∞) [17], the Bergman spaces Ap (1 ≤ p <∞)

[92], the Dirichlet space [93], and on the spaces VMOA and the little Bloch

space B0 [100].

(ii) No non-trivial semigroup generates a semigroup of operators in the space H∞

of bounded analytic functions [5, 19].

(iii) There are plenty of semigroups (but not all) which generate semigroups of

operators in the disc algebra. Indeed, they can be well characterized in several

analytical terms [31].

Recently, it has been discovered [5, 19, 18] that BMOA and the Bloch space are

in the second case. Our work here is to prove that for 0 < λ < 1 Morrey spaces L2,λ

are also in the same case.

Let us introduce some notation and basic facts about semigroups.

Given a semigroup (ϕt) and a Banach space X, we will denote by [ϕt, X] the max-

imal closed linear subspace of X such that (ϕt) generates a semigroup of operators

on it.

Another important tool in the study of semigroups is the infinitesimal generator.

We define it as

G(z)
def
= lim

t→0+

ϕt(z)− z
t

, z ∈ D.

This convergence holds uniformly on compact subsets of D, so G ∈ Hol(D). Fur-

thermore, G has a unique representation

G(z) = (bz − 1)(z − b)P (z), z ∈ D,

where b ∈ D and P ∈ Hol(D) with Re P (z) ≥ 0 for all z ∈ D. If G is not identically

null, that is, if (ϕt) is not trivial, the couple (b, P ) is uniquely determined from (ϕt)

and the point b is called the Denjoy-Wolff point of the semigroup.

We prove a result about the existence of the maximal subspace referred before

for all semigroup (ϕt) and also a characterization of this maximal subspace via the

infinitesimal generator.

Suppose that 0 < λ < 1 and let (ϕt) be a semigroup of analytic functions.

Then there exists a closed subspace Y ⊂ L2,λ such that (ϕt) generates a semigroup
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of operators on Y and such that any other subspace of L2,λ with this property is

contained in Y . In our notation, Y = [ϕt,L2,λ].

Moreover, if G is the infinitesimal generator of the semigroup (ϕt) then

[ϕt,L2,λ] = {f ∈ L2,λ : Gf ′ ∈ L2,λ}.

We also prove the following result for little Morrey spaces.

For 0 < λ < 1, every semigroup (ϕt) generates a semigroup of operators on L2,λ
0 .

This in particular means that in our notation,

L2,λ
0 ⊂ [ϕt,L2,λ] ⊂ L2,λ,

for every 0 < λ < 1 and every semigroup (ϕt).

We can prove that for dilatations and rotations, the left hand side equality holds.

That is,

L2,λ
0 = [eitz,L2,λ] = [e−tz,L2,λ], for 0 < λ < 1.

Although, in general the first inclusion in this chain of contentions can be proper,

we have obtained a sufficient condition for the equality in the left hand side and also

a necessary condition for semigroups with inner Denjoy-Wolff point.

Let (ϕt) be a semigroup with infinitesimal generator G and let 0 < λ < 1.

(i) If

lim
|I|→0

1

|I|

∫
S(I)

1− |z|
|G(z)|2

dA(z) = 0

then L2,λ
0 = [ϕt,L2,λ].

(ii) If L2,λ
0 = [ϕt,L2,λ] and the Denjoy-Wolff point b ∈ D, then

lim
|z|→1

(1− |z|)
3−λ
2

G(z)
= 0.
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Finally, we close this chapter with a result about the possibility of having equality

in the inclusion

[ϕt,L2,λ] ⊂ L2,λ.

Let X be a Banach space of analytic functions and 0 < λ < 1. Suppose L2,λ ⊂
X ⊂ B 3−λ

2 and let (ϕt) be a non trivial semigroup of analytic functions. Then

[ϕt, X] ( X.

In particular there are no non-trivial semigroups such that [ϕt,L2,λ] = L2,λ.

Chapter 4 is devoted to explore a class of spaces of analytic functions which

shares properties with Dirichlet spaces and Morrey spaces. Most of the results in

this line are contained in [46].

Let λ, p ∈ [0, 1]. We say that an f ∈ Hol(D) belongs to the Dirichlet-Morrey

space Dλp if

‖f‖Dλp = |f(0)|+ sup
a∈D

(1− |a|2)
p
2

(1−λ)‖f ◦ ϕa − f(a)‖Dp <∞.

We first give some results on the structure of these spaces in Section 4.1 and

then we study the pointwise multipliers on them in Section 4.2.

Dirichlet-Morrey spaces can be characterized using Carleson measures.

Let 0 < p, λ < 1 and f ∈ Hol(D). Then f ∈ Dλp if and only if

‖f‖p,λ,∗ = sup
I⊂T

I interval

(
1

|I|pλ

∫
S(I)

|f ′(z)|2(1− |z|2)p dA(z)

)
<∞,

and the norm ‖f‖Dλp is comparable to |f(0)|+ ‖f‖p,λ,∗.

We also give a result about the radial growth of functions in Dirichlet-Morrey

spaces and show that this condition is sharp.

Let 0 < p, λ < 1 then,

(i) There is a constant C = C(p, λ) such that any f ∈ Dλp satisfies

|f(z)| ≤
C‖f‖Dλp

(1− |z|) p2 (1−λ)
, z ∈ D.
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(ii) The function fp,λ(z) = (1− z)−
p
2

(1−λ) belongs to Dλp .

Observe that both parts of the above proposition are also valid when p = 1 for

0 < λ < 1.

In the next result we present a necessary and sufficient condition for a Dirichlet-

Morrey space to be contained in another one.

Let λ1, p1, λ2, p2 ∈ (0, 1). Then

Dλ1p1 ⊆ D
λ2
p2

⇐⇒ p1 ≤ p2 and p1(1− λ1) ≤ p2(1− λ2).

To end this section, we next discuss the boundary values characterization of

Dirichlet-Morrey spaces.

Suppose f ∈ H2 and let 0 < p, λ < 1. Then f ∈ Dλp if and only if

sup
I⊂T

1

|I|pλ

∫
I

∫
I

|f(u)− f(v)|2

|u− v|2−p
|du| |dv| <∞.

Let X be a Banach space of analytic functions on D. A function g ∈ Hol(D) is

said to be a multiplier of X if the multiplication operator

Mg(f)(z) = g(z)f(z), f ∈ X,

is a bounded operator on X. For this it is usually enough to check that Mg(X) ⊂ X

and apply the closed graph theorem. The space of all multipliers of X is denoted

by M(X). Multiplication operators are closely related to the integration operators

Jg and Ig. These are induced by symbols g ∈ Hol(D) as follows

Jg(f)(z) =

∫ z

0

f(w)g′(w) dw, z ∈ D,

and

Ig(f)(z) =

∫ z

0

f ′(w)g(w) dw, z ∈ D,
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and act on functions f ∈ Hol(D). Their relations with Mg comes from the integra-

tion by parts formula

Jg(f)(z) = Mg(f)(z)− f(0)g(0)− Ig(f)(z).

We have a complete characterization for the operator Ig being bounded on Dλp
spaces.

Let 0 < p, λ < 1 and g ∈ Hol(D). Then Ig : Dλp → Dλp is bounded if and only if

g ∈ H∞.

Concerning the action of Jg on Dλp we have the following necessary condition.

Let 0 < p, λ < 1 and g ∈ Hol(D). If Jg : Dλp → Dλp is bounded then g ∈ Qp.

We also have obtained sufficient conditions on g for Jg to be bounded on Dλp .

Suppose 0 < p < 1.

(i) If 0 < q < p and g ∈ Qq then Jg : Dq/pp → Dq/pp is bounded.

(ii) If 0 < λ < 1 and g ∈ Wp then Jg : Dλp → Dλp is bounded.

Where Wp is the space of functions g ∈ Hol(D) such that the measure

dµg(z) = |g′(z)|2(1− |z|2)p dA(z)

is a Dp-Carleson measure, that is, there is a constant C = C(g) such that∫
D
|f(z)|2 dµg(z) ≤ C‖f‖2

Dp , f ∈ Dp.

The above theorems in combination with the relation between operators Mg, Ig

and Jg give the following corollary for multipliers of Dλp .

Suppose 0 < p, λ < 1 and g ∈ Hol(D). Then

(i) If g ∈ Wp ∩H∞ then Mg : Dλp → Dλp is bounded.
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(ii) If g ∈ Qpλ ∩H∞ then Mg : Dλp → Dλp is bounded.

(iii) If Mg : Dλp → Dλp is bounded then g ∈ Qp ∩H∞.

The complete description of the multiplier space M(Dλp ) and of the symbols g

for which Jg is bounded on Dλp , seems to be a hard problem.
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Chapter 1

Preliminaries

This chapter is devoted to present some of the main spaces which will be the

object of our work.

We shall let D = {z ∈ C : |z| < 1} denote the open unit disc in the complex plane

C and T = ∂D will be the boundary of D. We shall also let Hol(D) be the space

of all analytic functions in D endowed with the topology of uniform convergence in

compact subsets.

If 0 < r < 1 and f ∈ Hol(D), we set

Mp(r, f) =

(
1

2π

∫ 2π

0

|f(reit)|p dt
)1/p

, 0 < p <∞,

M∞(r, f) = sup
|z|=r
|f(z)|.

For 0 < p ≤ ∞, the Hardy space Hp consists of those f ∈ Hol(D) such that

‖f‖Hp
def
= sup

0<r<1
Mp(r, f) <∞

(see [40, 49] for the theory of Hp-spaces). In particular, it is known that whenever

f ∈ Hp, 0 < p ≤ ∞, f has finite non-tangential limits a.e. on T. We shall also

denote this function defined on T by f .

If 0 < p < ∞ and α > −1, the weighted Bergman space Apα consists of those

f ∈ Hol(D) such that

‖f‖Apα
def
=

(
(α + 1)

∫
D
(1− |z|2)α|f(z)|p dA(z)

)1/p

<∞.

1
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The unweighted Bergman space Ap0 is simply denoted by Ap. Here, dA(z) = 1
π
dx dy

denotes the normalized Lebesgue area measure in D. We refer to [43, 59, 111] for

the theory of these spaces.

The space of Dirichlet type Dpα (0 < p < ∞ and α > −1) consists of those

f ∈ Hol(D) such that f ′ ∈ Apα. In other words, a function f ∈ Hol(D) belongs to

Dpα if and only if

‖f‖Dpα
def
= |f(0)| +

(
(α + 1)

∫
D
(1− |z|2)α|f ′(z)|p dA(z)

)1/p

< ∞.

We recall that the Bloch space B consists of those f ∈ Hol(D) such that

‖f‖B = |f(0)|+ sup
z∈D

(1− |z|2) |f ′(z)| <∞.

We refer to [6, 111] for the theory of Bloch functions.

We shall write I for an interval of T and |I| for its length. If ψ ∈ L1(∂D), we let

ψI denote the mean of f over the interval I, that is,

ψI
def
=

1

|I|

∫
I

ψ(eiθ) dθ.

The mean oscillation of ψ over I is

|ψ − ψI |I =
1

|I|

∫
I

|ψ(eiθ)− ψI | dθ.

We say that ψ has bounded mean oscillation or that ψ ∈ BMO(T) if

sup
I⊂T

I interval

1

|I|

∫
I

|ψ(eiθ)− ψI | dθ <∞.

We can also consider the small version of this space: We say that ψ has vanishing

mean oscillation or that ψ ∈ VMO(T) if

lim
|I|→0

1

|I|

∫
I

|ψ(eiθ)− ψI | dθ = 0.

We define BMOA as the space of those functions f ∈ H1 such that the function

eiθ 7→ f(eiθ) of the boundary values of f belongs to BMO(T) and, in the same way,

we define VMOA as the space of those functions f ∈ BMOA such that the function
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of the boundary values of f belongs to VMO. These spaces can be equipped with

several different equivalent norms [15, 49, 52]. We often work with the one given in

terms of Carleson measures.

If I ⊂ T is an interval, the Carleson square S(I) is defined as

S(I) = {reit : eit ∈ I, 1− |I|
2π
≤ r < 1}.

Also, for a ∈ D, the Carleson box S(a) is defined by

S(a) =
{
z ∈ D : 1− |z| ≤ 1− |a|,

∣∣∣arg(az̄)

2π

∣∣∣ ≤ 1− |a|
2

}
.

If s > 0 and µ is a positive Borel measure on D, we shall say that µ is an

s-Carleson measure if there exists a positive constant C such that

µ (S(I)) ≤ C|I|s, for any interval I ⊂ ∂D,

or, equivalently, if there exists C > 0 such that

µ (S(a)) ≤ C(1− |a|)s, for all a ∈ D.

If µ satisfies lim
|I|→0

µ (S(I))

|I|s
= 0 or, equivalently, lim

|a|→1

µ (S(a))

(1− |a|2)s
= 0, then we say

that µ is a vanishing s-Carleson measure.

An 1-Carleson measure, respectively, a vanishing 1-Carleson measure, will be

simply called a Carleson measure, respectively, a vanishing Carleson measure.

As an important ingredient in his work on interpolation by bounded analytic

functions, Carleson [27] (see also Theorem 9.3 of [40]) proved that if 0 < p <∞ and

µ is a positive Borel measure in D then Hp ⊂ Lp(dµ) if and only if µ is a Carleson

measure. This result was extended by Duren [39] (see also [40, Theorem 9.4]) who

proved that for 0 < p ≤ q < ∞, Hp ⊂ Lq(dµ) if and only if µ is a q/p-Carleson

measure.

If X is a subspace of Hol(D), 0 < q < ∞, and µ is a positive Borel measure in

D, µ is said to be a “q-Carleson measure for the space X” or an “(X, q)-Carleson

measure” if X ⊂ Lq(dµ). The q-Carleson measures for the spaces Hp, 0 < p, q <∞
are completely characterized. The mentioned results of Carleson and Duren can

be stated that if 0 < p ≤ q < ∞ then a positive Borel measure µ in D is a q-

Carleson measure for Hp if and only if µ is a q/p-Carleson measure. Luecking [70]
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and Videnskii [97] solved the remaining case 0 < q < p. We mention [21] for a

complete information on Carleson measures for Hardy spaces.

Now we can give a characterization of BMOA and VMOA in terms of Carleson

measures: Let f ∈ Hol(D), then f ∈ BMOA (resp. VMOA) if and only if the

measure |f ′(z)|2(1 − |z|2)dA(z) is a Carleson measure (resp. vanishing Carleson

measure), and we equip both spaces with the norm [52],

‖f‖2
BMOA = |f(0)|2 + sup

I⊂T
I interval

∫
S(I)
|f ′(z)|2(1− |z|2) dA(z)

|I|
.

The following chain of embeddings [15, 49, 52] holds

H∞ ⊂ BMOA ⊂ B.

For w ∈ D, we let ϕw denote the Möbius transformation defined by

ϕw(z) =
w − z
1− w̄z

.

Then ϕw is a conformal mapping from the unit disc onto itself and interchanges the

origin with w.

Let us denote by Aut(D) the group of all conformal mappings from D onto itself.

It is known that

Aut(D) = {λϕw : w ∈ D, |λ| = 1}.

We can give a characterization of BMOA and VMOA in terms of H2 norms:

Let f ∈ Hol (D), then f ∈ BMOA if and only if {f ◦ ϕa − f(a)}a∈D is a bounded

family in H2. The condition ‖f ◦ ϕa − f(a)‖H2 → 0, as |a| → 1, is equivalent to

saying that f ∈ VMOA. We equip both spaces with the following norm [52], which

is called the Garsia’s norm.

‖f‖BMOA = |f(0)|+ sup
a∈D
‖f ◦ ϕa − f(a)‖H2 .

Fefferman’s duality theorem [52] gives a very important result about these spaces.

Let X ⊂ Hol(D) and let X∗ denote the dual space of X, that is, the space of all

continuous linear functionals T : X → C.

There is a bijection between the dual space of H1 and BMOA. If f ∈ BMOA

then, the operator Tf defined by

Tf (g) = lim
r→1

1

2π

∫ π

−π
f(eiθ)g(reiθ) dθ, g ∈ H1,
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belongs to (H1)
∗

and ‖Tf‖ � ‖f‖BMOA.

Conversely, for every T ∈ (H1)
∗

there exists a unique f ∈ BMOA such that

T = Tf .

In a similar way, there is a bijection between H1 and the dual space of VMOA.

If g ∈ H1 then, the operator Sg defined by

Sg(f) = lim
r→1

1

2π

∫ π

−π
f(eiθ)g(reiθ) dθ, f ∈ VMOA,

belongs to VMOA∗ and ‖Sg‖ � ‖g‖H1 .

Conversely, for every S ∈ VMOA∗ there exists a unique g ∈ H1 such that

S = Sg.

So we conclude that(
H1
)∗ ≈ BMOA and VMOA∗ ≈ H1.

A space X ⊂ H(D) equipped with a seminorm ρ is called conformally invariant

or Möbius invariant if there exists a constant C > 0 such that

sup
ϕ
ρ(g ◦ ϕ) ≤ Cρ(g), g ∈ X,

where the supremum is taken on all Möbius transformations ϕ of D onto itself.

BMOA and B have the important property of being conformally invariant spaces

[52].

Other important Möbius invariant spaces are the Qs-spaces (s > 0) and the

analytic Besov spaces Bp (1 < p <∞).

If 0 ≤ s <∞, we say that f ∈ Qs if f is analytic in D and

‖f‖Qs
def
=
(
|f(0)|2 + ρQs(f)2

)1/2
< ∞,

where

ρQs(f)
def
=

(
sup
a∈D

∫
D
|f ′(z)|2g(z, a)s dA(z)

)1/2

.

Here, g(z, a) is the Green’s function in D, given by g(z, a) = log
∣∣1−az
z−a

∣∣. All Qs spaces

(0 ≤ s <∞) are conformally invariant with respect to the semi-norm ρQs [35, 103].

These spaces were introduced by Aulaskari and Lappan in [11] while looking for

new characterizations of Bloch functions. They proved that for s > 1, Qs is the

Bloch space. Using one of the many characterizations of the space BMOA (see,



6 Chapter 1. Preliminaries

e. g., [15, Theorem 5] or [52, Theorem 6. 2]) we see that Q1 = BMOA. In the limit

case s = 0, Qs is the classical Dirichlet space D of those analytic functions f in D
satisfying ∫

D
|f ′(z)|2 dA(z) <∞.

It is well known that D ⊂ VMOA. Aulaskari, Xiao and Zhao proved in [14] that

D ( Qs1 ( Qs2 ( BMOA, 0 < s1 < s2 < 1.

We mention the book [103] as an excellent reference for the theory of Qs-spaces.

For 1 < p <∞, the analytic Besov space Bp is defined as the set of all functions

f analytic in D such that

‖f‖Bp
def
= (|f(0)|p + ρp(f)p)1/p <∞,

where

ρp(f) =

(∫
D
(1− |z|2)p−2|f ′(z)|p dA(z)

)1/p

.

All Bp spaces (1 < p <∞) are conformally invariant with respect to the semi-norm

ρp (see [8, p. 112] or [35, p. 46]). We have that D = B2. A lot of information on

Besov spaces can be found in [8, 35, 36, 61, 110, 111]. Let us recall that

Bp ( Bq ( VMOA, 1 < p < q <∞.

We close this chapter noticing that, as usual, we shall be using the convention

that C = C(p, α, q, β, . . . ) will denote a positive constant which depends only upon

the displayed parameters p, α, q, β . . . (which sometimes will be omitted) but not

necessarily the same at different occurrences. Moreover, for two real-valued func-

tions E1, E2 we write E1 . E2, or E1 & E2, if there exists a positive constant C

independent of the arguments such that E1 ≤ CE2, respectively E1 ≥ CE2. If

we have E1 . E2 and E1 & E2 simultaneously then we say that E1 and E2 are

equivalent and we write E1 � E2.



Chapter 2

A generalized Hilbert matrix

acting on spaces of analytic

functions

In this chapter we shall study a class of integral operators associated with certain

Hankel matrices acting on different spaces of analytic functions. Most of our results

concerning this topic are included in [54], [55], [56] and [72].

If µ is a finite positive Borel measure on [0, 1) and n = 0, 1, 2, . . . , we let µn

denote the moment of order n of µ, that is,

µn =

∫
[0,1)

tn dµ(t),

and we let Hµ be the Hankel matrix (µn,k)n,k≥0 with entries µn,k = µn+k.

Hµ =


µ0 µ1 µ2 µ3 . . .

µ1 µ2 µ3 µ4 . . .

µ2 µ3 µ4 µ5 . . .
...

...
...

...
. . .

 .

The matrix Hµ can be viewed as an operator on spaces of analytic functions by

its action on the Taylor coefficients:

{an}∞n=0 7→

{
∞∑
k=0

µn,kak

}∞
n=0

.

7
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µ0 µ1 µ2 µ3 . . .

µ1 µ2 µ3 µ4 . . .

µ2 µ3 µ4 µ5 . . .
...

...
...

...
. . .



a0

a1

a2

...

 =


∑∞

k=0 µkak∑∞
k=0 µk+1ak∑∞
k=0 µk+2ak

...

 .

To be precise, if f(z) =
∑∞

k=0 akz
k ∈ Hol(D) we define

Hµ(f)(z) =
∞∑
n=0

(
∞∑
k=0

µn,kak

)
zn,

whenever the right hand side makes sense and defines an analytic function in D.

If µ is the Lebesgue measure on [0, 1) the matrix Hµ reduces to the classical

Hilbert matrix H = ((n+ k + 1)−1)n,k≥0, which induces the classical Hilbert op-

erator H, a prototype of a Hankel operator which has extensively studied recently

(see [2, 33, 34, 37, 63, 65]). Other related generalizations of the Hilbert operator

have been considered in [45] and [81].

Hardy’s inequality [40, page 48] guarantees that H(f) is a well defined analytic

function in D for every f ∈ H1. However, the resulting Hilbert operator H is

bounded from Hp to Hp if and only if 1 < p < ∞ [34]. In a recent paper [65]

Lanucha, Nowak, and Pavlović have considered the question of finding subspaces of

H1 which are mapped by H into H1.

The question of describing the measures µ for which the operator Hµ is well

defined and bounded on distinct spaces of analytic functions has been studied in a

good number of papers (see [16, 28, 48, 54, 55, 72, 74, 89, 99]). Carleson measures

play a basic role in these works.

Galanopoulos and Peláez [48] studied the question of characterizing the measures

µ so that the generalized Hilbert operator Hµ becomes well defined and bounded on

H1. Indeed, they proved that if µ is a Carleson measure then the operator Hµ is

well defined in H1, obtaining en route the following integral representation

Hµ(f)(z) =

∫
[0,1)

f(t)

1− tz
dµ(t), z ∈ D, for all f ∈ H1.

For simplicity, we shall write throughout the chapter

Iµ(f)(z) =

∫
[0,1)

f(t)

1− tz
dµ(t), (2.0.1)
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whenever the right hand side makes sense and it defines an analytic function in D.

In [28], Chatzifountas, Girela and Peláez extended the above results studying the

operator Hµ acting from Hp into Hq, 0 < p, q <∞. In these works, an extension of

the classical definition of Carleson measures shows up:

Following [109], if µ is a positive Borel measure on D, 0 ≤ α <∞, and 0 < s <∞
we say that µ is an α-logarithmic s-Carleson measure if there exists a positive

constant C such that

µ (S(I))
(

log 2π
|I|

)α
|I|s

≤ C, for any interval I ⊂ ∂D.

If µ (S(I))
(

log 2π
|I|

)α
= o (|I|s), as |I| → 0, we say that µ is a vanishing α-logarithmic

s-Carleson measure.

A positive Borel measure µ on [0, 1) can be seen as a Borel measure on D by

identifying it with the measure µ̃ defined by

µ̃(A) = µ (A ∩ [0, 1)) , for any Borel subset A of D.

In this way a positive Borel measure µ on [0, 1) is an α-logarithmic s-Carleson

measure if and only if there exists a positive constant C such that

µ ([t, 1))

(
log

2π

1− t

)α
≤ C(1− t)s, 0 ≤ t < 1,

and µ is a vanishing α-logarithmic s-Carleson measure if

µ ([t, 1))

(
log

2π

1− t

)α
= o ((1− t)s) , as t→ 1.

Our main aim in this chapter is to improve the above results about the gen-

eralized Hilbert matrix Hµ acting on Hp spaces (1 ≤ p ≤ ∞) and the study of

this operator in some of the most important conformally invariant spaces as well as

in mean Lipschitz spaces. A key tool will be a description of those positive Borel

measures µ on [0, 1) for which Hµ is well defined in these spaces and satisfies that

Hµ(f) = Iµ(f) for all f .
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2.1 A generalized Hilbert matrix acting on Hardy

spaces

Let us start with some of the previous results about Hµ and Iµ on Hardy spaces.

In 1966, Widom [99, Theorem 3. 1] (see also [89, Theorem 3] and [83, p. 42, Theo-

rem 7. 2]) proved that Hµ is a bounded operator from H2 into itself if and only µ is a

Carleson measure. More recently, Galanopoulos and Peláez in [48] and Chatzifoun-

tas, Girela and Peláez in [28] have extended these works studying the action of Hµ

on H1 and Hp for 0 < p < ∞ respectively. Some of their results are the following

ones:

Theorem A ([48]). Let µ be a positive Borel measure on [0, 1). Then:

(i) The operator Iµ is well defined on H1 if and only if µ is a Carleson measure.

(ii) If µ is a Carleson measure, then the operator Hµ is also well defined on H1

and, furthermore,

Hµ(f) = Iµ(f), for every f ∈ H1.

(iii) The operator Iµ is a bounded operator from H1 into itself if and only if µ is a

1-logarithmic 1-Carleson measure.

Theorem B ([28]). Suppose that 1 < p <∞ and let µ be a positive Borel measure

on [0, 1). Then:

(i) The operator Iµ is well defined on Hp if and only if µ is a 1-Carleson measure

for Hp.

(ii) If µ is a 1-Carleson measure for Hp, then the operator Hµ is also well defined

on Hp and, furthermore,

Hµ(f) = Iµ(f), for every f ∈ Hp.

(iii) The operator Iµ is a bounded operator from Hp into itself if and only if µ is a

Carleson measure.

Theorem A and Theorem B immediately yield the following.
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Theorem C. Let µ be a positive Borel measure on [0, 1).

(i) If µ is a Carleson measure, then the operator Hµ is a bounded operator from

H1 into itself if and only if µ is a 1-logarithmic 1-Carleson measure.

(ii) If 1 < p <∞ and µ is a 1-Carleson measure for Hp, then the operator Hµ is

a bounded operator from Hp into itself if and only if µ is a Carleson measure.

Theorem C does not close completely the question of characterizing the measures

µ for which Hµ is a bounded operator from Hp into itself. Indeed, in Theorem C we

only consider 1-Carleson measures for Hp. In principle, there could exist a measure

µ which is not a 1-Carleson measure for Hp but so that the operator Hµ is well

defined and bounded on Hp. Our first result in this section asserts that this is not

the case.

Theorem 1 ([55]). Let µ be a positive Borel measure on [0, 1).

(i) The operator Hµ is a bounded operator from H1 into itself if and only if µ is

a 1-logarithmic 1-Carleson measure.

(ii) If 1 < p < ∞ then the operator Hµ is a bounded operator from Hp into itself

if and only if µ is a Carleson measure.

In [28] the parameter p was only considered to be finite. Here we give a result

for the case p =∞.

Theorem 2 ([55]). Let µ be a positive Borel measure on [0, 1). Then the following

conditions are equivalent.

(i)
∫

[0,1)
dµ(t)
1−t < ∞.

(ii)
∑∞

n=0 µn < ∞.

(iii) The operator Iµ is a bounded operator from H∞ into itself.

(iv) The operator Hµ is a bounded operator from H∞ into itself.
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2.1.1 Proofs

This section is devoted to prove Theorem 1 and Theorem 2.

Proof of Theorem 1 (i). Suppose that Hµ is a bounded operator from H1 into itself.

For 0 < b < 1, set

fb(z) =
1− b2

(1− bz)2
, z ∈ D.

We have that fb ∈ H1 and ‖fb‖H1 = 1. Since Hµ is bounded on H1, this implies

that

1 & ‖Hµ(fb)‖H1 . (2.1.1)

We also have,

fb(z) =
∞∑
k=0

ak,bz
k, with ak,b = (1− b2)(k + 1)bk.

Using Hardy’s inequality, (2.1.1) and the definition of the ak,b’s, we obtain

1 & ‖Hµ(fb)‖H1 &
∞∑
n=1

1

n

(
∞∑
k=0

µn+kak,b

)

=
∞∑
n=1

1

n

(
∞∑
k=0

ak,b

∫
[0,1)

tn+k d µ(t)

)

& (1− b2)
∞∑
n=1

1

n

(
∞∑
k=1

kbk
∫

[b,1)

tn+k dµ(t)

)

& (1− b2)
∞∑
n=1

1

n

(
∞∑
k=1

kbn+2k µ ([b, 1))

)

= (1− b2)µ ([b, 1))
∞∑
n=1

bn

n

(
∞∑
k=1

kb2k

)

= (1− b2)µ ([b, 1))

(
log

1

1− b

)
b

(1− b2)2
.

Then it follows that

µ ([b, 1)) = O

(
1− b

log 1
1−b

)
, as b→ 1.

Hence, µ is a 1-logarithmic 1-Carleson measure.
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The converse follows from Theorem C (i).

Proof of Theorem 1 (ii). Suppose that 1 < p < ∞ and that µ is a positive Borel

measure on [0, 1) such that the operator Hµ is a bounded operator from Hp into

itself.

For 0 < b < 1, set

fb(z) =

(
1− b2

(1− bz)2

)1/p

, z ∈ D.

We have that fb ∈ Hp and ‖fb‖Hp = 1. Since Hµ is bounded on Hp, this implies

that

1 & ‖Hµ(fb)‖Hp . (2.1.2)

We also have,

fb(z) =
∞∑
k=0

ak,bz
k, with ak,b ≈ (1− b2)1/pk

2
p
−1bk.

Since the ak,b’s are positive, it is clear that the sequence {
∑∞

k=0 µn+kak,b}∞n=0 of the

Taylor coefficients of Hµ(fb) is a decreasing sequence of non-negative real numbers.

Using this, Theorem A of [78], (2.1.2), and the definition of the ak,b’s, we obtain

1 & ‖Hµ(fb)‖pHp &
∞∑
n=1

np−2

(
∞∑
k=0

µn+kak,b

)p

=
∞∑
n=1

np−2

(
∞∑
k=0

ak,b

∫
[0,1)

tn+k dµ(t)

)p

& (1− b2)
∞∑
n=1

np−2

(
∞∑
k=1

k
2
p
−1bk

∫
[b,1)

tn+k dµ(t)

)p

& (1− b2)
∞∑
n=1

np−2

(
∞∑
k=1

k
2
p
−1bn+2kµ ([b, 1))

)p

= (1− b2)µ ([b, 1))p
∞∑
n=1

np−2bnp

(
∞∑
k=1

k
2
p
−1b2k

)p

� (1− b2)µ ([b, 1))p
1

(1− b)2

∞∑
n=1

np−2bnp

� µ ([b, 1))p
1

(1− b)p
, as b→ 1.
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Then it follows that

µ ([b, 1)) = O (1− b) , as b→ 1,

and, hence, µ is a Carleson measure.

The other implication follows from Theorem C (ii).

Proof of Theorem 2. The equivalence (i)⇔ (ii) is clear because

∫
[0,1)

dµ(t)

1− t
=

∫
[0,1)

(
∞∑
n=0

tn

)
dµ(t) =

∞∑
n=0

∫
[0,1)

tndµ(t) =
∞∑
n=0

µn.

The implication (i)⇒ (iii) is obvious.

(iii)⇒ (i): Suppose (iii). Let f be the constant function f(z) = 1, for all z. Then

(iii) implies that there exists a positive constant C such that

∣∣∣∣∫
[0,1)

dµ(t)

1− tz

∣∣∣∣ ≤ C, z ∈ D.

Taking z = r ∈ (0, 1) in this inequality, we have

∫
[0,1)

dµ(t)

1− tr
≤ C, r ∈ (0, 1).

Letting r tend to 1, (i) follows.

(iii)⇒ (iv): Suppose (iii). We have seen that then (i) holds, and it is easy to

see that (i) implies that µ is a Carleson measure. Using part (ii) of Theorem A, it

follows that Hµ is well defined in H∞ and that Hµ(f) = Iµ(f) for all f in H∞. Then

(iii) gives that Hµ is bounded from H∞ into itself.

(iv)⇒ (iii): Suppose that (iv) is true and, as above, let f be the constant function

f(z) = 1, for all z. Then Hµ(f) ∈ H∞. But Hµ(f)(z) =
∑∞

n=0 µnz
n and then it is

clear that

Hµ(f) ∈ H∞ ⇔
∞∑
n=0

µn <∞.

Thus we have seen that (iv)⇒ (ii). Since (ii)⇔ (iii), this finishes the proof.
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2.2 Further results on the action of a generalized

Hilbert matrix on H1

Let us recall some results concerning the Hilbert operator H and the integral

operator

If(z) =

∫ 1

0

f(t)

1− tz
dt, z ∈ D,

which is defined when the right-hand side converge for all z ∈ D and the resulting

function If is analytic in D.

As we said before, if f ∈ H1, f(z) =
∑∞

n=0 anz
z by Hardy’s inequality [40, p. 48]

we have that
∞∑
n=0

an
n+ 1

≤ π‖f‖H1 ,

and then Hf is a well defined analytic function for every f ∈ H1. By the Fejér-Riesz

inequality [40, Theorem 3. 13, p. 46] we also have that∫ 1

0

|f(t)| dt ≤ π‖f‖H1 ,

and then If is a well defined analytic function for every f ∈ H1. Furthermore,

Hf = If for every f ∈ H1.

Diamantopoulos and Siskakis [34] proved that H is a bounded operator from

Hp into itself if 1 < p < ∞, but this is not true for p = 1. In fact, they proved

that H (H1) * H1. Cima [29] has recently proved the following result.

Theorem D.

(i) The operator H maps H1 into the space C of Cauchy transforms of measures

on the unit circle ∂D.

(ii) H : H1 → C is injective.

We recall that if σ is a finite complex Borel measure on ∂D, the Cauchy trans-

form Cσ is defined by

Cσ(z) =

∫
∂D

dσ(ξ)

1− ξ z
, z ∈ D.
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We let M be the space of all finite complex Borel measure on ∂D. It is a Banach

space with the total variation norm. The space of Cauchy transforms is C = {Cσ :

σ ∈ M }. It is a Banach space with the norm ‖Cσ‖ def
= inf{‖τ‖ : Cτ = Cσ}. We

mention [30] as an excellent reference for the main results about Cauchy transforms.

We let A denote the disc algebra, that is, the space of analytic functions in D with

a continuous extension to the closed unit disc, endowed with the ‖ · ‖H∞-norm. It

turns out [30, Chapter 4] that A can be identified with the pre-dual of C via the

pairing

〈g, Cσ〉 def
= lim

r→1

1

2π

∫ 2π

0

g(reiθ)Cσ(reiθ) dθ, g ∈ A. (2.2.1)

This is the basic ingredient used by Cima to prove the inclusion H(H1) ⊂ C .

In [48, Theorem 2. 2] Galanopoulos and Peláez proved the following.

Theorem E. Let µ be a positive Borel measure on [0, 1). If µ is a Carleson

measure then Hµ(H1) ⊂ C .

This result is stronger than Theorem D(i).

In view of Theorem A and Theorem E, the following question arises naturally.

Question 1. Suppose that µ is a 1-logarithmic 1-Carleson measure on [0, 1). What

can we say about the image Hµ(H1) of H1 under the action of the operator Hµ ?

To answer Question 1, let us start noticing that it is easy to see that the space of

Dirichlet type D1
0 is included in H1. Actually, we have Dpp−1 ⊂ Hp for 0 < p ≤ 2

(see [98, Lemma 1. 4]). The following result of Pavlović [78, Theorem 3.2] implies

that for a function f ∈ Hol(D) whose sequence of Taylor coefficients is decreasing

we have that f ∈ D1
0 ⇔ f ∈ H1.

Theorem F. Let f ∈ Hol(D), f(z) =
∑∞

n=0 anz
n, and suppose that the sequence

{an} is a decreasing sequence of non-negative real numbers. Then f ∈ D1
0 if and

only if
∑∞

n=0
an
n+1

<∞, and we have

‖f‖D1
0
�

∞∑
n=0

an
n+ 1

.

We shall prove that if µ is a 1-logarithmic 1-Carleson measure on [0, 1) then

Hµ(H1) is contained in the space D1
0. Actually, we have the following stronger

result.
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Theorem 3 ([56]). Let µ be a positive Borel measure on [0, 1). Then the following

conditions are equivalent.

(i) µ is a 1-logarithmic 1-Carleson measure.

(ii) Hµ is a bounded operator from H1 into itself.

(iii) Hµ is a bounded operator from H1 into D1
0.

(iv) Hµ is a bounded operator from D1
0 into D1

0.

There is a gap between Theorem E and Theorem 3 and so it is natural to discuss

the range of H1 under the action of Hµ when µ is an α-logarithmic 1-Carleson

measure with 0 < α < 1. We shall prove the following result.

Theorem 4 ([56]). Let µ be a positive Borel measure on [0, 1). Suppose that

0 < α < 1 and that µ is an α-logarithmic 1-Carleson measure. Then Hµ maps

H1 into the space D1(logα−1) defined as follows:

D1(logα−1) =

{
f ∈ Hol(D) :

∫
D
|f ′(z)|

(
log

2

1− |z|

)α−1

dA(z) <∞

}
.

All these results can be found in a joint work with Girela [56]. In the same work

we study the action of the operators Hµ on the Bergman spaces Apα and on the

Dirichlet spaces Dp
α.

2.2.1 Proofs

We include the proof of Theorem E for the sake of completness.

Proof of Theorem E. We shall argue as in the proof of Theorem D in [29]. Suppose

that µ is a Carleson measure and f ∈ H1. Recall that Hµf = Iµf . Hence, we have

to show that Iµf defines a bounded linear functional on the disc algebra A with

the duality relation (2.2.1). Take g ∈ A and 0 < r < 1. Using the definition of Iµ

and Fubini’s theorem, we obtain

1

2π

∫ 2π

0

g(reiθ) Iµf(reiθ) dθ =
1

2π

∫ 2π

0

g(reiθ)

(∫
[0,1)

f(t)

1− tre−iθ
dµ(t)

)
dθ

=

∫
[0,1)

f(t)

(
1

2πi

∫ 2π

0

g(reiθ)ieiθ

eiθ − tr
dθ

)
dµ(t)

=

∫
[0,1)

f(t)

(
1

2πi

∫
|z|=1

g(rz)

z − tr
dz

)
dµ(t).
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Then using Cauchy’s integral formula it follows that

1

2π

∫ 2π

0

g(reiθ) Iµf(reiθ) dθ =

∫
[0,1)

f(t)g(r2t) dµ(t). (2.2.2)

Since µ is a Carleson measure, we have that
∫ 1

0
|f(t)| dµ(t) . ‖f‖H1 , and then it

follows that∫
[0,1)

|f(t)g(t)| dµ(t) ≤ ‖g‖H∞
∫

[0,1)

|f(t)| dµ(t) . ‖g‖H∞‖f‖H1 . (2.2.3)

Since g ∈ A we have that g(r2t)→ g(t), as r → 1, uniformly on [0, 1). Then using

(2.2.3) and (2.2.2), we obtain that the limit limr→1
1

2π

∫ 2π

0
g(reiθ) Iµf(reiθ) dθ exists

and that

g 7→ lim
r→1

1

2π

∫ 2π

0

g(reiθ) Iµf(reiθ) dθ

defines a continuous linear functional on A.

In the proof of Theorem 3 we shall use the following result which can be found

in [54, Proposition 2. 5].

It is worth noticing that for µ a positive Borel measure and ν defined as

dν(t) = log
2

1− t
dµ(t),

ν being a Carleson measure is equivalent to µ being an 1-logarithmic 1-Carleson

measure. Actually, we have the following more general result.

Proposition 1. Let µ be a positive Borel measure on [0, 1), s > 0, and α ≥ 0. Let

ν be the Borel measure on [0, 1) defined by

dν(t) =

(
log

2

1− t

)α
dµ(t).

Then, the following two conditions are equivalent.

(a) ν is an s-Carleson measure.

(b) µ is an α-logarithmic s-Carleson measure.

Proof.

(a)⇒ (b). Assume (a). Then there exists a positive constant C such that∫
[t,1)

(
log

2

1− u

)α
dµ(u) ≤ C(1− t)s, t ∈ [0, 1).
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Using this and the fact that the function u 7→ log 2
1−u is increasing in [0, 1), we

obtain(
log

2

1− t

)α ∫
[t,1)

dµ(u) ≤
∫

[t,1)

(
log

2

1− u

)α
dµ(u) ≤ C(1− t)s, t ∈ [0, 1).

This shows that µ is an α-logarithmic s-Carleson measure.

(b)⇒ (a). Assume (b). Then there exists a positive constant C such that(
log

2

1− t

)α
µ ([t, 1)) ≤ C (1− t)s, 0 ≤ t < 1. (2.2.4)

For 0 ≤ u < 1, set F (u) = µ ([0, u)) − µ ([0, 1)) = −µ ([u, 1)). Integrating by parts

and using (2.2.4), we obtain

ν ([t, 1)) =

∫
[t,1)

(
log

2

1− u

)α
dµ(u)

=

(
log

2

1− t

)α
µ ([t, 1)) − lim

u→1−

(
log

2

1− u

)α
µ ([u, 1))

+ α

∫
[t,1)

µ ([u, 1))

(
log

2

1− u

)α−1
du

1− u

=

(
log

2

1− t

)α
µ ([t, 1)) + α

∫
[t,1)

µ ([u, 1))

(
log

2

1− u

)α−1
du

1− u

≤C (1− t)s + C α

∫ 1

t

(1− u)s−1

log 2
1−u

du

. (1− t)s, 0 ≤ t < 1.

Thus, ν is an s-Carleson measure.

Proof of Theorem 3. We already know that (i) and (ii) are equivalent by Theorem A.

To prove that (i) implies (iii) we shall use some results about the Bloch space.

We recall that a function f ∈ Hol(D) is said to be a Bloch function if

‖f‖B
def
= |f(0)| + sup

z∈D
(1− |z|2)|f ′(z)| < ∞.

The space of all Bloch functions will be denoted by B. It is a non-separable Banach

space with the norm ‖ · ‖B just defined. A classical source for the theory of Bloch

functions is [6]. The closure of the polynomials in the Bloch norm is the little Bloch

space B0 which consists of those f ∈ Hol(D) with the property that

lim
|z|→1

(1− |z|2)|f ′(z)| = 0.
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It is well known that (see [6, p. 13])

|f(z)| . ‖f‖B log
2

1− |z|
. (2.2.5)

The basic ingredient to prove that (i) implies (iii) is the fact that the dual (B0)∗

of the little Bloch space can be identified with the Bergman space A1 via the integral

pairing

〈h, f〉 =

∫
D
h(z) f(z) dA(z), h ∈ B0, f ∈ A1. (2.2.6)

(See [111, Theorem 5. 15]).

Let us proceed to prove the implication (i)⇒ (iii). Assume that µ is a 1-

logarithmic 1-Carleson measure and take f ∈ H1. We have to show that Iµf ∈ D1
0

or, equivalently, that (Iµf)′ ∈ A1. Since B0 is the closure of the polynomials in the

Bloch norm, it suffices to show that∣∣∣∣∫
D
h(z) (Iµf)′ (z) dA(z)

∣∣∣∣ . ‖h‖B‖f‖H1 , for any polynomial h. (2.2.7)

So, let h be a polynomial. We have∫
D
h(z) (Iµf)′ (z) dA(z) =

∫
D
h(z)

(∫
[0,1)

t f(t)

(1− tz)2
dµ(t)

)
dA(z)

=

∫
D
h(z)

∫
[0,1)

t f(t)

(1− t z)2
dµ(t) dA(z)

=

∫
[0,1)

t f(t)

∫
D

h(z)

(1− t z)2
dA(z) dµ(t).

Because of the reproducing property of the Bergman kernel [111, Proposition 4. 23],∫
D

h(z)
(1−t z)2 dA(z) = h(t). Then it follows that∫

D
h(z) (Iµf)′ (z) dA(z) =

∫
[0,1)

t f(t)h(t) dµ(t). (2.2.8)

Since µ is a 1-logarithmic 1-Carleson measure, the measure ν defined by

dν(t) = log
2

1− t
dµ(t)

is a Carleson measure by Proposition 1. This implies that∫
[0,1)

|f(t)| log
2

1− t
dµ(t) . ‖f‖H1 .
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This and (2.2.5) yield

∫
[0,1)

∣∣∣t f(t)h(t)
∣∣∣ dµ(t) . ‖h‖B‖f‖H1 .

Using this and (2.2.8), (2.2.7) follows.

Since D1
0 ⊂ H1 , the implication (iii) ⇒ (iv) is trivial.

Now we turn to prove the implication (iv)⇒ (i). Assume that Hµ is a bounded

operator from D1
0 into D1

0. We argue as in the proof of Theorem 1. For 1
2
< b < 1

set

fb(z) =
1− b2

(1− bz)2
, z ∈ D.

We have f ′b(z) = 2b(1−b2)
(1−bz)3 (z ∈ D). Then, using Lemma 3. 10 of [111] with t = 0 and

c = 1, we see that

‖fb‖D1
0
�
∫
D

1− b2

|1− bz|3
dA(z) � 1.

Since Hµ is bounded on D1
0, this implies that

1 & ‖Hµ(fb)‖D1
0
. (2.2.9)

We also have,

fb(z) =
∞∑
k=0

ak,bz
k, with ak,b = (1− b2)(k + 1)bk.

Using Hardy’s inequality and the fact that D1
0 ⊂ H1 (or, alternatively, Theorem F),
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(2.2.9), and the definition of the ak,b’s, we obtain

1 & ‖Hµ(fb)‖D1
0
&

∞∑
n=1

1

n

(
∞∑
k=0

µn+kak,b

)

=
∞∑
n=1

1

n

(
∞∑
k=0

ak,b

∫
[0,1)

tn+k dµ(t)

)

& (1− b2)
∞∑
n=1

1

n

(
∞∑
k=1

kbk
∫

[b,1)

tn+k dµ(t)

)

& (1− b2)
∞∑
n=1

1

n

(
∞∑
k=1

kbn+2k µ ([b, 1))

)

= (1− b2)µ ([b, 1))
∞∑
n=1

bn

n

(
∞∑
k=1

kb2k

)

= (1− b2)µ ([b, 1))

(
log

1

1− b

)
b2

(1− b2)2
.

Then it follows that

µ ([b, 1)) = O

(
1− b

log 1
1−b

)
, as b→ 1.

Hence, µ is a 1-logarithmic 1-Carleson measure.

Before embarking into the proof of Theorem 4 we have to introduce some notation

and results. Following [79], for α ∈ R the weighted Bergman space A1(logα)

consists of those f ∈ Hol(D) such that

‖f‖A1(logα)
def
=

∫
D
|f(z)|

(
log

2

1− |z|

)α
dA(z) <∞.

This is a Banach space with the norm ‖ · ‖A1(logα) just defined and the polynomials

are dense in A1(logα). Likewise, we define

D1(logα) = {f ∈ Hol(D) : f ′ ∈ A1(logα)}.

We define also the Bloch-type space B(logα) as the space of those f ∈ Hol(D)

such that

‖f‖B(logα)
def
= |f(0)|+ sup

z∈D
(1− |z|2)

(
log

2

1− |z|

)−α
|f ′(z)| <∞,
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and

B0(logα) =

f ∈ Hol(D) : |f ′(z)| = o


(

log 2
1−|z|

)α
1− |z|

 , as |z| → 1

 .

The space B(logα) is a Banach space and B0(logα) is the closure of the polynomials

in B(logα).

We remark that the spaces D1(logα) , B(logα) , and B0(logα) were called B1
logα ,

Blogα , and blogα in [79]. Pavlović identified in [79, Theorem 2. 4] the dual of the

space B0(logα).

Theorem G. Let α ∈ R. Then the dual of B0(logα) is A1(logα) via the pairing

〈h, g〉 =

∫
D
h(z) g(z) dA(z), h ∈ B0(logα), g ∈ A1(logα).

Actually, Pavlović formulated the duality theorem in another way but it is a

simple exercise to show that his formulation is equivalent to this one which is better

suited to our work.

Proof of Theorem 4. Let µ be a positive Borel measure on [0, 1) and 0 < α < 1.

Suppose that µ is an α-logarithmic 1-Carleson measure. Take f ∈ H1. We have

to show that Iµf ∈ D1(logα−1) or, equivalently, that (Iµf)′ ∈ A1(logα−1). Bearing

in mind Theorem G and the fact that B0(logα−1) is the closure of the polynomials

in B(logα−1) , it suffices to show that∣∣∣∣∫
D
h(z) (Iµf)′ (z) dA(z)

∣∣∣∣ . ‖h‖B(logα−1)‖f‖H1 , for any polynomial h. (2.2.10)

So, let h be a polynomial. Arguing as in the proof of the implication (i) ⇒ (iii)

in Theorem 3 we obtain∫
D
h(z) (Iµf)′ (z) dA(z) =

∫
[0,1)

t f(t)h(t) dµ(t). (2.2.11)

Now, it is clear that

|h(z)| . ‖h‖B(logα−1)

(
log

2

1− |z|

)α
,

and then it follows that∫
[0,1)

∣∣∣t f(t)h(t)
∣∣∣ dµ(t) . ‖h‖B(logα−1)

∫
[0,1)

|f(t)|
(

log
2

1− t

)α
dµ(t).
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Using the fact that the measure
(
log 2

1−t

)α
dµ(t) is a Carleson measure (Proposition

1) this implies that ∫
[0,1)

∣∣∣t f(t)h(t)
∣∣∣ dµ(t) . ‖h‖B(logα−1)‖f‖H1 .

This and (2.2.11) give (2.2.10).

2.3 A generalized Hilbert matrix acting on con-

formally invariant spaces

We start our study on conformally invariant spaces with BMOA and the Bloch

space. Let us recall that

H∞ ( BMOA (
⋂

0<p<∞

Hp and BMOA ( B.

The Bloch space has a very important role among all conformally invariant spaces.

Rubel and Timoney [91] proved that B is the biggest natural conformally invariant

space.

Our first result in this section is devoted to characterize those µ for which the

operator Iµ is well defined in BMOA and in the Bloch space. It turns out that they

coincide.

Theorem 5 ([54]). Let µ be a positive Borel measure on [0, 1). Then the following

conditions are equivalent:

(i)
∫

[0,1)
log 2

1−t dµ(t) < ∞.

(ii) For any given f ∈ B, the integral in (2.0.1) converges for all z ∈ D and the

resulting function Iµ(f) is analytic in D.

(iii) For any given f ∈ BMOA, the integral in (2.0.1) converges for all z ∈ D and

the resulting function Iµ(f) is analytic in D.

The next step is characterizing the measures µ so that Iµ is bounded in BMOA

or B and seeing whether or not Iµ and Hµ coincide for such measures. We have the

following results.
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Theorem 6 ([54]). Let µ be a positive Borel measure on [0, 1) with∫
[0,1)

log 2
1−tdµ(t) < ∞. Then the following three conditions are equivalent:

(i) The measure µ is a 1-logarithmic 1-Carleson measure.

(ii) The operator Iµ is bounded from B into BMOA.

(iii) The operator Iµ is bounded from BMOA into itself.

Theorem 7 ([54]). Let µ be a positive Borel measure on [0, 1) with∫
[0,1)

log 2
1−t dµ(t) < ∞. If µ is a 1-logarithmic 1-Carleson measure, then Hµ is well

defined on the Bloch space and

Hµ(f) = Iµ(f), for all f ∈ B.

Theorem 6 and Theorem 7 together yield the following.

Theorem 8 ([54]). Let µ be a positive Borel measure on [0, 1) such that is a 1-

logarithmic 1-Carleson measure. Then the operator Hµ is bounded from B into

BMOA.

We have also the following result regarding compactness.

Theorem 9 ([54]). Let µ be a positive Borel measure on [0, 1) with∫
[0,1)

log 2
1−t dµ(t) < ∞. If µ is a vanishing 1-logarithmic 1-Carleson measure then:

(i) The operator Iµ is a compact operator from B into BMOA.

(ii) The operator Iµ is a compact operator from BMOA into itself.

As it was said in the preliminaries, the Qs spaces have the following relation with

BMOA, the Bloch space and the Dirichlet space:

D ( Qs1 ( Qs2 ( BMOA, 0 < s1 < s2 < 1.

In the limit case s = 1, Qs is the space BMOA and for s > 1, all the spaces Qs

coincide with the Bloch space.

It is well known that the function F (z) = log 2
1−z belong to Qs, for all s > 0, (in

fact, it is proved in [12] that the univalent functions in all Qs-spaces (0 < s < ∞)

are the same). Using this we easily see that Theorem 5, Theorem 6 and Theorem 8

can be improved as follows.



26 Chapter 2. A generalized Hilbert matrix acting on spaces of analytic functions

Theorem 10 ([54]). Let µ be a positive Borel measure on [0, 1). Then the following

conditions are equivalent:

(i)
∫

[0,1)
log 2

1−t dµ(t) < ∞.

(ii) For any given s ∈ (0,∞) and any f ∈ Qs, the integral in (2.0.1) converges for

all z ∈ D and the resulting function Iµ(f) is analytic in D.

We remark that condition (ii) with s ≥ 1 includes the points (ii) and (iii) of Theo-

rem 5.

Theorem 11 ([54]). Let µ be a positive Borel measure on [0, 1) with∫
[0,1)

log 2
1−t dµ(t) < ∞. Then the following two conditions are equivalent:

(i) The measure µ is a 1-logarithmic 1-Carleson measure.

(ii) For any given s ∈ (0,∞), the operator Iµ is bounded from Qs into BMOA.

We remark that (ii) with s > 1 reduces to condition (ii) of Theorem 6, while (ii)

with s = 1 reduces to condition (iii) of Theorem 6.

Theorem 7 and Theorem 11 together yield the following.

Theorem 12. Let µ be a positive Borel measure on [0, 1) such that is a 1-logarithmic

1-Carleson measure. Then, for any given s ∈ (0,∞), the operator Hµ is bounded

from Qs into BMOA.

We remark that for s > 1 the theorem reduces Theorem 8.

At this point it is natural to look for a characterization of those µ for which Iµ

and/or Hµ is a bounded operator from B into itself or, more generally, from Qs into

itself for any s > 0. We have the following result.

Theorem 13 ([55]). Let µ be a positive Borel measure on [0, 1). Then the following

conditions are equivalent.

(i) The operator Iµ is bounded from Qs into itself for some s > 0.

(ii) The operator Iµ is bounded from Qs into itself for all s > 0.

(iii) The operator Hµ is bounded from Qs into itself for some s > 0.
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(iv) The operator Hµ is bounded from Qs into itself for all s > 0.

(v) The measure µ is a 1-logarithmic 1-Carleson measure.

In fact, we are able to prove a stronger result which does not distinguish between

different Qs spaces.

Theorem 14 ([55]). Let µ be a positive Borel measure on [0, 1) and let 0 < s1, s2 <

∞. Then following conditions are equivalent.

(i) The operator Iµ is well defined in Qs1 and, furthermore, it is a bounded oper-

ator from Qs1 into Qs2.

(ii) The operator Hµ is well defined in Qs1 and, furthermore, it is a bounded op-

erator from Qs1 into Qs2.

(iii) The measure µ is a 1-logarithmic 1-Carleson measure.

These results cannot be extended to the limit case s = 0. Indeed, the function

F (z) = log 2
1−z does not belong to the Dirichlet space D.

Since the Dirichlet space is one among the analytic Besov spaces, D = B2, this

case will be covered in our study of the operator on these spaces.

From now on, if 1 < p <∞ we let p′ denote the exponent conjugate to p, that

is, p′ is defined by the relation 1
p

+ 1
p′

= 1. If f ∈ Bp (1 < p < ∞) then, see [61]

or [110],

|f(z)| = o

((
log

2

1− |z|

)1/p′
)
, as |z| → 1, (2.3.1)

and there exists a positive constant C > 0 such that

|f(z)| ≤ C‖f‖Bp
(

log
2

1− |z|

)1/p′

, z ∈ D, f ∈ Bp. (2.3.2)

Clearly, (2.3.1) or (2.3.2) implies that the function F (z) = log 2
1−z does not

belong to Bp (1 < p < ∞), a fact that we have already mentioned for p = 2. Our

substitutes of Theorem 5 and Theorem 6 for Besov spaces are the following.

Theorem 15 ([54]). Let 1 < p <∞ and let µ be a positive Borel measure on [0, 1).

We have:
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(i) If
∫

[0,1)

(
log 2

1−t

)1/p′
dµ(t) < ∞, then for any given f ∈ Bp, the integral in

(2.0.1) converges for all z ∈ D and the resulting function Iµ(f) is analytic in

D.

(ii) If for any given f ∈ Bp, the integral in (2.0.1) converges for all z ∈ D and the

resulting function Iµ(f) is analytic in D, then
∫

[0,1)

(
log 2

1−t

)γ
dµ(t) < ∞ for

all γ < 1
p′
.

Theorem 16 ([54]). Suppose that 1 < p <∞ and let µ be a positive Borel measure

on [0, 1).

(i) If µ is a 1/p′-logarithmic 1-Carleson measure then the operator Iµ is bounded

from Bp into BMOA.

(ii) If µ is a vanishing 1/p′-logarithmic 1-Carleson measure then the operator Iµ

is compact from Bp into BMOA.

These results follow using the growth condition (2.3.2), the fact that if γ <
1
p′

then the function f(z) =
(
log 2

1−z

)γ
belongs to Bp (see [61, Theorem 1]), and

with arguments similar to those used in the proofs of Theorem 5, Theorem 6, and

Theorem 9. We shall omit the details.

Let us work next with the operator Hµ directly. The first results that we have

obtained are sufficient conditions on µ which ensure that Hµ is well defined on the

Besov spaces.

Theorem 17 ([54]). Let µ be a finite positive Borel measure on [0, 1).

(i) If 1 < p ≤ 2 and
∑∞

k=1

µp
′
k

k
< ∞, then the operator Hµ is well defined in Bp.

(ii) If 2 < p < ∞ and
∑∞

k=1

µp
′
k

kp
′/p < ∞, then the operator Hµ is well defined in

Bp.

Let us turn to study when is the operator Hµ bounded from Bp into itself. Let

us mention that Bao and Wulan [16] considered an operator which is closely related

to the operator Hµ acting on the Dirichlet spaces Dp (p ∈ R) which are defined as

follows:
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For p ∈ R, the space Dp consists of those functions f(z) =
∑∞

n=0 an z
n analytic

in D for which

‖f‖Dp
def
=

(
∞∑
n=0

(n+ 1)1−p |an|2
)1/2

< ∞.

Let us remark that D0 is the Dirichlet spaces D = B2, while D1 = H2.

Bao and Wulan proved that if µ is a positive Borel measure on [0, 1) and 0 <

p < 2, then the operator Hµ is bounded from Dp into itself if and only if µ is a

Carleson measure. Let us remark that this does not include the case p = 0. In fact,

the following results are proved in [16].

Theorem H.

(i) There exists a positive Borel measure µ on [0, 1) which is a Carleson measure

but such that Hµ(B2) 6⊂ B2.

(ii) Let µ be a positive Borel measure on [0, 1) such that the operator Hµ is a

bounded operator from B2 into itself. Then µ is a Carleson measure.

We can improve these results and, even more, we shall obtain extensions of these

improvements to all Bp spaces (1 < p < ∞). More precisely we are going to prove

the following results.

Theorem 18 ([54]). Suppose that 1 < p < ∞ and 0 < β ≤ 1
p
. Then there exists a

positive Borel measure µ on [0, 1) which is a β-logarithmic 1-Carleson measure but

such that the operator Hµ does not apply Bp into itself.

Next we prove that µ being a β-logarithmic 1-Carleson measure for a certain β

is a necessary condition for Hµ being a bounded operator from Bp into itself.

Theorem 19 ([55]). Suppose that 1 < p <∞ and let µ be a positive Borel measure

on [0, 1) such that the operator Hµ is bounded from Bp into itself. Then µ is a

1/p′-logarithmic 1-Carleson measure.

Finally, we obtain a sufficient condition for the boundedness of Hµ from Bp into

itself.

Theorem 20 ([54]). Suppose that 1 < p <∞, γ > 1, and let µ be a positive Borel

measure on [0, 1) which is a γ-logarithmic 1-Carleson measure. Then the operator

Hµ is a bounded operator from Bp into itself.
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2.3.1 Preliminary results

In this section we shall collect a number of results which will be needed in our

work.

The following lemma will be needed in the proof of Theorem 7.

Lemma 1. Let µ be a positive Borel measure in [0, 1). If µ is a 1-logarithmic

1-Carleson measure then the sequence of moments {µn} satisfies

µn = O

(
1

n log n

)
, as n→∞.

Actually, we shall prove the following more general result.

Lemma 2. Suppose that 0 ≤ α ≤ β, s ≥ 1, and let µ be a positive Borel measure

on [0, 1) which is a β-logarithmic s-Carleson measure. Then∫
[0,1)

tk
(

log
2

1− t

)α
dµ(t) = O

(
(log k)α−β

ks

)
, as k →∞.

Lemma 1 follows taking α = 0, β = 1, and s = 1 in Lemma 2.

Proof of Lemma 2. Arguing as in the proof of the implication (b)⇒ (a) of Proposi-

tion 1, integrating by parts and using the fact that µ is a β-logarithmic s-Carleson

measure, we obtain∫
[0,1)

tk
(

log
2

1− t

)α
dµ(t) (2.3.3)

= k

∫ 1

0

µ
(
[t, 1)

)
tk−1

(
log

2

1− t

)α
dt + α

∫ 1

0

µ
(
[t, 1)

)
tk
(

log
2

1− t

)α−1
dt

1− t

. k

∫ 1

0

(1− t)stk−1

(
log

2

1− t

)α−β
dt + α

∫ 1

0

(1− t)s−1tk
(

log
2

1− t

)α−β−1

dt.

Now, we notice that the weight functions

ω1(t) = (1− t)s
(

log
2

1− t

)α−β
and ω2(t) = (1− t)s−1

(
log

2

1− t

)α−β−1

are regular in the sense of [82] (see [82, p. 6] and [4, Example 2]). Then, using

Lemma 1. 3 of [82] and the fact that the ωj’s are also decreasing, we obtain∫ 1

0

(1− t)stk−1

(
log

2

1− t

)α−β
dt .

∫ 1

1− 1
k

(1− t)stk−1

(
log

2

1− t

)α−β
dt

.
(log k)α−β

ks+1
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and∫ 1

0

(1− t)s−1tk
(

log
2

1− t

)α−β−1

dt .
∫ 1

1− 1
k

(1− t)s−1tk
(

log
2

1− t

)α−β−1

dt

.
(log k)α−β−1

ks
.

Using these two estimates in (2.3.3) yields∫
[0,1)

tk
(

log
2

1− t

)α
dµ(t) .

(log k)α−β

ks

finishing the proof.

We shall also use the characterization of the coefficient multipliers from B into

`1 obtained by Anderson and Shields in [7].

Theorem I. A sequence {λn}∞n=0 of complex numbers is a coefficient multiplier from

B into `1 if and only if
∞∑
n=1

(
2n+1∑

k=2n+1

|λk|2
)1/2

<∞.

Bearing in mind Definition 1 of [7], Theorem I reduces to the case p = 1 in

Corollary 1 in p. 259 of [7].

We recall that if X is a space of analytic functions in D and Y is a space of

complex sequences, a sequence {λn}∞n=0 ⊂ C is said to be a multiplier of X into Y

if whenever f(z) =
∑∞

n=0 anz
n ∈ X one has that the sequence {λnan}∞n=0 belongs to

Y . Thus:

By saying that {λn}∞n=0 is a coefficient multiplier from B into `1 we mean that

If f(z) =
∞∑
n=0

anz
n ∈ B then

∞∑
n=0

|λnan| <∞.

Actually, using the closed graph theorem, we can assert the following:

A complex sequence {λn}∞n=0 is a multiplier from B to `1 if and only if there

exists a positive constant C such that whenever f(z) =
∑∞

n=0 anz
n ∈ B, we have

that
∑∞

n=0 |λnan| ≤ C‖f‖B.

In the proof of Theorem 13 we will use as a basic ingredient a characterization

of the functions f(z) =
∑∞

n=0 anz
n whose sequence of Taylor coefficients {an}∞n=0 is
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a decreasing sequence of nonnegative numbers which lie in the Qs-spaces. This is

quite simple for s > 1 (recall that Qs = B if s > 1).

Hwang and Lappan proved in [62, Theorem 1] that if {an} is a decreasing se-

quence of nonnegative numbers then f(z) =
∑∞

n=0 anz
n is a Bloch function if and

only if an = O
(

1
n

)
.

Fefferman gave a characterization of the analytic functions having nonnegative

Taylor coefficients which belong to BMOA, proofs of this criterium can be found

in [24, 52, 60, 95]. Characterizations of the analytic functions having nonnegative

Taylor coefficients which belong toQs (0 < s < 1) were obtained in [13, Theorem 1. 2]

and [10, Theorem 2. 3]. Using the mentioned result in [13, Theorem 1. 2], Xiao proved

in [103, Corollary 3. 3. 1, p. 29] the following result.

Theorem J. Let s ∈ (0,∞) and let f(z) =
∑∞

n=0 anz
n with {an} being a decreasing

sequence of nonnegative numbers. Then f ∈ Qs if and only if an = O
(

1
n

)
.

Being based on Theorem 1. 2 of [13], Xiao’s proof of this result is complicated.

We shall give next an alternative simpler proof. It will simply use the validity of the

result for the Bloch space and the simple fact that the mean Lipschitz space Λ2
1/2

is contained in all the Qs spaces (0 < s < ∞) (see [10, Remark 4, p. 427] or [103,

Theorem 4. 2. 1.]).

We recall [40, Chapter 5] that a function f ∈ Hol(D) belongs to the mean Lips-

chitz space Λ2
1/2 if and only if

M2(r, f ′) = O

(
1

(1− r)1/2

)
.

We have the following simple result for the space Λ2
1/2.

Lemma 3. If {an}∞n=0 is a decreasing sequence of nonnegative numbers and f(z) =∑∞
n=0 anz

n (z ∈ D), then f ∈ Λ2
1/2 if and only if an = O

(
1
n

)
.

Proof. If an = O
(

1
n

)
, then

M2(r, f ′)2 =
∞∑
n=1

n2|an|2r2n−2 .
∞∑
n=1

r2n−2 .
1

1− r
,

and, hence, f ∈ Λ2
1/2.



2.3. A generalized Hilbert matrix acting on conformally invariant spaces 33

Suppose now that {an}∞n=0 is a decreasing sequence of nonnegative numbers and

f ∈ Λ2
1/2. Then, for all n

n∑
k=1

k2a2
kr

2k−2 ≤
∞∑
k=1

k2a2
kr

2k−2 = M2(r, f ′)2 .
1

1− r
. (2.3.4)

Taking r = 1− 1
n

in (2.3.4), we obtain

n∑
k=1

k2a2
k . n. (2.3.5)

Since {an} is decreasing, using (2.3.5) we have

a2
n

n∑
k=1

k2 .
n∑
k=1

k2a2
k . n

and then it follows that an = O
(

1
n

)
.

Now Theorem J follows using the result of Hwang and Lappan for the Bloch

space, Lemma 3, and the fact that

Λ2
1/2 ⊂ Qs ⊂ B, for all s. (2.3.6)

Using (2.3.6), it is clear that Theorem 14 follows from the following result.

Theorem 21. Let µ be a positive Borel measure on [0, 1) and let X be a Banach

space of analytic functions in D with Λ2
1/2 ⊂ X ⊂ B. Then the following conditions

are equivalent.

(i) The operator Iµ is well defined in X and, furthermore, it is a bounded operator

from X into Λ2
1/2.

(ii) The operator Hµ is well defined in X and, furthermore, it is a bounded operator

from X into Λ2
1/2.

(iii) The measure µ is a 1-logarithmic 1-Carleson measure.

(iv)
∫

[0,1)
tn log 1

1−tdµ(t) = O
(

1
n

)
.
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Proof. According to Proposition 1 ([54, Proposition 2.5]), µ is a 1-logarithmic 1-

Carleson measure if and only if the measure ν defined by dν(t) = log 1
1−tdµ(t) is a

Carleson measure and, using Proposition 1 of [28], this is equivalent to (iv). Hence,

we have shown that (iii) ⇔ (iv).

Set F (z) = log 1
1−z (z ∈ D). We have that F ∈ X.

(i)⇒ (iv): Suppose (i). Then

Iµ(F )(z) =

∫
[0,1)

log 1
1−t

1− tz
dµ(t)

is well defined for all z ∈ D. Taking z = 0, we see that
∫

[0,1)
log 1

1−tdµ(t) <∞. Since

F ∈ X we have also that Iµ(F ) ∈ Λ2
1/2, but

Iµ(F )(z) =

∫
[0,1)

log 1
1−t

1− tz
dµ(t) =

∞∑
n=0

(∫
[0,1)

tn log
1

1− t
dµ(t)

)
zn.

Since the sequence
{∫

[0,1)
tn log 1

1−tdµ(t)
}∞
n=0

is a decreasing sequence of nonnegative

numbers, using Lemma 3 we see that (iv) holds.

(iv)⇒ (i): Suppose (iv) and take f ∈ X. Since X ⊂ B, it is well known that

|f(z)| . log 2
1−|z| , see [6, p. 13]. This and (iv) give∫

[0,1)

tn|f(t)|dµ(t) = O

(
1

n

)
. (2.3.7)

Then it follows easily that Iµ(f) is well defined and that

Iµ(f)(z) =
∞∑
n=0

(∫
[0,1)

tnf(t)dµ(t)

)
zn.

Now (2.3.7) implies that
∫

[0,1)
tnf(t)dµ(t) = O

(
1
n

)
and then it follows that Iµ(f) ∈

Λ2
1/2.

The implication (iv)⇒ (ii) follows using Theorem 7 ([54, Theorem 2.3]) and the

already proved equivalences (i)⇔ (iii) ⇔ (iv).

It remains to prove that (ii)⇒ (iv). Suppose (ii) then Hµ(F ) ∈ Λ2
1/2. Now

Hµ(F )(z) =
∞∑
n=0

(
∞∑
k=1

µn+k

k

)
zn.
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Notice that the sequence {
∑∞

k=1
µn+k
k
}∞n=0 is a decreasing sequence of nonnegative

numbers. Then, using Lemma 3 and the fact that Hµ(F ) ∈ Λ2
1/2, we deduce that

∞∑
k=1

µn+k

k
= O

(
1

n

)
. (2.3.8)

Now
∞∑
k=1

µn+k

k
=

∫
[0,1)

∞∑
k=1

tn+k

k
dµ(t) =

∫
[0,1)

tn log
1

1− t
dµ(t).

Then (iv) follows using (2.3.8).

In order to to prove Theorem 17 we need some results on the Taylor coefficients

of functions in Bp. The following result was proved by Holland and Walsh in [61,

Theorem 2].

Theorem K.

(i) Suppose that 1 < p ≤ 2. Then there exists a positive constant Cp such that if

f ∈ Bp and f(z) =
∑∞

k=0 ak z
k (z ∈ D) then

∞∑
k=1

kp−1|ak|p ≤ Cp ρp(f)p.

(ii) If 2 ≤ p <∞ then there exists Cp > 0 such that if f(z) =
∑∞

k=0 ak z
k (z ∈ D)

with
∑∞

k=1 k
p−1|ak|p < ∞ then f ∈ Bp and

ρp(f)p ≤ Cp

∞∑
k=1

kp−1|ak|p.

If p 6= 2 the converses to (i) and (ii) are false.

Theorem K is the analogue for Besov spaces of results of Hardy and Littlewood

for Hardy spaces (Theorem 6. 2 and Theorem 6. 3 of [40]).

In spite of the fact that the converse to (ii) is not true, the membership of f in

Bp (p > 2) implies some summability conditions on the Taylor coefficients {ak} of

f . Indeed, Pavlović has proved the following result in [80, Theorem 2. 3] (see also

[64, Theorem 8.4.1(iv)]).
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Theorem L. Suppose that 2 < p < ∞. Then there exists a positive constant Cp

such that if f ∈ Bp and f(z) =
∑∞

k=0 ak z
k (z ∈ D) then

∞∑
k=1

k|ak|p ≤ Cp ρp(f)p.

We shall need a number of results on Besov spaces, as well as some lemmas, to

prove Theorem 18 and Theorem 20. First of all we notice that the Besov spaces can

be characterized in terms of “dyadic blocks”. In order to state this in a precise way

we need to introduce some notation.

For a function f(z) =
∑∞

n=0 anz
n analytic in D, define the polynomials ∆jf as

follows:

∆jf(z) =
2j+1−1∑
k=2j

akz
k, for j ≥ 1,

∆0f(z) = a0 + a1z.

Mateljević and Pavlović proved in [71, Theorem 2. 1] (see also [78, Theorem C]) the

following result.

Theorem M. Let 1 < p < ∞ and α > −1. For a function f analytic in D we

define

Q1(f)
def
=

∫
D
|f(z)|p(1− |z|)α dA(z), Q2(f)

def
=

∞∑
n=0

2−n(α+1)‖∆nf‖pHp .

Then, Q1(f) � Q2(f).

Theorem M readily implies the following result.

Corollary 1. Suppose that 1 < p <∞ and f is an analytic function in D. Then

f ∈ Bp ⇔
∞∑
n=0

2−n(p−1)‖∆nf
′‖pHp < ∞.

Furthermore,

ρp(f)p �
∞∑
n=0

2−n(p−1)‖∆nf
′‖pHp .
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Using Corollary 1 we can prove that the converses of (i) and (ii) in Theorem K

hold if the sequence of Taylor coefficients {an} decreases to 0. This is the analogue

for Besov spaces of the result proved in [57] by Hardy and Littlewood for Hardy

spaces (see also [77, 7. 5. 9], [78] and [112, Chapter XII, Lemma 6. 6]). Analogous

results for the spaces Dpp−1 (p > 1) and for Bergman spaces Ap (p > 1) were proved

in [78, Theorem 3.1] and [26, Proposition 2.4] respectively.

Theorem 22. Suppose that 1 < p <∞ and let {an}∞n=0 be a decreasing sequence of

non-negative numbers with {an} → 0, as n → ∞. Let f(z) =
∑∞

n=0 anz
n (z ∈ D).

Then

f ∈ Bp ⇔
∞∑
n=1

np−1apn < ∞.

Furthermore, ρp(f)p �
∑∞

n=1 n
p−1apn.

Proof. For every n, we have

z (∆nf
′) (z) =

2n+1∑
k=2n+1

kakz
k.

Since the sequence λ = {k}∞k=0 is an increasing sequence of non-negative numbers,

using Lemma A of [78] we see that

‖z (∆nf
′) ‖pHp � 2np‖∆nf‖pHp . (2.3.9)

Now, set h(z) =
∑∞

n=0 z
n (z ∈ D). Since the sequence λ̃ = {an}∞n=0 is a decreasing

sequence of non-negative numbers, using the second part of Lemma A of [78], we see

that

ap2n‖∆nh‖pHp . ‖∆nf‖pHp . ap2n−1‖∆nh‖pHp . (2.3.10)

Notice that h(z) = 1
1−z (z ∈ D). Then it is well known that Mp(r, h) � (1− r)

1
p
−1

(recall that 1 < p < ∞). Following the notation of [71], this can be written as

h ∈ H
(
p,∞, 1− 1

p

)
. Then using Theorem 2. 1 of [71] (see also [77, p. 120]), we

deduce that ‖∆nf‖pHp � 2n(p−1). Using this and (2.3.10), it follows that

2n(p−1)ap2n . ‖∆nf‖pHp . 2n(p−1)ap2n−1 . (2.3.11)

Using Corollary 1, (2.3.9), and (2.3.11), we see that

ρp(f)p �
∞∑
n=0

2−n(p−1)‖z∆nf
′‖pHp �

∞∑
n=0

2n‖∆nf‖pHp �
∞∑
n=0

2npap2n .
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Now, the fact that {an} is decreasing implies that
∑∞

n=0 2npap2n �
∑∞

n=1 n
p−1apn and,

then it follows that ρp(f)p �
∑∞

n=1 n
p−1apn.

Remark 1. If f is an analytic function in D, f(z) =
∑∞

n=0 anz
n (z ∈ D), and

1 < p < ∞ then any of the two conditions f ∈ Bp and
∑∞

n=1 n
p−1|an|p < ∞

implies that {an} → 0. Consequently, the condition {an} → 0 can be omitted in

the hypotheses of Theorem 22.

Suppose that β ≥ 0, s ≥ 1, 1 < p < ∞, and µ is a positive Borel measure

on [0, 1) which is a β-logarithmic s-Carleson measure. Using Lemma 2 and The-

orem 17, it follows that Hµ is well defined on Bp. Also, it is easy to see that∫
[0,1)

(
log 2

1−t

)1/p′
dµ(t) < ∞, a fact that, using Theorem 15 (i), shows that Iµ is

also well defined in Bp. Using then standard arguments it follows that Iµ and Hµ

coincide in Bp. Let us state this as a lemma.

Lemma 4. Suppose that β ≥ 0, s ≥ 1, 1 < p < ∞, and µ is a positive Borel

measure on [0, 1) which is a β-logarithmic s-Carleson measure. Then the operators

Hµ and Iµ are well defined in Bp and Hµ(f) = Iµ(f), for all f ∈ Bp.

The following lemma will be used to prove Theorem 20. It is an adaptation of

[45, Lemma 7] to our setting. The proof is very similar to that of the latter but we

include it for the sake of completeness.

Lemma 5. Let p, γ, and µ be as in Theorem 20. Then, there exists a constant

C = C(p, γ, µ) > 0 such that if f ∈ Bp, g(z) =
∑∞

k=0 ckz
k ∈ Hol(D), and we set

h(z) =
∞∑
k=0

ck

(∫ 1

0

tk+1f(t) dµ(t)

)
zk,

then

‖∆nh‖Hp ≤ C

(∫ 1

0

t2
n−2+1|f(t)| dµ(t)

)
‖∆ng‖Hp , n ≥ 3.

Proof. For each n = 1, 2, . . . , define

Υn(s) =

∫ 1

0

t2
ns+1f(t) dµ(t), s ≥ 0.

Clearly, Υn is a C∞(0,∞)-function and

|Υn(s)| ≤
∫ 1

0

t2
n−2+1|f(t)| dµ(t), s ≥ 1

2
. (2.3.12)
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Furthermore, since sup0<x<1

(
log 1

x

)2
x1/2 = C(2) <∞, we have

|Υ′′n(s)| ≤
∫ 1

0

[(
log

1

t2n

)2

t2
n−1

]
t2
ns+1−2n−1|f(t)| dµ(t)

≤ C(2)

∫ 1

0

t2
ns+1−2n−1 |f(t)| dµ(t) ≤ C(2)

∫ 1

0

t2
n−2+1|f(t)| dµ(t), s ≥ 3

4
.

(2.3.13)

Then, using (2.3.12) and (2.3.13), for each n = 1, 2, . . . , we can take a function

Φn ∈ C∞(R) with supp(Φn) ∈
(

3
4
, 4
)
, and such that

Φn(s) = Υn(s), s ∈ [1, 2],

and

AΦn = max
s∈R
|Φn(s)|+ max

s∈R
|Φ′′n(s)| ≤ C

∫ 1

0

t2
n−2+1|f(t)| dµ(t).

Following the notation used in [45, p. 236], we can then write

∆nh(z) =
2n+1−1∑
k=2n

ck

(∫ 1

0

tk+1f(t) dµ(t)

)
zk

=
2n+1−1∑
k=2n

ckΦn

(
k

2n

)
zk = WΦn

2n ∗∆ng(z).

So by using part (iii) of Theorem B of [45], we have

‖∆nh‖Hp = ‖WΦn
2n ∗∆ng‖Hp ≤ CpAΦn‖∆ng‖Hp

≤ C

(∫ 1

0

t2
n−2+1|f(t)| dµ(t)

)
‖∆ng‖Hp .

2.3.2 Proofs

Proof of Theorem 5.

(i)⇒ (ii). It is well known that there exists a positive constant C such that

|f(z)| ≤ C‖f‖B log
2

1− |z|
, (z ∈ D), for every f ∈ B, (2.3.14)
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(see [6, p. 13]). Assume (i) and set A =
∫

[0,1)
log 2

1−t dµ(t). Using (2.3.14) we see

that∫
[0,1)

|f(t)| dµ(t) ≤ C‖f‖B
∫

[0,1)

log
2

1− t
dµ(t) = AC‖f‖B, f ∈ B. (2.3.15)

This implies that∫
[0,1)

|f(t)|
|1− tz|

dµ(t) ≤ AC‖f‖B
1− |z|

, (z ∈ D), f ∈ B. (2.3.16)

Using (2.3.15), (2.3.16), and Fubini’s theorem we see that if f ∈ B then:

• For every n ∈ N, the integral
∫

[0,1)
tnf(t) dµ(t) converges absolutely and

sup
n≥0

∣∣∣∣∫
[0,1)

tnf(t) dµ(t)

∣∣∣∣ <∞.
• The integral

∫
[0,1)

f(t)
1−tz dµ(t) converges absolutely, and∫

[0,1)

f(t)

1− tz
dµ(t) =

∞∑
n=0

(∫
[0,1)

tnf(t) dµ(t)

)
zn, z ∈ D.

Thus, if f ∈ B then Iµ(f) is a well defined analytic function in D and

Iµ(f)(z) =
∞∑
n=0

(∫
[0,1)

tnf(t) dµ(t)

)
zn, z ∈ D.

The implication (ii) ⇒ (iii) is clear because BMOA ⊂ B.

(iii)⇒ (i). Suppose (iii). Since the function F (z) = log 2
1−z belongs to BMOA,

Iµ(F )(z) is well defined for every z ∈ D. In particular

Iµ(F )(0) =

∫
[0,1)

log
2

1− t
dµ(t)

is a complex number. Since µ is a positive measure and log 2
1−t > 0 for all t ∈ [0, 1),

(i) follows.

Proof of Theorem 6. Since
∫

[0,1)
log 2

1−tdµ(t) <∞, (2.3.14) implies that∫
[0,1)

|f(t)| dµ(t) <∞, for all f ∈ B
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and this implies that∫ 2π

0

∫
[0,1)

∣∣∣∣f(t)g(eiθ)

1− reiθt

∣∣∣∣ dµ(t)dθ <∞, 0 ≤ r < 1, f ∈ B, g ∈ H1.

Using this, Fubini’s theorem and Cauchy’s integral representation of H1-functions

[40, Theorem 3. 6], we deduce that whenever f ∈ B and g ∈ H1 we have∫ 2π

0

Iµ(f)(reiθ)g(eiθ) dθ =

∫ 2π

0

(∫
[0,1)

f(t)dµ(t)

1− reiθt

)
g(eiθ) dθ (2.3.17)

=

∫
[0,1)

f(t)

(∫ 2π

0

g(eiθ)dθ

1− reiθt

)
dµ(t) = 2π

∫
[0,1)

f(t)g(rt) dµ(t), 0 ≤ r < 1.

(i)⇒ (ii). Using Proposition 1 we assume that ν is a Carleson measure and take

f ∈ B and g ∈ H1. Using (2.3.17) and (2.3.14), we obtain∣∣∣∣∫ 2π

0

Iµ(f)(reiθ)g(eiθ) dθ

∣∣∣∣ =

∣∣∣∣∫
[0,1)

f(t)g(rt) dµ(t)

∣∣∣∣
. ‖f‖B

∫
[0,1)

|g(rt)| log
2

1− t
dµ(t) = ‖f‖B

∫
[0,1)

|g(rt)| dν(t).

Since ν is a Carleson measure∫
[0,1)

|g(rt)| dν(t) . ‖gr‖H1 ≤ ‖g‖H1 .

Here, as usual, gr is the function defined by gr(z) = g(rz) (z ∈ D).

Thus, we have proved that∣∣∣∣∫ 2π

0

Iµ(f)(reiθ)g(eiθ) dθ

∣∣∣∣ . ‖f‖B‖g‖H1 , f ∈ B, g ∈ H1.

Using Fefferman’s duality Theorem (see [52, Theorem 7. 1]) we deduce that if f ∈ B
then Iµ(f) ∈ BMOA and

‖Iµ(f)‖BMOA . ‖f‖B.

The implication (ii) ⇒ (iii) is trivial because BMOA ⊂ B.

(iii) ⇒ (i). Assume (iii). Then there exists a positive constant A such that

‖Iµ(f)‖BMOA ≤ A‖f‖BMOA, for all f ∈ BMOA. Set

F (z) = log
2

1− z
, z ∈ D.
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It is well known that F ∈ BMOA. Then Iµ(F ) ∈ BMOA and

‖Iµ(F )‖BMOA ≤ A‖F‖BMOA.

Then using again Fefferman’s duality theorem we obtain that∣∣∣∣∫ 2π

0

Iµ(F )(reiθ) g(eiθ) dθ

∣∣∣∣ . ‖g‖H1 , g ∈ H1.

Using (2.3.17) and the definition of F , this implies∣∣∣∣∫
[0,1)]

g(rt) log
2

1− t
dµ(t)

∣∣∣∣ . ‖g‖H1 , g ∈ H1. (2.3.18)

Take g ∈ H1. Using Proposition 2 of [28] we know that there exists a function

G ∈ H1 with ‖G‖H1 = ‖g‖H1 and such that

|g(s)| ≤ G(s), for all s ∈ [0, 1).

Using these properties and (2.3.18) for G, we obtain∫
[0,1)

|g(rt)| log
2

1− t
dµ(t) ≤

∫
[0,1)

G(rt) log
2

1− t
dµ(t)

≤ C‖Gr‖H1 ≤ C‖G‖H1 = C‖g‖H1

for a certain constant C > 0, independent of g. Letting r tend to 1, it follows that∫
[0,1)

|g(t)| log
2

1− t
dµ(t) . ‖g‖H1 , g ∈ H1.

This is equivalent to saying that ν is a Carleson measure so, by Proposition 1, µ is

a 1-logarithmic 1-Carleson measure.

Proof of Theorem 7. Suppose that µ is a 1-logarithmic 1-Carleson measure. Then,

using Lemma 1, we see that there exists C > 0 such that

|µn| ≤
C

n log n
, n ≥ 2. (2.3.19)

It is clear that

k2 log2 k ≥ 22nn2(log 2)2, if 2n + 1 ≤ k ≤ 2n+1 for all n.
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Then it follows that

∞∑
n=1

(
2n+1∑

k=2n+1

1

k2 log2 k

)1/2

.
∞∑
n=1

(
2n

n222n

)1/2

=
∞∑
n=1

1

n2n/2
<∞.

Using this, (2.3.19) and Theorem I, we obtain:

The sequence of moments {µn}∞n=0 is a multiplier from B to `1. (2.3.20)

Take now f ∈ B, f(z) =
∑∞

n=0 anz
n (z ∈ D). Using the simple fact that the

sequence {µn}∞n=0 is a decreasing sequence of positive numbers and (2.3.20), we see

that there exists C > 0 such that
∞∑
k=0

|µn+k ak| ≤
∞∑
k=0

|µk ak| ≤ C‖f‖B, n = 0, 1, 2, . . . . (2.3.21)

This implies that Hµ(f)(z) is well defined for all z ∈ D and that, in fact, Hµ(f)

is an analytic function in D. Furthermore, since (2.3.21) also implies that we can

interchange the order of summation in the expression defining Hµ(f)(z), we have

Hµ(f)(z) =
∞∑
n=0

(
∞∑
k=0

µn+kak

)
zn =

∞∑
k=0

ak

(
∞∑
n=0

µn+kz
n

)

=
∞∑
k=0

ak

(
∞∑
n=0

∫
[0,1)

tn+kzn dµ(t)

)
=

∞∑
k=0

∫
[0,1)

akt
k

1− tz
dµ(t)

=

∫
[0,1)

f(t)

1− tz
dµ(t) = Iµ(f)(z), z ∈ D.

Before embarking into the proof of Theorem 9 it is convenient to recall some facts

about Carleson measures and to fix some notation.

If µ is a Carleson measure on D, we define the Carleson-norm of µ, denoted

N (µ), as

N (µ) = sup
I⊂T

I interval

µ (S(I))

|I|
.

We let also E(µ) denote the norm of the inclusion operator i : H1 → L1(dµ). It

turns out that these quantities are equivalent: There exist two positive constants

A1, A2 such that

A1N (µ) ≤ E(µ) ≤ A2N (µ), for every Carleson measure µ on D.
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For a Carleson measure µ on D and 0 < r < 1, we let µr be the measure on D
defined by

dµr(z) = χ{r<|z|<1}dµ(z).

We have that µ is a vanishing Carleson measure if and only if

N (µr)→ 0, as r → 1.

Proof of Theorem 9. Since BMOA is continuously contained in the Bloch space, it

suffices to prove (i).

Suppose that µ is a vanishing 1-logarithmic 1-Carleson measure. By Proposition

1, ν is a vanishing Carleson measure. Let {fn}∞n=1 be a sequence of Bloch functions

with supn≥1 ‖fn‖B < ∞ and such that {fn} → 0, uniformly on compact subsets of

D. We have to prove that Iµ(fn) → 0 in BMOA.

The condition supn≥1 ‖fn‖B <∞ implies that there exists a positive constant M

such that

|fn(z)| ≤M log
2

1− |z|
, z ∈ D, n ≥ 1. (2.3.22)

Recall that for 0 < r < 1, νr is the measure defined by

dνr(t) = χ{r<t<1} dν(t).

Since ν is a vanishing Carleson measure, we have that N (νr) → 0, as r → 1, or,

equivalently,

E(νr) → 0, as t → 1. (2.3.23)

Take g ∈ H1 and r ∈ [0, 1). Using (2.3.22) we have∫
[0,1)

|fn(t)||g(t)| dµ(t) =

∫
[0,r)

|fn(t)||g(t)| dµ(t) +

∫
[r,1)

|fn(t)||g(t)| dµ(t)

≤
∫

[0,r)

|fn(t)||g(t)| dµ(t) + M

∫
[r,1)

log
2

1− t
|g(t)| dµ(t)

=

∫
[0,r)

|fn(t)||g(t)| dµ(t) + M

∫
[0,1)

|g(t)| dνr(t)

≤
∫

[0,r)

|fn(t)||g(t)| dµ(t) + ME(νr)‖g‖H1 .

Using (2.3.23) and the fact that {fn} → 0, uniformly on compact subsets of D, it

follows that

lim
n→∞

∫
[0,1)

|fn(t)||g(t)| dµ(t) = 0, for all g ∈ H1.
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Bearing in mind (2.3.17), this yields

lim
n→∞

(
lim
r→1

∣∣∣∣∫ 2π

0

Iµ(fn)(reiθ)g(eiθ) dθ

∣∣∣∣) = 0, for all g ∈ H1.

By the duality relation (H1)
?

= BMOA, this is equivalent to saying that Iµ(fn) →
0 in BMOA.

Proof of Theorem 14. It is clear that Theorem 21 actually implies the result.

Let us to prove the theorems about Besov spaces.

Proof of Theorem 17. Suppose that 1 < p < ∞ and f ∈ Bp, f(z) =
∑∞

k=0 akz
k

(z ∈ D). Since the sequence of moments {µn}∞n=0 is clearly decreasing we have

∞∑
k=1

|µn+k||ak| ≤
∞∑
k=1

|µk||ak|, for all n ≥ 0.

Consequently, we have:

(i) If 1 < p ≤ 2 and f ∈ Bp, f(z) =
∑∞

k=0 akz
k (z ∈ D), then

∞∑
k=1

|µn+kak| ≤
∞∑
k=1

|µk||ak| =
∞∑
k=1

k1− 1
p |ak|

µk
k1/p′

, n ≥ 0.

Then using Hölder inequality and Theorem K (i), we obtain

∞∑
k=1

|µn+kak| ≤

(
∞∑
k=1

kp−1|ak|p
)1/p( ∞∑

k=1

|µk|p
′

k

)1/p′

≤C ρp(f)

(
∞∑
k=1

|µk|p
′

k

)1/p′

, n ≥ 0.

Then it is clear that the condition
∑∞

k=1
|µk|p

′

k
< ∞ implies that the power

series appearing in the definition of Hµ(f) defines an analytic function in D.

(ii) If 2 < p < ∞ and f ∈ Bp, f(z) =
∑∞

k=0 akz
k (z ∈ D), then

∞∑
k=1

|µn+kak| ≤
∞∑
k=1

|µk||ak| =
∞∑
k=1

k
1
p |ak|

µk
k1/p

, n ≥ 0.



46 Chapter 2. A generalized Hilbert matrix acting on spaces of analytic functions

Then using Hölder inequality and Theorem L, we obtain

∞∑
k=1

|µn+kak| ≤

(
∞∑
k=1

k|ak|p
)1/p( ∞∑

k=1

|µk|p
′

kp′/p

)1/p′

≤C ρp(f)

(
∞∑
k=1

|µk|p
′

kp′/p

)1/p′

, n ≥ 0.

Then we see that the condition
∑∞

k=1
|µk|p

′

kp
′/p < ∞ implies that the power series

appearing in the definition of Hµ(f) defines an analytic function in D.

Proof of Theorem 18. Let µ be the Borel measure on [0, 1) defined by

dµ(t) =

(
log

2

1− t

)−β
dt.

Since the function x 7→
(
log 2

1−x

)−β
is decreasing in [0, 1), we have

µ ([t, 1)) =

∫ 1

t

(
log

2

1− x

)−β
dx ≤ (1− t)

(
log

2

1− t

)−β
, 0 ≤ t < 1.

Hence, µ is a β-logarithmic 1-Carleson measure. Then, taking α = 0 in Lemma 2,

we see that

µk = O

(
1

k(log k)β

)
.

On the other hand,

µk ≥
∫ 1− 1

k

0

tk
(

log
2

1− t

)−β
dt &

1

(log k)β

∫ 1− 1
k

0

tk dt &
1

k(log k)β
.

Thus, we have seen that µ is a β-logarithmic 1-Carleson measure which satisfies

µn �
1

n(log n)β
. (2.3.24)

Take p ∈ (1,∞) and α > 1
p

and set

an =
1

(n+ 1) (log(n+ 2))α
, n = 0, 1, 2, . . . ,
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and

g(z) =
∞∑
n=0

an z
n, z ∈ D.

Notice that {an} ↓ 0 and that
∑∞

n=0 n
p−1|an|p < ∞. Hence, by Theorem 22, g ∈ Bp.

We are going to prove that Hµ(g) 6∈ Bp. This implies that Hµ(Bp) 6⊂ Bp,

proving the theorem.

We have Hµ(g)(z) =
∑∞

n=0 (
∑∞

k=0 µn+kak) z
n. Notice that ak ≥ 0 for all k and

that the sequence of moments {µn} is a decreasing sequence of non-negative num-

bers. Then it follows that the sequence {
∑∞

k=0 µn+kak}∞n=0 of the Taylor coefficients

of Hµ(g) is decreasing. Consequently, using again Theorem 22, we have that

Hµ(g) ∈ Bp ⇔
∞∑
n=1

np−1

∣∣∣∣∣
∞∑
k=0

µn+kak

∣∣∣∣∣
p

< ∞. (2.3.25)

Using the definition of the sequence {ak}, (2.3.24) and the simple inequalities k
n+k
≥

1
n+1

and log(n+ k) ≤ (log n)(log k) which hold whenever k, n ≥ 10, say, we obtain

∞∑
n=1

np−1

∣∣∣∣∣
∞∑
k=0

µn+kak

∣∣∣∣∣
p

≥
∞∑

n=10

np−1

∣∣∣∣∣
∞∑

k=10

µn+kak

∣∣∣∣∣
p

&
∞∑

n=10

np−1

(
∞∑

k=10

[
1

(n+ k) (log(n+ k))β
1

k (log k)α

])p

&
∞∑

n=10

1

n(log n)pβ

(
∞∑

k=10

1

k2 (log k)α+β

)p

= ∞.

Bearing in mind (2.3.25), this implies that Hµ(g) 6∈ Bp as desired.

Proof of Theorem 19. Suppose that 1 < p <∞ and let µ be a positive Borel measure

on [0, 1) such that the operator Hµ is bounded from Bp into itself. For 1
2
< b < 1,

set

gb(z) =

(
log

1

1− b2

)−1/p

log
1

1− bz
, z ∈ D.

We have,

g′b(z) =

(
log

1

1− b2

)−1/p
b

1− bz
, z ∈ D

and then, using Lemma 3. 10 of [111] with t = p− 2 and c = 0, we have∫
D
(1− |z|2)p−2|g′b(z)|p dA(z) �

(
log

1

1− b2

)−1 ∫
D

(1− |z|2)p−2

|1− bz|p
dA(z) � 1.
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In other words, we have that

gb ∈ Bp and ‖gb‖Bp � 1.

Since Hµ is a bounded operator from Bp into itself, this implies that

1 & ‖Hµ(gb)‖pBp . (2.3.26)

We have

gb(z) =
∞∑
k=0

ak,bz
k, with ak,b =

(
log

1

1− b2

)−1/p
bk

k
.

Since the ak,b’s are positive it follows that the sequence {
∑∞

k=0 µn+kak,b}∞n=0 of the

Taylor coefficients of Hµ(gb) is a decreasing sequence of non-negative real numbers.

Using this, Theorem 22, and (2.3.26) we see that

1 & ‖Hµ(gb)‖pBp &
∞∑
n=1

np−1

(
∞∑
k=1

µn+kak,b

)p

=

(
log

1

1− b2

)−1 ∞∑
n=1

np−1

(
∞∑
k=1

bk

k

∫
[0,1)

tn+kdµ(t)

)p

≥
(

log
1

1− b2

)−1 ∞∑
n=1

np−1

(
∞∑
k=1

bk

k

∫
[b,1)

tn+kdµ(t)

)p

≥
(

log
1

1− b2

)−1 ∞∑
n=1

np−1

(
∞∑
k=1

bn+2k

k

)p

µ ([b, 1))p

=

(
log

1

1− b2

)−1 ∞∑
n=1

np−1bnp

(
∞∑
k=1

b2k

k

)p

µ ([b, 1))p

=

(
log

1

1− b2

)p−1
1

(1− bp)p
µ ([b, 1))p

�
(

log
1

1− b2

)p−1
1

(1− b)p
µ ([b, 1))p .

Then it follows that µ ([b, 1)) . 1−b

(log 1
1−b)

1− 1
p
. This finishes the proof.

Proof of Theorem 20. By the closed graph theorem it suffices to show thatHµ(Bp) ⊂
Bp.
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Take f ∈ Bp. Since µ is a γ-logarithmic 1-Carleson measure, using Lemma 4 we

see that

Hµ(f)(z) = Iµ(f)(z) =
∞∑
n=0

(∫
[0,1)

tnf(t) dµ(t)

)
zn, z ∈ D.

Also, using Corollary 1, we see that

Hµ(f) ∈ Bp ⇔
∞∑
n=1

2−n(p−1)‖∆n (Hµ(f)′) ‖pHp < ∞. (2.3.27)

Now, we have

∆n (Hµ(f)′) (z) =
2n+1−1∑
k=2n

(k + 1)

(∫
[0,1)

tk+1f(t) dµ(t)

)
zk.

Using Lemma 5 we obtain that

‖∆n (Hµ(f)′) ‖Hp .

(∫
[0,1)

t2
n−2+1|f(t)| dµ(t)

)
‖∆nF‖Hp

with F (z) =
∑∞

k=0(k + 1)zk (z ∈ D). Now, we have that Mp(r, F ) = O

(
1

(1−r)2−
1
p

)
and then it follows that ‖∆nF‖Hp = O

(
2n(2− 1

p
)
)

(see, e. g., [71]). Using this and

the estimate |f(t)| .
(
log 2

1−t

)1/p′
, we obtain

‖∆n (Hµ(f)′) ‖Hp . 2n(2− 1
p

)

(∫
[0,1)

t2
n−2+1

(
log

2

1− t

)1/p′

dµ(t)

)
,

which using the fact that µ is a γ-logarithmic 1-Carleson measure and Lemma 2

implies

‖∆n (Hµ(f)′) ‖Hp . 2n(2− 1
p

)2−nn
1
p′−γ = 2n/p

′
n

1
p′−γ.

This, together with the fact that γ > 1, implies that

∞∑
n=1

2−n(p−1)‖∆n (Hµ(f)′) ‖pHp .
∞∑
n=1

2−n(p−1)2np/p
′
np(1−γ)−1

=
∞∑
n=1

np(1−γ)−1 < ∞.

Bearing in mind (2.3.27), this shows that Hµ(f) ∈ Bp and finishes the proof.
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2.4 A generalized Hilbert matrix acting on mean

Lipschitz spaces

The mean Lipschitz space Λ2
1/2 showed up in Theorem 21 of Section 2.3. This

section will be devoted to study the operator Hµ acting on general mean Lipschitz

spaces. Let us present the definition of these spaces.

If f ∈ Hol(D) has a non-tangential limit f(eiθ) at almost every eiθ ∈ ∂D and

δ > 0, we define

ωp(δ, f) = sup
0<|t|≤δ

(
1

2π

∫ π

−π

∣∣f(ei(θ+t))− f(eiθ)
∣∣p dθ)1/p

, if 1 ≤ p <∞,

ω∞(δ, f) = sup
0<|t|≤δ

(
ess. sup
θ∈[−π,π]

|f(ei(θ+t))− f(eiθ)|

)
.

Then ωp(·, f) is the integral modulus of continuity of order p of the boundary values

f(eiθ) of f .

Given 1 ≤ p ≤ ∞ and 0 < α ≤ 1, the mean Lipschitz space Λp
α consists of those

functions f ∈ Hol(D) having a non-tangential limit almost everywhere for which

ωp(δ, f) = O(δα), as δ → 0. If p =∞ we write Λα instead of Λ∞α . This is the usual

Lipschitz space of order α.

A classical result of Hardy and Littlewood [58] (see also [40, Chapter 5]) asserts

that for 1 ≤ p ≤ ∞ and 0 < α ≤ 1, we have that Λp
α ⊂ Hp and

Λp
α =

{
f ∈ Hol(D) : Mp(r, f

′) = O

(
1

(1− r)1−α

)}
.

It is known that if 1 < p < ∞ and α > 1
p

then each f ∈ Λp
α is bounded and has a

continuous extension to the closed unit disc [25, p.88]. This is not true for α = 1
p
,

because the function f(z) = log(1 − z) belongs to Λp
1/p for all p ∈ (1,∞). By a

theorem of Hardy and Littlewood [40, Theorem 5.9] and of [25, Theorem 2.5] we

have

Λp
1/p ⊂ Λq

1/q ⊂ BMOA 1 ≤ p < q <∞.

The inclusion Λp
1/p ⊂ BMOA, 1 ≤ p < ∞ was proved to be sharp in a very strong

sense in [20, 50, 51] using the following generalization of the spaces Λp
α which occurs

frequently in the literature.
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Let ω : [0, π] → [0,∞) be a continuous and increasing function with ω(0) = 0

and ω(t) > 0 if t > 0. Then, for 1 ≤ p ≤ ∞, the mean Lipschitz space Λ(p, ω)

consists of those functions f ∈ Hp such that

ωp(δ, f) = O(ω(δ)), as δ → 0.

With this notation we have Λp
α = Λ(p, δα).

The question of finding conditions on ω so that it is possible to obtain results

on the spaces Λ(p, ω) analogous to those proved by Hardy and Littlewood for the

spaces Λp
α has been studied by several authors (see [22, 23, 25]). We shall say that

ω satisfies the Dini condition or that ω is a Dini-weight if there exists a positive

constant C such that ∫ δ

0

ω(t)

t
dt ≤ Cω(δ), 0 < δ < 1.

We shall say that ω satisfies the condition b1 or that ω ∈ b1 if there exists a positive

constant C such that ∫ π

δ

ω(t)

t2
dt ≤ C

ω(δ)

δ
, 0 < δ < 1.

In order to simplify our notation, let AW denote the family of all functions

ω : [0, π]→ [0,∞) which satisfy the following conditions:

(i) ω is continuous and increasing in [0, π].

(ii) ω(0) = 0 and ω(t) > 0 if t > 0.

(iii) ω is a Dini-weight.

(iv) ω satisfies the condition b1.

The elements of AW will be called admissible weights. Characterizations and

examples of admissible weights can be found in [22, 23].

Blasco and de Souza extended the above mentioned result of Hardy and Little-

wood showing in [22, Theorem 2.1] that if ω ∈ AW then,

Λ(p, ω) =

{
f analytic in D : Mp(r, f

′) = O

(
ω(1− r)

1− r

)
, as r → 1

}
.
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In [20, 51, 50] it is proved that if 1 ≤ p <∞ and ω is an admissible weight such

that
ω(δ)

δ1/p
→∞, as δ → 0,

then there exists a function f ∈ Λ(p, ω) which is a not a normal function (see [6]

for the definition). Since any Bloch function is normal, if follows that for such

admissible weights ω one has that Λ(p, ω) 6⊂ B.

Theorem 21 of the above section gives a result for a Banach space X satisfying

that Λ2
1/2 ⊂ X ⊂ B. This result can be improved changing Λ2

1/2 by Λp
1/p for any

p > 1.

Theorem 23 ([72]). Suppose that 1 < p <∞. Let µ be a positive Borel measure on

[0, 1) and let X be a Banach space of analytic functions in D with Λp
1/p ⊂ X ⊂ B.

Then the following conditions are equivalent.

(i) The operator Hµ is well defined in X and, furthermore, it is a bounded operator

from X into the Bloch space B.

(ii) The operator Hµ is well defined in X and, furthermore, it is a bounded operator

from X into Λp
1/p.

(iii) The measure µ is a 1-logarithmic 1-Carleson measure.

(iv)
∫

[0,1)
tn log 1

1−tdµ(t) = O
(

1
n

)
.

As an immediate consequence of Theorem 23 we obtain the following result.

Corollary 2. Let µ be a positive Borel measure on [0, 1) and 1 < p <∞. Then the

operator Hµ is well defined in Λp
1/p and, furthermore, it is a bounded operator from

Λp
1/p into itself if and only if µ is a 1-logarithmic 1-Carleson measure.

Let us turn our attention now to the spaces Λ(p, ω) with ω(δ)

δ1/p
↗ ∞, as δ ↘ 0

which, as noted before, are not included in the Bloch space. We have the following

result which shows that the situation is different from the one covered in Theorem 23.

Theorem 24 ([72]). Let 1 < p < ∞, ω ∈ AW with ω(δ)

δ1/p
↗ ∞ when δ ↘ 0. The

following conditions are equivalent:

(i) The operator Hµ is well defined in Λ(p, ω) and, furthermore, it is a bounded

operator from Λ(p, ω) into itself.

(ii) The measure µ is a Carleson measure.
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2.4.1 Preliminary results

In this section we shall present some results that we will use in the proofs of the

above theorems.

A key ingredient in the proof of Theorem 21 is the fact that for any space X

with Λ2
1/2 ⊂ X ⊂ B the functions f ∈ X of the form f(z) =

∑∞
n=0 anz

n whose

sequence of Taylor coefficients {an} is a decreasing sequence of non-negative numbers

are the same. Indeed, for such a function f and such a space X we have that

f ∈ X ⇔ an = O
(

1
n

)
. This result remains true if we substitute Λ2

1/2 by Λp
1/p for

any p > 1. That is, the following result holds:

Lemma 6. Suppose that 1 < p < ∞ and let f ∈ Hol(D) be of the form f(z) =∑∞
n=0 anz

n with {an}∞n=0 being a decreasing sequence of nonnegative numbers. If X

is a subspace of Hol(D) with Λp
1/p ⊂ X ⊂ B, then

f ∈ X ⇔ an = O

(
1

n

)
.

Lemma 6 is a consequence of the following one which gives a characterization for

functions with decreasing coefficients in all Λ(p, ω) spaces with 1 < p < ∞ and ω

being an admissible weight.

Lemma 7. Let 1 < p <∞, ω ∈ AW and let f(z) =
∑∞

n=0 anz
n with {an}∞n=0 being

a decreasing sequence of nonnegative numbers. Then

f ∈ Λ(p, ω) ⇔ an = O

(
ω(1/n)

n1−1/p

)
. (2.4.1)

The proof of Lemma 7 is based in the following result of Girela and González

[53, Theorem 2]. We recall that for a function f(z) =
∑∞

n=0 anz
n analytic in D, the

polynomials ∆jf are defined as follows:

∆jf(z) =
2j+1−1∑
k=2j

akz
k, for j ≥ 1,

∆0f(z) = a0 + a1z.

Theorem N. Let 1 < p < ∞ and let ω be an admissible weight. If f ∈ Hol(D)

with f(z) =
∑∞

n=0 anz
n then

f ∈ Λ(p, ω) ⇔ ‖∆Nf‖Hp = O

(
ω

(
1

2N

))
.
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Proof of Lemma 7. By Lemma A of [78], since an ↘ 0, we have

‖∆Nf‖Hp � a2N2N(1−1/p), N ≥ 1.

So by Theorem N we have that

f ∈ Λ(p, ω)⇔ a2N .
ω
(
1/2N

)
2N(1−1/p)

, N ≥ 1.

This easily implies (2.4.1).

We also need the following result to prove Theorem 24.

Lemma 8. Suppose that 1 < p <∞. Let ν be a positive Borel measure on [0, 1), and

let ω ∈ AW satisfying that x−1/pω(x) ↗ ∞, as x ↘ 0. Then following conditions

are equivalent:

(i) νn . ω(1/n)

n1−1/p , n ≥ 2.

(ii) ν([b, 1]) . (1− b)1−1/pω(1− b), b ∈ [0, 1).

Proof. Suppose (i). Then we have that

1 &
n1−1/p νn
ω(1/n)

=
n1−1/p

ω(1/n)

∫
[0,1)

tn dν(t) ≥ n1−1/p

ω(1/n)

∫
[1−1/n,1)

tn dν(t)

≥ n1−1/p

ω(1/n)
ν([1− 1/n, 1))

(
1− 1

n

)n
≥ n1−1/p

ω(1/n)
ν([1− 1/n, 1)) inf

m≥2

(
1− 1

m

)m
&
n1−1/p

ω(1/n)
ν([1− 1/n, 1)).

So ν([1− 1/n, 1)) . ω(1/n)

n1−1/p for n ≥ 2.

Let now b ∈ [1/2, 1). There exists n ≥ 2 such that 1− 1
n
≤ b < 1− 1

n+1
so using

the above we have that

ν([b, 1)) ≤ ν([1− 1/n, 1)) .
ω(1/n)

n1−1/p
.

This, and the facts that ω(1/n)n1/p ≤ ω(1/(n+ 1))(n+ 1)1/p and that the weight ω

increases give (ii).
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Suppose now (ii). Then

νn =

∫
[0,1)

tn dν(t) = n

∫ 1

0

ν([t, 1))tn−1 dt

. n

∫ 1

0

(1− t)1−1/pω(1− t)tn−1 dt

= n

∫ 1− 1
n

0

+

∫ 1

1− 1
n

(
(1− t)1−1/pω(1− t)tn−1 dt

)
.

The first integral can be estimated bearing in mind that (1 − t)−1/pω(1 − t) ↗ ∞
when t↗ 1 as follows

n

∫ 1− 1
n

0

(1− t)1−1/pω(1− t)tn−1 dt

≤n1+1/pω(1/n)

∫ 1− 1
n

0

(1− t)tn−1 dt

=n1+1/pω(1/n)

(
1− 1

n

)n(
1

n
− n− 1

n(n+ 1)

)
.
ω(1/n)

n1−1/p
.

To estimate of the second integral we use that (1− t)1−1/pω(1− t)↘ 0 when t↗ 1

to obtain

n

∫ 1

1− 1
n

(1− t)1−1/pω(1− t)tn−1 dt

≤n1/pω(1/n)

∫ 1

1− 1
n

tn−1 dt

=
ω(1/n)

n1−1/p

(
1−

(
1− 1

n

)n)
.
ω(1/n)

n1−1/p
.

Then (i) follows.

2.4.2 Proofs

To prove Theorem 23 we only need to use Lemma 6 and follow the proof of

Theorem 21. Let us prove Theorem 24.
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Proof of Theorem 24. (i) ⇒ (ii) Suppose that Hµ : Λ(p, ω) → Λ(p, ω) is bounded.

By Lemma 7 we have that the function f defined by f(z) =
∑∞

n=1
ω(1/n)

n1−1/p z
n belongs

to the space Λ(p, ω) so, by the hypothesis, Hµ(f) belongs also to Λ(p, ω). Now

Hµ(f)(z) =
∞∑
n=0

(
∞∑
k=1

ω(1/k)

k1−1/p
µn+k

)
zn.

Notice that
∑∞

k=1
ω(1/k)

k1−1/p µn+k ↘ 0, as n↗∞, so using again Lemma 7 it holds that

∞∑
k=1

ω(1/k)

k1−1/p
µn+k =

∫
[0,1)

tn
∞∑
k=1

ω(1/k)

k1−1/p
tk dµ(t) .

ω(1/n)

n1−1/p
,

that is, the moments of the measure ν defined by

dν(t) =
∞∑
k=1

ω(1/k)

k1−1/p
tk dµ(t)

satisfy that

νn .
ω(1/n)

n1−1/p
,

so by Lemma 8 we have that ν([b, 1)) . (1− b)1−1/pω(1− b), b ∈ [0, 1).

According to the definition of the measure

(1− b)1−1/pω(1− b) & ν([b, 1)) =

∫
[b,1)

dν(t)

=

∫
[b,1)

∞∑
k=1

ω(1/k)

k1−1/p
tk dµ(t)

≥ µ ([b, 1))
∞∑
k=1

ω(1/k)

k1−1/p
bk

and the sum can be estimated as follows
∞∑
k=1

ω(1/k)

k1−1/p
bk �

∫ ∞
1

ω(1/x)

x1−1/p
bx dx

≥
∫ 1

1−b

1

ω(1/x)

x1−1/p
bx dx

≥ (1− b)1−1/pω(1− b)b
1

1−b

(
1

1− b
− 1

)
&

ω(1− b)
(1− b)1/p

.
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Finally, putting all together we have that

µ([b, 1)) . 1− b

so µ is a Carleson measure.

(ii) ⇒ (i) To prove this implication we need to use again the integral operator

Iµ considered before.

Suppose that µ is a Carleson measure supported on [0, 1) and let f ∈ Λ(p, ω).

We claim that ∫
[0,1)

|f(t)|
|1− tz|

dµ(t) <∞. (2.4.2)

Indeed, using Lemma 3 of [53] we have that

f ∈ Λ(p, ω)⇒ |f(z)| . ω(1− |z|)
(1− |z|)1/p

, z ∈ D. (2.4.3)

Then we obtain ∫
[0,1)

|f(t)|
|1− tz|

dµ(t) ≤ 1

1− |z|

∫
[0,1)

|f(t)| dµ(t)

.
1

1− |z|

∫
[0,1)

ω(1− t)
(1− t)1/p

dµ(t).

If we choose r ∈ [0, 1) we can split the integral in the intervals [0, r) and [r, 1). In

the first one, as ω is an increasing weight we have∫
[0,r)

ω(1− t)
(1− t)1/p

dµ(t) ≤ ω(1)

∫
[0,r)

dµ(t)

(1− t)1/p

≤ ω(1)

∫
[0,1)

dµ(t)

(1− t)1/p

. 1,

because µ is a Carleson measure. Using this and the condition ω(δ)

δ1/p
↗∞, as δ ↘ 0

we can estimate the other integral as follows∫
[r,1)

ω(1− t)
(1− t)1/p

dµ(t) ≤ ω(1− r)
∫

[r,1)

1

(1− t)1/p
dµ(t)

. ω(1− r)(1− r)1−1/p

. 1.
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So we have that for f ∈ Λ(p, ω) and z ∈ D, (2.4.2) holds. This implies that Iµ(f) is

well defined, and, using Fubini’s theorem and standard arguments it follows easily

that Hµ(f) is also well defined and that, furthermore,

Hµ(f)(z) = Iµ(f)(z), z ∈ D.

Now we have,

Iµ(f)′(z) =

∫
[0,1)

tf(t)

(1− tz)2
dµ(t), z ∈ D,

so the mean of order p of Iµ(f)′ has the form

Mp (r, Iµ(f)′) =

(
1

2π

∫ π

−π

∣∣∣∣∫
[0,1)

tf(t)

(1− treiθ)2
dµ(t)

∣∣∣∣p dθ)1/p

.

Using again (2.4.3), the Minkowski inequality and a classical estimation of integrals

we obtain that

Mp (r, Iµ(f)′) .
∫

[0,1)

|f(t)|
(∫ π

−π

dθ

|1− treiθ|2p

)1/p

dµ(t)

.
∫

[0,1)

|f(t)|
(1− tr)2−1/p

dµ(t)

.
∫

[0,1)

ω(1− t)
(1− t)1/p(1− tr)2−1/p

dµ(t).

At this point we split the integrals on the sets [0, r) and [r, 1).

In the first integral we use that x−1/pω(x) ↗ ∞, as x ↘ 0, and the fact that if

µ is a Carleson measure (so that µn =
∫

[0,1)
tn dµ(t) . 1

n
) to obtain∫

[0,r)

ω(1− t)
(1− t)1/p(1− tr)2−1/p

dµ(t) ≤ ω(1− r)
(1− r)1/p

∫
[0,r)

dµ(t)

(1− tr)2−1/p

≤ ω(1− r)
(1− r)1/p

∫
[0,1)

dµ(t)

(1− tr)2−1/p

.
ω(1− r)
(1− r)1/p

∞∑
n=1

n1−1/prn
∫

[0,1)

tn dµ(t)

.
ω(1− r)
(1− r)1/p

∞∑
n=1

rn

n1/p

.
ω(1− r)
(1− r)

.
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In the second integral we use that ω is an increasing weight and the fact that the

measure µ being a Carleson measure is equivalent to saying that the measure ν

defined by dν(t) = dµ(t)

(1−t)1/p is a 1− 1
p
-Carleson measure so that the moments νn of ν

satisfy νn . 1

n
1− 1

p
. Then we obtain∫

[r,1)

ω(1− t)
(1− t)1/p(1− tr)2−1/p

dµ(t) ≤ ω(1− r)
∫

[r,1)

dν(t)

(1− tr)2−1/p

≤ ω(1− r)
∫

[0,1)

dν(t)

(1− tr)2−1/p

. ω(1− r)
∞∑
n=1

n1−1/prn
∫

[0,1)

tn dν(t)

. ω(1− r)
∞∑
n=1

rn

=
ω(1− r)
(1− r)

.

Therefore Iµ(f) ∈ Λ(p, ω) and then the operator Iµ (and hence the operator Hµ) is

bounded from Λ(p, ω) into itself.





Chapter 3

Morrey spaces

This chapter is devoted to Morrey spaces, which were introduced by Charles B.

Morrey Jr. [73] in 1938 in connection with partial differential equations, and were

subsequently studied as function classes in harmonic analysis on Euclidean spaces,

extending the notion of functions of bounded mean oscillation. The analytic Morrey

spaces were introduced more recently and they have been studied by several authors,

see for example [68], [102], [106], and [107].

We recall the definition and some of their properties. Observe that∫
I

∣∣f(eiθ)− fI
∣∣2 dθ → 0 as |I| → 0,

for every f ∈ H2, and the rate of this convergence to 0 depends clearly on the

degree of oscillation of f around its average fI on I. Given λ ∈ (0, 1] we can isolate

functions f for which this rate of convergence is comparable to |I|λ.
Thus for f ∈ H2 and 0 < λ ≤ 1 we say that f belongs to the Morrey space L2,λ

if

‖f‖L2,λ
def
= |f(0)|+ ‖f‖L2,λ(T) <∞,

where

‖f‖L2,λ(T) = sup
I⊂T

I interval

(
1

|I|λ

∫
I

∣∣f(eiθ)− fI
∣∣2 dθ)1/2

. (3.0.1)

Clearly, L2,1 = BMOA. The Morrey spaces increase when the parameter λ

decreases, so we have the following relation:

BMOA ⊂ L2,λ2 ⊂ L2,λ1 ⊂ H2, 0 < λ1 ≤ λ2 ≤ 1. (3.0.2)

61
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It turns out that an equivalent norm is

‖f‖L2,λ = |f(0)|+ sup
a∈D

(1− |a|2)
1
2

(1−λ)‖f ◦ ϕa − f(a)‖H2 , (3.0.3)

and the following Carleson measure characterization is also valid

f ∈ L2,λ ⇔ sup
I⊂T

1

|I|λ

∫
S(I)

|f ′(z)|2(1− |z|2) dA(z) <∞. (3.0.4)

See Lemma 2.3 of [66] for both characterizations.

In the same way as it is defined the space VMOA we can consider the space L2,λ
0

as the space of functions in L2,λ such that

lim
|I|→0

1

|I|λ

∫
I

∣∣f(eiθ)− fI
∣∣2 dθ = 0.

Characterizations similar to (3.0.3) and (3.0.4) can be obtained for these spaces.

One important thing when we research in complex analysis is to have a good

variety of examples of functions which belong to the spaces we are working with.

Because of that, the next section is devoted to explore the structure of Morrey

spaces, characterizing for some typical classes of analytic functions C those functions

in C which lie in the Morrey spaces, and paying attention to the differences and

similarities with Hardy spaces and BMOA.

The second section will be devoted to the actions of semigroups of composition

operators on these Morrey spaces. Most of our results concerning this topic are

included in [47].

3.1 Structure of Morrey spaces

One of the most important types of analytic functions are the lacunary series.

We say that a power series centered at 0 is a lacunary power series or a power series

with Hadamard gaps if it is of the form

∞∑
k=0

akz
nk

where {nk}∞k=0 is a sequence of non-negative integers for which there exists l > 1

such that

nk+1 ≥ lnk, for all k ≥ 0.
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It is well known (see [52, Theorem 9.3]) that the lacunary power series in BMOA

coincide with those in H2.

Theorem O. Let l > 1 and let f ∈ Hol(D) which is given by a power series with

Hadamard gaps of the form
∑∞

k=0 akz
nk with nk+1 ≥ lnk for all k ≥ 0. Then, the

following are equivalent.

(i) f ∈ BMOA.

(ii) f ∈ H2.

(iii)
∞∑
k=0

|ak|2 <∞.

(iv) f ∈ Hp for some p ∈ (0,∞).

Since Morrey spaces are between BMOA and H2 we have the same character-

ization for them, so we can not distinguish lacunary series in Morrey spaces from

those in BMOA or H2.

It is well known that functions in BMOA have logarithmic growth,

f ∈ BMOA⇒ |f(z)| . log
2

1− |z|
, z ∈ D. (3.1.1)

This does not remain true for functions in Morrey spaces. Indeed, we have by

Lemma 2 of [67] that the chain of contentions in (3.0.2) can be improved as follows:

H
2

1−λ ⊂ L2,λ ⊂ H2, 0 < λ < 1. (3.1.2)

This easily implies that for ε > 0 the function f(z) = (1− z)−
1−λ
2

+ε belongs to the

Morrey space L2,λ.

The substitute of (3.1.1) for Morrey spaces is the following result, which can be

found in [66].

Theorem P. Let 0 < λ < 1. If f ∈ L2,λ then

|f(z)| . ‖f‖L2,λ
(1− |z|) 1−λ

2

, z ∈ D. (3.1.3)

Thanks to the fact that Morrey spaces are between two Hardy spaces we observe

that certain random power series in Hardy spaces and Morrey spaces are the same.

We shall consider random power series of the form
∞∑
n=0

εnanz
n,
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where {εn}∞n=0 is a choice of signs, that is, {εn}∞n=0 ⊂ {−1, 1}. By (3.1.2), the

following result ([40, Theorem A.5]) can be extended to all Morrey spaces L2,λ with

0 < λ < 1.

Theorem Q. Let f(z) =
∑∞

n=0 εnanz
n be an analytic function in the disc where

{εn}∞n=0 is a choice of signs. Then

(i) If
∞∑
n=0

|an|2 <∞, then for almost every choice of signs {εn}∞n=0,

f ∈ Hp for all p <∞.

(ii) If
∞∑
n=0

|an|2 =∞ then for almost every choice of signs {εn}∞n=0, f has a radial

limit almost nowhere and hence f /∈ Hp for any p <∞.

Here we notice a difference between Morrey spaces and BMOA. By results in

[6] and [42] we have the following.

Theorem R. Let f(z) =
∑∞

n=0 εnanz
n be an analytic function in the disc where

{εn}∞n=0 is a choice of signs. Then

(i) If
∞∑
n=0

|an|2 log n < ∞, then for almost every choice of signs {εn}∞n=0, f ∈

BMOA.

(ii) Given a sequence of non-negative numbers {cn}∞n=0 which decreases to 0, there

exists a sequence of positive numbers {an}∞n=0 such that
∞∑
n=0

cna
2
n log n <∞ but

f /∈ B for almost every choice of signs {εn}∞n=0 (Note that BMOA ⊂ B).

So there exist random power functions which belong to every Morrey spaces L2,λ

with 0 < λ < 1 for almost every choice of signs but do not belong to BMOA for

almost any choice of signs.

Coming back to the chain (3.1.2), we have that the first inclusion, H
2

1−λ ⊂
L2,λ, 0 < λ < 1, is proper because, for example, the function f(z) = (1 − z)−

1−λ
2 ,

which gives the maximum growth, does not belong to the Hardy space H
2

1−λ (The-

orem 5.9 of [40]) but it is in the Morrey space L2,λ. We can prove this in some

different ways, maybe the most interesting is by a characterization of functions with

non-negative Taylor coefficients in Morrey spaces.
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Theorem 25. Let 0 < λ ≤ 1 and f(z) =
∞∑
n=0

anz
n a function in Hol(D). Then,

f ∈ L2,λ if and only if

sup
w∈D

∞∑
n=0

(1− |w|2)2−λ

(n+ 1)2

∣∣∣∣∣
n∑
k=0

(k + 1)ak+1w
n−k

∣∣∣∣∣
2

<∞.

We remark that for λ = 1, this reduces to the known result for BMOA which

can be found in [52].

If we consider the case where an ≥ 0 for every n ≥ 0 then, the above result

reduces to the following:

The function f(z) =
∞∑
n=0

anz
n belongs to L2,λ if and only if

sup
0≤r<1

∞∑
n=0

(1− r2)2−λ

(n+ 1)2

(
n∑
k=0

(k + 1)ak+1r
n−k

)2

<∞. (3.1.4)

In this case we can give a simpler equivalent characterization.

Theorem 26. Let 0 < λ ≤ 1 and f(z) =
∞∑
n=0

anz
n a function in Hol(D) with an ≥ 0

for every n ≥ 0. Then f ∈ L2,λ if and only if

sup
n≥1

1

n1−λ

∞∑
k=0

(k+1)n−1∑
j=kn

aj

2

<∞. (3.1.5)

Let us see now an easy characterization of functions in Morrey spaces with have

non-negative and non-increasing Taylor coefficients.

Theorem 27. Let 0 < λ < 1 and f(z) =
∞∑
n=0

anz
n a function in Hol(D) with an ≥ 0

for every n ≥ 0 and {an} non-increasing. Then

f ∈ L2,λ ⇔ an . n−
1+λ
2 .

Using this characterization we obtain a new proof of the fact that, for 0 < λ < 1,

the function f(z) = (1 − z)−
1−λ
2 belongs to the Morrey space L2,λ. Indeed, by

Theorem 2.31 of [112] we know that f(z) =
∑∞

n=0Anz
n, where An =

∏n−1
k=0 (α+k)

n!
with

α = 1+λ
2
< 1, so by the theorem above we obtain directly that f ∈ L2,λ.

Theorem 27 gives us also the following result
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Corollary 3. Let 0 < λ < 1. We define P as the class of analytic functions in the

disc with non-negative and non-increasing Taylor coefficients,

P =

{
f(z) =

∞∑
n=0

anz
n ∈ Hol(D) : an ≥ 0 and {an} non-increasing

}
.

Then

L2,λ ∩ P ⊂
⋂

p< 2
1−λ

Hp.

We can also find differences between BMOA and Morrey spaces if we regard the

univalent functions. We recall that a function is said univalent if it is analytic and

injective. We denote U as the class of univalent functions in the unit disc. There

exists a geometric characterization for univalent functions in the spaces BMOA and

the Bloch space which can be found in [35, 87].

Theorem S. Let f ∈ U . Then the following conditions are equivalent.

• f ∈ B.

• f ∈ BMOA.

• f(D) does not contain arbitrarily large discs.

The function f(z) = (1−z)−
1−λ
2 mentioned above, is univalent and belongs to the

space L2,λ. It is clear that f(D) is a sector of the complex plane in that arbitrarily

large discs are contained, so the class of univalent functions in a Morrey space L2,λ

with 0 < λ < 1 is pretty larger than that of the univalent functions in BMOA or

the Bloch space.

The importance of univalent functions in Morrey spaces lies in the following

result, which gives us a similar contention as in Corollary 3.

Theorem 28. Let 0 < λ < 1. Then

L2,λ ∩ U ⊂
⋂

p< 2
1−λ

Hp.

We do not know if the results of Corollary 3 and Theorem 28 can be extended

to the whole Morrey space. We leave this question as a conjecture.

Question 2. Let 0 < λ < 1. It is true that

L2,λ ⊂
⋂

p< 2
1−λ

Hp ?



3.1. Structure of Morrey spaces 67

3.1.1 Proofs

Proof of Theorem 25. We know that

‖f − f(0)‖2
L2,λ � sup

w∈D
(1− |w|2)1−λ

∫
D
|f ′(z)|2(1− |σw(z)|2) dA(z)

= sup
w∈D

(1− |w|2)2−λ
∫
D
|f ′(z)|2 1− |z|2

|1− wz|2
dA(z)

In the proof of Theorem 9.9 of [52], it is obtained by Parseval’s identity that for

w ∈ D∫
D
|f ′(z)|2 1− |z|2

|1− wz|2
dA(z) = π

∞∑
n=0

1

(n+ 1)(n+ 2)

∣∣∣∣∣
n∑
k=0

(k + 1)ak+1w
n−k

∣∣∣∣∣
2

so considering the weight and taking suprema we have that

‖f − f(0)‖2
L2,λ � sup

w∈D
(1− |w|2)2−λ

∫
D
|f ′(z)|2 1− |z|2

|1− wz|2
dA(z)

= π sup
w∈D

(1− |w|2)2−λ
∞∑
n=0

1

(n+ 1)(n+ 2)

∣∣∣∣∣
n∑
k=0

(k + 1)ak+1w
n−k

∣∣∣∣∣
2

� sup
w∈D

(1− |w|2)2−λ
∞∑
n=0

1

(n+ 1)2

∣∣∣∣∣
n∑
k=0

(k + 1)ak+1w
n−k

∣∣∣∣∣
2

.

Proof of Theorem 26. We have just to prove that (3.1.4) and (3.1.5) are equivalent

for a sequence {an}∞n=0 with an ≥ 0 for all n.

So take such a sequence {an} of non negative numbers and suppose first that

(3.1.4) holds. Let A be the supremum in (3.1.4). Bearing in mind that there exist

two absolute constant c1, c2 > 0 (independent of n) such that

c1 ≤
(

1− 1

n+ 1

)j
≤ c2,

if 0 ≤ j ≤ 2n, by Theorem 9.11 of [52] we have that for every n ≥ 1

∞∑
k=0

(k+1)n−1∑
j=kn

aj+1

2

≤ C
1

n+ 1

∞∑
s=0

1

(s+ 1)2

(
s∑
j=0

(j + 1)aj+1

(
1− 1

n+ 1

)s−j)2
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so

1

(n+ 1)1−λ

∞∑
k=0

(k+1)n−1∑
j=kn

aj+1

2

≤

C
1

(n+ 1)2−λ

∞∑
s=0

1

(s+ 1)2

(
s∑
j=0

(j + 1)aj+1

(
1− 1

n+ 1

)s−j)2

≤ CA.

This gives (3.1.5).

Conversely, suppose that an ≥ 0, for all n, and that (3.1.5) is satisfied. It is easy

to see that (3.1.5) implies that there exist positive constants c1, c2, c3 such that

2n∑
j=n

aj ≤ c1n
1−λ
2 , for all n, (3.1.6)

n∑
m=1

mam ≤ c2n
3−λ
2 , for all n, (3.1.7)

and

∞∑
k=0

α+(k+1)N∑
j=α+kN

aj

2

≤ c3N
1−λ, for all α,N ∈ N. (3.1.8)

Fix r ∈ (0, 1). Let N be the positive integer satisfying

1

N
< 1− r ≤ 1

N − 1

(then N ≥ 2). Then

∞∑
n=0

(1− r2)2−λ

(n+ 1)2

(
n∑
k=0

(k + 1)ak+1r
n−k

)2

≤ C

N2−λ

∞∑
n=0

1

(n+ 1)2

(
n∑
k=0

(k + 1)ak+1

(
1− 1

N

)n−k)2

≤ C

N2−λ (AN +BN),

where

AN =
∞∑
n=0

1

(n+ 1)2

 ∑
0≤k≤n

2

(k + 1)ak+1

(
1− 1

N

)n−k2

(3.1.9)
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and

BN =
∞∑
n=0

1

(n+ 1)2

 ∑
n
2
<k≤n

(k + 1)ak+1

(
1− 1

N

)n−k2

.

It is clear that (3.1.4) will follow from

AN +BN = O(N2−λ), as N →∞. (3.1.10)

Using (3.1.9) and (3.1.7) we obtain

AN ≤ C
∞∑
n=0

1

(n+ 1)2

 ∑
0≤k≤n

2

(k + 1)ak+1

2(
1− 1

N

)n/2

≤ C
∞∑
n=0

(n+ 1)1−λ
(

1− 1

N

)n
≤ CN2−λ. (3.1.11)

On the other hand

BN ≤ C
∞∑
n=0

1

(2n+ 1)2

(
2n∑
k=n

kak

(
1− 1

N

)2n−k
)2

≤ CIN (3.1.12)

where

IN =
∞∑
n=0

(
2n∑
k=n

ak

(
1− 1

N

)2n−k
)2

.

Fix a large positive integer M such that

(
1− 1

N

1− 1
MN

)2MN

≤ 1

4M2−λ , for all N. (3.1.13)
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Using (3.1.6), (3.1.8) and (3.1.13), we obtain

IN ≤
NM∑
n=0

(
2n∑
k=n

ak

)2

+
∞∑

n=NM

(
2n∑

k=2n−MN

ak +
2n−MN∑
k=n

ak

(
1− 1

N

)2n−k
)2

≤C(NM)2−λ + 2
∞∑

n=NM

(
2n∑

k=2n−MN

ak

)2

+ 2
∞∑

n=NM

(
2n−MN∑
k=n

ak

(
1− 1

N

)2n−k
)2

≤C(NM)2−λ + 2
MN−1∑
α=0

∞∑
k=0

α+MN(k+1)∑
j=α+MNk

aj

2

+ 2

(
1− 1

N

1− 1
MN

)2MN ∞∑
n=0

(
2n∑
k=n

ak

(
1− 1

MN

)2n−k
)2

≤C(NM)2−λ + 2C(NM)2−λ + 2

(
1− 1

N

1− 1
MN

)2MN

IMN

≤C(NM)2−λ +
1

2M2−λ IMN , for all N.

Then it follows that

sup
N

IN
N2−λ ≤ CM2−λ +

1

2
sup
N

IMN

(MN)2−λ .

Clearly, this implies that

sup
N

IN
N2−λ ≤ CM2−λ

if the sequence {an} contains only finitely many non zero terms. Then a limit

argument shows that this is true in the general case. Using this, (3.1.12), (3.1.11),

we obtain (3.1.10). This finishes the proof.

Proof of Theorem 27. We suppose that an . n−
1+λ
2 . Using the characterization
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obtained in Theorem 26, we have that

1

n1−λ

∞∑
k=0

(
kn+n−1∑
j=kn

aj

)2

.
1

n1−λ

∞∑
k=0

(
kn+n−1∑
j=kn

j−
1+λ
2

)2

≤ 1

n1−λ

∞∑
k=0

(
nk−

1+λ
2 n−

1+λ
2

)2

=
1

n1−λ

∞∑
k=0

n1−λ

k1+λ
≤ C.

so f ∈ L2,λ.

We suppose now that f ∈ L2,λ, being an non-negative and non-increasing. Then

n1−λ &
∞∑
k=0

(
kn+n−1∑
j=kn

aj

)2

≥

(
2n−1∑
j=n

aj

)2

≥

(
a2n−1

2n−1∑
j=n

)2

= n2a2
2n−1

hence

a2n−1 . n−
1+λ
2 .

The proof of Corollary 3 is a direct consequence of Theorem 27 and Theorem A

of [78].

Proof of Theorem 28. Let p < 2
1−λ . If f ∈ U we know by Theorem A of [84] that

f ∈ Hp ⇔
∫ 1

0

Mp
∞(r, f) dr <∞.

Since f ∈ L2,λ, using (3.1.3) we obtain that∫ 1

0

Mp
∞(r, f) dr .

∫ 1

0

dr

(1− r)
p(1−λ)

2

=
1

1− p(1−λ)
2

<∞.

3.2 Semigroups on Morrey spaces

This section is devoted to the action of semigroups of composition operators on

Morrey spaces. Let us start with the definition of a semigroup and some of its main

elements.

A (one-parameter) semigroup of analytic functions is a continuous homomor-

phism Φ : t 7→ Φ(t) = ϕt from the additive semigroup of nonnegative real numbers
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into the composition semigroup of all analytic functions which map D into D.

In other words, Φ = (ϕt) consists of analytic functions on D with ϕt(D) ⊂ D and

for which the following three conditions hold:

(i) ϕ0 is the identity in D,

(ii) ϕt+s = ϕt ◦ ϕs, for all t, s ≥ 0,

(iii) ϕt → ϕ0, as t→ 0, uniformly on compact subsets of D.

It is well known that condition (iii) above can be replaced by

(iii′) For each z ∈ D, ϕt(z)→ z, as t→ 0.

Some basic examples of semigroups are:

(i) The trivial semigroup, ϕt(z) = z, t ≥ 0.

(ii) The dilatations of the disc with respect to the origin, ϕt(z) = e−tz, t ≥ 0.

(iii) The rotations of the disc, ϕt(z) = eitz, t ≥ 0.

Each such semigroup gives rise to a semigroup (Ct) consisting of composition

operators on Hol(D),

Ct(f)
def
= f ◦ ϕt, f ∈ Hol(D).

There is a good number of works about semigroups of composition operators focused

on the restriction of (Ct) to certain linear subspaces of Hol(D). Given a Banach

space X consisting of functions in Hol(D) and a semigroup (ϕt), we say that (ϕt)

generates a semigroup of operators on X if (Ct) is a well-defined strongly continuous

semigroup of bounded operators in X. This exactly means that for every f ∈ X,

we have Ct(f) ∈ X for all t ≥ 0 and

lim
t→0+
‖Ct(f)− f‖X = 0.

Thus the crucial step to showing that (ϕt) generates a semigroup of operators in

X is to pass from the pointwise convergence lim
t→0+

f ◦ ϕt(z) = f(z) on D to the

convergence in the norm of X.
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This connection between composition operators and semigroups opens the pos-

sibility of studying spectral properties, operator ideal properties or dynamical prop-

erties of the semigroup of operators (Ct) in terms of the theory of functions. The

papers [17] and [85] are considered the starting point in this direction.

Classical choices of X treated in the literature are the Hardy spaces Hp, the disc

algebra A, the Bergman spaces Ap, the Dirichlet space D and the chain of spaces

Qp and Qp,0 which include the spaces BMOA, the Bloch space as well as their little

oh analogues. See [93, 94, 100] for composition semigroups on these spaces.

Some results of semigroups on these spaces are the following:

(i) Every semigroup of analytic functions generates a semigroup of operators on

the Hardy spaces Hp (1 ≤ p <∞) [17], the Bergman spaces Ap (1 ≤ p <∞)

[92], the Dirichlet space [93], and on the spaces VMOA and the little Bloch

space B0 [100].

(ii) No non-trivial semigroup generates a semigroup of operators in the space H∞

of bounded analytic functions [5, 19].

(iii) There are plenty of semigroups (but not all) which generate semigroups of

operators in the disc algebra. Indeed, they can be well characterized in several

analytical terms [31].

Recently, it has been discovered ([5], [19] and [18]) that BMOA and the Bloch

space are in the second case, i. e., the only semigroup (ϕt) such that Ct(X) ⊂ X

for all t ≥ 0 and lim
t→0+
‖Ct(f)− f‖X = 0 where X = BMOA,B is the trivial one.

Let us introduce some notation and basic facts about semigroups. All this basic

information can be found in [38, Chapter VII] and [94].

Given a semigroup (ϕt) and a Banach space X, we will denote by [ϕt, X] the max-

imal closed linear subspace of X such that (ϕt) generates a semigroup of operators

on it.

Another important tool in the study of semigroups is the infinitesimal generator.

We define it as

G(z)
def
= lim

t→0+

ϕt(z)− z
t

, z ∈ D.
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This convergence holds uniformly on compact subsets of D so G ∈ Hol(D). Moreover

G satisfies

G (ϕt(z)) =
∂ϕt(z)

∂t
= G(z)

∂ϕt(z)

∂z
, z ∈ D, t ≥ 0.

Further G has a unique representation

G(z) = (bz − 1)(z − b)P (z), z ∈ D,

where b ∈ D and P ∈ Hol(D) with Re P (z) ≥ 0 for all z ∈ D. If G is not identically

null, that is, if (ϕt) is not trivial, the couple (b, P ) is uniquely determined from (ϕt)

and the point b is called the Denjoy-Wolff point of the semigroup. This point plays a

crucial role in the dynamical behavior of the semigroup [32]. The next fundamental

results about the structure of semigroups depending on the Denjoy-Wolff point can

be consulted in [17, Section 3] and [94, Section 3]. Before of that we need to define

some geometric concepts which can be found in [41, Section 2.7] and [86, Section

2.3].

A logarithmic spiral is a curve in the complex plane of the form

ω(t) = ω0e
−ct, t ∈ R,

where ω0 and c are complex constants with ω0 6= 0 . A domain D containing the

origin is said to be spirallike if there exists c ∈ C such that for each point ω0 6= 0 in

D the arc of the spiral ω(t) = ω0e
−ct from ω0 to the origin lies entirely in D.

A domain D containing the origin is said to be close-to-convex if C \ D is the

union of closed halflines such that the corresponding open half-lines are disjoint.

Let us come back to the structure of semigroups. Under normalization, the

Denjoy-Wolff point b ∈ D may be assumed to be 0 (if b ∈ D) or 1 (if b ∈ ∂D). If

b = 0, then

ϕt(z) = h−1(e−cth(z)),

where h is a univalent function from D onto a spirallike domain Ω, h(0) = 0,

Re c ≥ 0, and ωe−ct ∈ Ω for each ω ∈ Ω, t ≥ 0. If b = 1, then

ϕt(z) = h−1(h(z) + ct),

where h is a univalent function from D onto a close-to-convex domain Ω, h(0) = 0,

where Re c ≥ 0, and ω + ct ∈ Ω for each ω ∈ Ω, t ≥ 0.
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Our work here has been to prove that for 0 < λ < 1, Morrey spaces L2,λ are

in the same case that H∞, BMOA and the Bloch space: No non-trivial semigroup

generates a semigroup of operators on them.

First of all we give some results about semigroups on Morrey spaces. The first

one is a result about the existence of the maximal subspace referred before for all

semigroup (ϕt). The second one is a characterization of this maximal subspace via

the infinitesimal generator.

Theorem 29. Let 0 < λ < 1 be and (ϕt) a semigroup of analytic functions. Then

there exists a closed subspace Y ⊂ L2,λ such that (ϕt) generates a semigroup of oper-

ators on Y and such that any other subspace of L2,λ with this property is contained

in Y .

As we have said above, we note that space Y as [ϕt,L2,λ].

Theorem 30. Let 0 < λ < 1 and let (ϕt) be a semigroup of analytic functions with

infinitesimal generator G. Then

[ϕt,L2,λ] = {f ∈ L2,λ : Gf ′ ∈ L2,λ}.

The following result ensures that little Morrey spaces are in the same case that

VMOA and the little Bloch space.

Theorem 31. For 0 < λ < 1, every semigroup (ϕt) generates a semigroup of

operators on L2,λ
0 .

This in particular means that in our notation,

L2,λ
0 ⊂ [ϕt,L2,λ] ⊂ L2,λ, (3.2.1)

for every 0 < λ < 1 and every semigroup (ϕt).

This chain of inclusions leads us to wonder about those semigroups with an

extreme character, that is, those giving equality

L2,λ
0 = [ϕt,L2,λ] or [ϕt,L2,λ] = L2,λ.

We can prove that for dilatations and rotations, the left hand side equality holds.

Theorem 32. Suppose 0 < λ < 1 and f ∈ L2,λ; then the following are equivalent:
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(i) f ∈ L2,λ
0 .

(ii) lim
t→0+
‖f(eitz)− f‖L2,λ = 0.

(iii) lim
t→0+
‖f(e−tz)− f‖L2,λ = 0.

In our notation this theorem can be written as

L2,λ
0 = [eitz,L2,λ] = [e−tz,L2,λ], for 0 < λ < 1.

However, in general the first inclusion in (3.2.1) can be proper. An example of

this type is the semigroup

ϕt(z) = e−tz + 1− e−t, t ≥ 0, z ∈ D.

For this semigroup and for 0 < λ < 1, the function f(z) = (1−z)−
1−λ
2 which belongs

to L2,λ but not to L2,λ
0 , satisfies

‖f ◦ ϕt − f‖L2,λ = ‖et
1−λ
2 (1− z)−

1−λ
2 − (1− z)−

1−λ
2 ‖L2,λ = C

(
et

1−λ
2 − 1

)
−→ 0,

thus f ∈ [ϕt,L2,λ].

We have obtained some necessary and sufficient conditions for equality in the

left hand side of (3.2.1).

Theorem 33. Let (ϕt) be a semigroup with infinitesimal generator G. Let 0 < λ <

1. Assume that for some 0 < α < 1/2,

(1− |z|)α

G(z)
= O(1) as |z| → 1.

Then L2,λ
0 = [ϕt,L2,λ].

Clearly, the semigroups ϕt(z) = eitz and ϕt(z) = e−tz of Theorem 32 satisfy this

condition because, in both cases, the infinitesimal generator is G(z) = cz, where

c ∈ C \ {0}.
Theorem 33 can be proved as a consequence of a stronger theorem.

Theorem 34. Let (ϕt) be a semigroup with infinitesimal generator G. Let 0 < λ <

1. Assume that

lim
|I|→0

1

|I|

∫
S(I)

1− |z|
|G(z)|2

dA(z) = 0

then L2,λ
0 = [ϕt,L2,λ].
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If G satisfies the hypothesis of Theorem 33 then (1−|z|)2α
|G(z)|2 . 1 so

lim
|I|→0

1

|I|

∫
S(I)

1− |z|
|G(z)|2

dA(z) . lim
|I|→0

1

|I|

∫
S(I)

(1− |z|)1−2α dA(z)

. lim
|I|→0
|I|2−2α = 0.

We have this necessary condition for semigroups with inner Denjoy-Wolff point.

Theorem 35. Let (ϕt) be a semigroup with infinitesimal generator G and Denjoy-

Wolff point b ∈ D. If L2,λ
0 = [ϕt,L2,λ], then

lim
|z|→1

(1− |z|)
3−λ
2

G(z)
= 0.

Finally, we close this chapter with a result about the right hand side inclusion

of (3.2.1). Let us start first with some background about the same problem in the

Bloch space and BMOA. In Theorem 3 of [18] it is proved that if (ϕt) is a non-

trivial semigroup then [ϕt,B] ( B. In fact the result is true for the more general

class of Bloch spaces Bα, α > 0, defined by

Bα =

{
f ∈ Hol(D) : sup

z∈D
(1− |z|2)α|f ′(z)| <∞

}
.

In this proof it is used strongly that, for all α > 0, Bα is a Grothendieck space with

the Dunford-Pettis property. This geometric property of α-Bloch spaces is really

hard to check (we do not know whether Morrey spaces satisfy it or not) and it

is false for BMOA. For that, this method does not work for this space and this

question has remained open for BMOA for some years. Recently, in [5] the authors

solved this problem proving the following.

Theorem T. Let X be a Banach space. Suppose H∞ ⊂ X ⊂ B. Then there are no

non-trivial semigroups such that [ϕt, X] = X.

In particular, there are no non-trivial semigroups such that [ϕt, BMOA] = BMOA.

We have been able to adapt their steps in order to prove the following.

Theorem 36. Let X be a Banach space. For 0 < λ < 1, suppose L2,λ ⊂ X ⊂ B 3−λ
2

and let (ϕt) be a non trivial semigroup of analytic functions. Then [ϕt, X] ( X.

In particular there are no non-trivial semigroups such that [ϕt,L2,λ] = L2,λ.
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3.2.1 Proofs

This section is devoted to prove all the results about semigroups on Morrey

spaces.

Proof of Theorem 29. Let 0 < λ < 1 be. By Corollary 1 of [106] we have that

Ct : L2,λ → L2,λ are bounded for all t ≥ 0 and

‖f ◦ ϕt‖L2,λ ≤
(

1 + |ϕt(0)|
1− |ϕt(0)|

) 1−λ
2

‖f‖L2,λ , t ≥ 0.

Since sup
t∈[0,1]

|ϕt(0)| = M < 1 we have that

sup
t∈[0,1]

‖Ct‖L2,λ ≤ C sup
t∈[0,1]

(
1 + |ϕt(0)|
1− |ϕt(0)|

) 1−λ
2

≤ C

(1−M)
1−λ
2

<∞.

Bearing this in mind, we obtain directly the result by Proposition 1 of [18].

Proof of Theorem 30. As we claimed in the proof of Theorem 29, for every 0 < λ < 1

sup
t∈[0,1]

‖Ct‖L2,λ = M <∞. (3.2.2)

Since Morrey spaces trivially contain the constant functions we have directly the

result by Theorem 1 of [18].

Proof of Theorem 31. Let 0 < λ < 1. If (ϕt) is a semigroup of analytic functions,

then every composition operator Ct(f) = f ◦ ϕt is bounded on L2,λ
0 for 0 < λ < 1.

This is because each ϕt belongs to the Dirichlet space D (recall that ϕt is univalent)

and therefore also in L2,λ
0 . Thus the composition semigroup (Ct) consists of bounded

operators on L2,λ
0 .

The only thing we have to prove is that lim
t→0+
‖Ct(f) − f‖L2,λ = 0 for every

f ∈ L2,λ
0 . Bearing in mind (3.2.2) we have that for any polynomial P

‖Ct(f)− f‖L2,λ ≤ (M + 1)‖f − P‖L2,λ + ‖Ct(P )− P‖L2,λ

holds, so, since polynomials are dense in (L2,λ
0 , ‖ · ‖L2,λ), it is enough to prove

lim
t→0+
‖Ct(Q) − Q‖L2,λ = 0 for a polynomial Q. This is straightforward because

lim
t→0+
‖Q ◦ ϕt −Q‖D = 0 and ‖ · ‖L2,λ . ‖ · ‖D.

Proof of Theorem 34. It suffices to show that

{f ∈ L2,λ : Gf ′ ∈ L2,λ} ⊂ L2,λ
0 .



3.2. Semigroups on Morrey spaces 79

Of course, if 1−|z|
|G(z)|2 dA(z) is a vanishing Carleson measure then is a Carleson measure

and also a λ-vanishing Carleson measure.

For an interval I ⊂ T of center eiθ and its Carleson box S(I) we consider the point

zI = (1− |I|)eiθ.
We assume that:

• f ∈ L2,λ. Then sup
I

1
|I|λ
∫
S(I)
|f ′(z)|2(1− |z|) dA(z) . 1.

• f ′G ∈ L2,λ.

Let us prove that lim
|I|→0

1
|I|λ
∫
S(I)
|f ′(z)|2(1− |z|) dA(z) = 0.

1

|I|λ

∫
S(I)

|f ′(z)|2(1− |z|) dA(z)

=
1

|I|λ

∫
S(I)

|f ′(z)G(z)|2 (1− |z|)
|G(z)|2

dA(z)

F = f ′G ∈ L2,λ

=
1

|I|λ

∫
S(I)

|F (z)|2 (1− |z|)
|G(z)|2

dA(z)

.
1

|I|λ

∫
S(I)

|F (z)− F (zI)|2
(1− |z|)
|G(z)|2

dA(z)

+
1

|I|λ

∫
S(I)

|F (zI)|2
(1− |z|)
|G(z)|2

dA(z)

=
1

|I|λ

∫
S(I)

|F (z)− F (zI)|2
(1− |z|)
|G(z)|2

dA(z)

+ |F (zI)|2
1

|I|λ

∫
S(I)

(1− |z|)
|G(z)|2

dA(z)

now using the growth condition of Morrey spaces we have

.
1

|I|λ

∫
S(I)

|F (z)− F (zI)|2
(1− |z|)
|G(z)|2

dA(z)

+
‖F‖2

L2,λ

(1− |zI |)1−λ
1

|I|λ

∫
S(I)

(1− |z|)
|G(z)|2

dA(z)
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and since 1− |zI | = |I|

=
1

|I|λ

∫
S(I)

|F (z)− F (zI)|2
(1− |z|)
|G(z)|2

dA(z)

+ ‖F‖2
L2,λ

1

|I|

∫
S(I)

(1− |z|)
|G(z)|2

dA(z)

=AI + BI .

Since lim
|I|→0

1
|I|

∫
S(I)

1−|z|
|G(z)|2 dA(z) = 0 we have lim

|I|→0
BI = 0

AI =
1

|I|λ

∫
S(I)

|F (z)− F (zI)|2
(1− |z|)
|G(z)|2

dA(z)

.
|I|2

|I|λ

∫
S(I)

∣∣∣∣F (z)− F (zI)

1− zIz

∣∣∣∣2 (1− |z|)
|G(z)|2

dA(z).

Let µ be the measure defined by dµ(z) = (1−|z|)
|G(z)|2 dA(z) in S(I) and the null measure

in D \ S(I). Then

AI . |I|2−λ
∫
D

∣∣∣∣F (z)− F (zI)

1− zIz

∣∣∣∣2 dµ(z)

since µ is a vanishing Carleson measure it is also a Carleson measure, so we deduce

that

AI .

(
sup
J

µ(S(J))

|J |

)
|I|2−λ

∫
T

∣∣∣∣F (ξ)− F (zI)

1− zIξ

∣∣∣∣2 |dξ|
.

(
sup
J

µ(S(J))

|J |

)
(1− |zI |)1−λ

∫
T
|F (ξ)− F (zI)|2

1− |zI |
|1− zIξ|2

|dξ|

≤
(

sup
J

µ(S(J))

|J |

)
‖F‖2

L2,λ .

Actually
µ(S(J))

|J |
=
µ (S(J) ∩ S(I))

|J |
so we need only consider arcs J with J ∩ I 6= ∅.

• If |J | > |I|

µ(S(J))

|J |
=
µ (S(J) ∩ S(I))

|J |
≤ µ(S(I))

|J |
≤ µ(S(I))

|I|
→ 0, |I| → 0.
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• If |J | ≤ |I|, then J ⊂ 3I where 3I is the arc with same center as I an length

3|I|.

So in general

sup
J

µ(S(J))

|J |
≤ sup

J⊂3I

1

|J |

∫
S(J)

1− |z|
|G(z)|2

dA(z)

so if |I| → 0 then |J | → 0 too, so

lim
|I|→0

sup
J⊂3I

1

|J |

∫
S(J)

1− |z|
|G(z)|2

dA(z) = 0

because

lim
|J |→0

1

|J |

∫
S(J)

1− |z|
|G(z)|2

dA(z) = 0.

Thus in any case
µ(S(J))

|J |
→ 0,

and then it follows that

AI → 0.

Proof of Theorem 35. Without loss of generality, we may assume that b = 0. The

infinitesimal generator then is

G(z) = −zP (z),

where P is analytic with Re P ≥ 0. If P is constant, the result is clear. Otherwise

consider the function

m(z) =

∫ z

0

u

G(u)
du = −

∫ z

0

1

P (u)
du.

As in Theorem 3.3 of [19] we deduce that m ∈ BMOA and hence in L2,λ. As in the

calculations of this theorem we observe that

(m ◦ ϕt)′ (z)−m′(z) =

∫ t

0

ϕ′s(z)ds.

Hence

| (m ◦ ϕt)′ (z)−m′(z)|2 =

∣∣∣∣∫ t

0

ϕ′s(z)ds

∣∣∣∣2 ≤ ∫ t

0

|ϕ′s(z)|2ds.
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By the Theorem 3.3 of [19] we obtain

‖m ◦ ϕt −m‖L2,λ . ‖m ◦ ϕt −m‖BMOA ≤ |m (ϕt(0))−m(0)|+ Ct,

so lim
t→0
‖m ◦ ϕt −m‖L2,λ = 0. Thus m ∈ [ϕt,L2,λ] and by the hypothesis m ∈ L2,λ

0 .

The following standard argument for functions in L2,λ
0 completes the proof.

For a ∈ D we consider σa, then(
1− |a|2

)3−λ |m′(a)|2 =
(
1− |a|2

)1−λ |(m ◦ σa)′(0)|2

.
(
1− |a|2

)1−λ
∫
D
|(m ◦ σa)′(z)|2(1− |z|2) dA(z)

(by the change of variables w = σa(z))

=
(
1− |a|2

)1−λ
∫
D
|m′(w)|2(1− |σa(w)|2) dA(w)

=
(
1− |a|2

)1−λ
∫
D
|m′(w)|2 (1− |a|2)(1− |w|2)

|1− aw|2
dA(w)

and this last integral tends to 0 as |a| → 1 because m ∈ L2,λ
0 . It follows that

lim
|a|→1

(1− |a|2)
3−λ
2

G(a)
= lim
|a|→1

(1− |a|2)
3−λ
2 m′(a)

a
= 0.

Getting into the proof of Theorem 36 we need the following result.

Theorem 37. Given any nontrivial semigroup (ϕt), and 0 < λ < 1 there exists

f ∈ L2,λ such that

lim inf
t→0

‖f ◦ ϕt − f‖B 3−λ
2
≥ 1.

Prime ends are a key ingredient in the proof of this theorem, so we will now

review some basic facts about prime ends introduced by Carathéodory in order to

describe the boundary behavior of a univalent function h from D onto a simply

connected domain Ω ⊂ C ∪ {∞}; see [88, Section 2.4]. A crosscut C of Ω is an

open Jordan arc in Ω such that C \ C consists of one or two points on ∂Ω. Here C

denotes the closure of C in the Riemann sphere. If C is a crosscut of Ω, then Ω \C
has exactly two components. The diameter of a set E ⊂ C ∪ {∞} in the spherical

metric is denoted diam# E.

A null-chain (Cn)n≥0 of Ω is defined as a sequence of crosscuts of Ω such that



3.2. Semigroups on Morrey spaces 83

(i) Cn ∩ Cn+1 = ∅ for all n ≥ 0.

(ii) Cn separates C0 and Cn+1 for all n ≥ 0.

(iii) diam# Cn → 0 as n→∞.

Let Vn be the component of Ω\Cn not containing C0, and define V ′n similarly for

(C ′n). The null-chains (Cn) and (C ′n) are called equivalent if, for every sufficiently

large m, there exists n such that Vn ⊂ V ′m and V ′n ⊂ Vm. This is an equivalence

relation on the set of all null-chains of Ω. The equivalence classes are called the

prime ends of Ω. A point a ∈ C∪{∞} is called a principal point of the prime end P

if there exists a null-chain (Cn) representing P such that Cn → {a} in the spherical

metric as n → ∞. The set I(P ) =
⋂
n

Vn is non-empty, compact and connected in

C ∪ {∞}. We call I(P ) the impression of P . If I(P ) is a single point we call the

prime end degenerate.

We call a prime end P accessible if there exists a Jordan arc that lies, except

for one endpoint on ∂Ω, in Ω and intersects all but finitely many crosscuts of every

null-chain (Cn) that represents P .

We will also need the following result from univalent function theory which states

that univalent functions have no Koebe arcs. For our purposes, it may be stated as

follows:

Theorem U. [86, Lemma 9.3 and Corollary 9.1] Suppose that h : D → C is

univalent, {ηn} is a sequence of Jordan arcs in D, and h(ηn) converges to a point

ω0 ∈ C ∪ {∞}, i.e.,

h(z)→ ω0, z ∈ ηn, n→∞.

Then the Euclidean diameter of ηn satisfies diam ηn → 0, as n→∞.

Proof of Theorem 37. Let (ϕt) be a nontrivial semigroup, and let b be the corre-

sponding Denjoy-Wolff point. After normalization, we may assume that b is either

0 or 1. First we deal with the case that b = 0, so that each ϕt is given by

ϕt(z) = h−1(e−cth(z)),

where h is a univalent function from D onto a spirallike domain Ω, h(0) = 0,

Re c ≥ 0, and ωe−ct ∈ Ω for each ω ∈ Ω, t ≥ 0.
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When Re c = 0, the (ϕt) are rotations of the disc. The function

f(z) = (1− z)−(1−λ)/2 satisfies f ∈ L2,λ and

lim
r→1−

|f ′(r)|(1− r)
3−λ
2 =

1− λ
2

> 0.

However, for θ 6= 0

lim
r→1−

|f ′(reiθ)|(1− r)
3−λ
2 = 0.

If ϕt(z) = zeiat for real a 6= 0, then, for all t between 0 and 2π/|a|,

‖f ◦ ϕt − f‖B 3−λ
2
≥ sup

0<r<1
|f ′(ϕt(r))ϕ′t(r)− f ′(r)|(1− r)

3−λ
2

≥ 1− λ
2

.

Replacing f with 2f
1−λ gives the result.

Next consider the case where Re c > 0, so that (ϕt) does not consist of automor-

phisms. Since Ω is spirallike about 0, we can choose ω0 ∈ ∂Ω such that

|ω0| = inf{|ω| : ω ∈ ∂Ω}.

Then [0, ω0) ⊂ Ω. For all sufficiently large values of n, let Cn be the connected

component of {ω ∈ Ω : |ω − ω0| = 1/n} that intersects [0, ω0). Then (Cn) is a

null-chain that represents an accessible prime end P with principal point ω0. As in

Theorem 3.1 of [5], lim
r→1−

h(rγ0) exists (and is equal to ω0), where γ0 ∈ ∂D corresponds

to P . Thus,

lim
r→1−

ϕt(rγ0) = h−1(e−ctω0) ∈ D, t > 0.

Since ϕt is univalent and bounded, ϕt is in the Dirichlet spaces, and ϕt ∈ B
3−λ
2

0 .

Hence

lim
r→1−

|ϕ′t(rγ0)|(1− r)
3−λ
2 = 0.

Letting f(z) = (1− γ0z)−(1−λ)/2, we have

lim
r→1−

|f ′(rγ0)|(1− r)
3−λ
2 =

1− λ
2

> 0.

However, f ′ is continuous on D, so for fixed t > 0

lim
r→1−

|f ′(ϕt(rγ0))| = |f ′(h−1(e−ctω0))| <∞.
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Thus, for all t > 0,

‖f ◦ϕt−f‖B 3−λ
2
≥ lim sup

r→1−
|f ′(ϕt(rγ0))ϕ′t(rγ0)−f ′(rγ0)|(1−r)

3−λ
2 ≥ 1− λ

2
, (3.2.3)

and replacing f with 2f
1−λ gives the result.

If the Denjoy-Wolff point b is 1 then ϕt(z) = h−1(h(z)+ct) where h is a univalent

function from D onto a close-to-convex domain Ω, h(0) = 0, Re c ≥ 0, and ω+ct ∈ Ω

for each ω ∈ Ω, t ≥ 0. If the ϕt are automorphisms, then the map ω 7→ ω + ct is an

automorphism of Ω. It follows that Ω is a half-plane or strip, and ∂Ω in C consists

of impressions of degenerate prime ends which are not fixed under ω 7→ ω+ct, t > 0.

Let ω0 ∈ C be one such impression, and let γ0 be the corresponding point in ∂D.

Then ϕt(γ0) ∈ ∂D but ϕt(γ0) 6= γ0 for all t > 0. Let f(z) = (1− γ0z)−(1−λ)/2. Then

lim
r→1−

|f ′(rγ0)|(1− r)
3−λ
2 =

1− λ
2

> 0,

but

lim
r→1−

|f ′(rγ)|(1− r)
3−λ
2 = 0

for all γ ∈ ∂D, γ 6= γ0. The function f satisfies that f ′ extends continuously to

D \ {γ0}. Now fix some t > 0. Since γ0 is not a fixed point of ϕt, composition with

ϕt moves the radius [0, γ0) away to where f is well-behaved. For γt = ϕt(γ0), we

have that f ′ extends to be continuous at γt, so

lim
r→1−

f ′(ϕt(rγ0)) = f ′(γt).

Since ϕt is an automorphism, ϕ′t is bounded on D. For fixed t > 0,

‖f ◦ ϕt − f‖B 3−λ
2
≥ lim sup

r→1−
|f ′(ϕt(rγ0))ϕ′t(rγ0)− f ′(rγ0)|(1− r)

3−λ
2 ≥ 1− λ

2
.

As before, replacing f with 2f
1−λ gives the result.

In the non-automorphism case, for t > 0 the map given for ω ∈ Ω by ω 7→ ω+ ct

is not onto. Let t > 0 and ω ∈ Ω \ (Ω + ct). Then there is t0 ∈ (0, t] such that

ω0 = ω−ct0 ∈ ∂Ω, but (ω0, ω] ⊂ Ω. As in the case b = 0, ω0 is the principal point of

an accessible prime end, and the same argument terminating with (3.2.3) completes

the proof.

Proof of Theorem 36. Each test function f in Theorem 37 is in L2,λ, and hence in

X from the hypothesis that L2,λ ⊂ X. Since X ⊂ B 3−λ
2 , the Closed Graph Theorem
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shows that ‖ · ‖
B

3−λ
2

. ‖ · ‖X and bounding the 3−λ
2

-Bloch norm away from 0 bounds

the X norm as well. Thus it follows from Theorem 37 that f /∈ [ϕt, X], and so

[ϕt, X] ( X.



Chapter 4

Dirichlet-Morrey spaces

The final chapter is devoted to explore a class of spaces of analytic functions

which shares properties with Dirichlet spaces and Morrey spaces.

We mentioned the Dirichlet spaces Dp in Section 2.3. If 0 ≤ p <∞ they can be

also defined as the spaces of analytic functions f ∈ Hol(D) for which

‖f‖2
Dp = |f(0)|2 +

∫
D
|f ′(z)|2(1− |z|2)p dA(z) <∞.

The quantity ‖ · ‖Dp is a norm. Clearly D1 = H2 with equivalence of norms, and

D0 is the classical Dirichlet space denoted by D. For p > 1, Dp coincides with the

weighted Bergman space A2
p−2. If 0 < p < q then

D ⊂ Dp ⊂ Dq,

and there is a constant C = C(p, q) such that ‖f‖Dq ≤ C‖f‖Dp for each f ∈ Dp.
The conformally invariant version of these spaces are the spaces Qp,

‖f‖Qp = |f(0)|+ sup
a∈D
‖f ◦ ϕa − f(a)‖Dp ,

We recall that Q0 = D, Q1 = BMOA, while for all p > 1, Qp coincides with the

Bloch space B.

If 0 ≤ p ≤ 1 and f ∈ Dp the following estimate is valid

‖f ◦ ϕa − f(a)‖Dp ≤
C‖f‖Dp

(1− |a|2)
p
2

, a ∈ D,

87
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with the constant C depending only on p. In the case of the Hardy space H2 = D1

condition (3.0.3) says that f ∈ L2,λ for 0 < λ < 1 if the stronger growth bound

‖f ◦ ϕa − f(a)‖H2 ≤ C‖f‖L2,λ
(1− |a|2)

1
2

(1−λ)
, a ∈ D,

holds. Motivated by this we define the Dirichlet-Morrey spaces as follows.

Let λ, p ∈ [0, 1]. We say that f ∈ Hol(D) belongs to the Dirichlet-Morrey space

Dλp if

‖f‖Dλp = |f(0)|+ sup
a∈D

(1− |a|2)
p
2

(1−λ)‖f ◦ ϕa − f(a)‖Dp <∞. (4.0.1)

It is clear Dλp is a linear space and the above quantity is a norm, under which Dλp is

a Banach space. We see that Dλ1 = L2,λ and that for each p, D1
p = Qp and D0

p = Dp.
Furthermore we have

Qp ⊆ Dλp ⊆ Dp, 0 < λ < 1.

In the next section we will state some basic properties of Dirichlet-Morrey spaces

and discuss briefly their characterization in terms of boundary values. In Section

4.2 we will concentrate on the boundedness of integration operators and pointwise

multipliers on these spaces. Most of our results concerning this topic are included

in [46].

4.1 Structure and properties of Dirichlet-Morrey

spaces

The following proposition gives a Carleson measure characterization of Dλp , which

is analogous to (3.0.4) for Morrey spaces.

Proposition 2. Let 0 < p, λ < 1 and f ∈ Hol(D). Then the following are equiva-

lent,

(i) f ∈ Dλp .

(ii) ‖f‖p,λ,∗ = sup
I⊂T

I interval

(
1
|I|pλ

∫
S(I)
|f ′(z)|2(1− |z|2)p dA(z)

)1/2

<∞,

and the norm ‖f‖Dλp is comparable to |f(0)|+ ‖f‖p,λ,∗.
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In the next proposition we give a result about the radial growth of functions in

Dirichlet-Morrey spaces and show that this condition is sharp.

Proposition 3. Let 0 < p, λ < 1 then,

(i) There is a constant C = C(p, λ) such that any f ∈ Dλp satisfies

|f(z)| ≤
C‖f‖Dλp

(1− |z|) p2 (1−λ)
, z ∈ D. (4.1.1)

(ii) The function fp,λ(z) = (1− z)−
p
2

(1−λ) belongs to Dλp .

Observe that both parts of the above Proposition are also valid when p = 1 for

0 < λ < 1.

We set in the next result a necessary and sufficient condition to a Dirichlet-

Morrey space is contained in another one.

Proposition 4. Let λ1, p1, λ2, p2 ∈ (0, 1). Then

Dλ1p1 ⊆ D
λ2
p2
⇐⇒ p1 ≤ p2 and p1(1− λ1) ≤ p2(1− λ2).

Xiao obtained in [103, Lemma 6.1.1] and [103, Theorem 6.1.1] the following

characterizations of Dirichlet spaces and Qp spaces in terms of boundary values.

Lemma A. (i) If f ∈ H2 and 0 < p < 1, then f ∈ Dp if and only if

‖f‖2
D∗p =

∫
T

∫
T

|f(u)− f(v)|2

|u− v|2−p
|du||dv| <∞,

and furthermore, ‖f‖Dp � |f(0)|+ ‖f‖D∗p .

(ii) If f ∈ H2 and 0 < p < 1, then f ∈ Qp if and only if

sup
I⊂T

I interval

∫
I

∫
I

|f(u)− f(v)|2

|u− v|2−p
|du||dv| <∞.

We have used the simplified notation u = eiθ ∈ T and |du| = dθ.

The proofs of these results can be adapted to obtain the following characteriza-

tion of Dirichlet-Morrey spaces.

Theorem 38. Suppose f ∈ H2 and let 0 < p, λ < 1. Then f ∈ Dλp if and only if

‖f‖2

Dλ,∗p
= sup

I⊂T
I interval

1

|I|pλ

∫
I

∫
I

|f(u)− f(v)|2

|u− v|2−p
|du| |dv| <∞. (4.1.2)
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4.1.1 Preliminary results

In this section we shall collect a number of results which will be needed in the

proof of Theorem 38.

As in [103, Theorem 6.1.1] by the change of variables, z = ϕa(u), u ∈ D , we

easily establish that

‖f ◦ ϕa‖2
D∗p = (2π)p

∫
T

∫
T

|f(u)− f(v)|2

|u− v|2−p
(Pa(u)Pa(v))p/2 |du| |dv|, (4.1.3)

where

2πPa(u) =
1− |a|2

|1− au|2

is the Poisson kernel.

We recall also the boundary characterization of functions in Morrey spaces, given

in (3.0.1), for f ∈ H2 and 0 < λ ≤ 1, f ∈ L2,λ if and only if

‖f‖2
L2,λ(T) = sup

I⊂T
I interval

1

|I|λ

∫
I

|f(u)− fI |2 |du| <∞,

where fI is the average of the function f over the arc I ⊂ T, that is

fI =
1

|I|

∫
I

f(v)|dv|.

For any arc I ⊂ T we use the Cauchy-Schwarz inequality to obtain the following

|f(u)− fI |2 ≤
(

1

|I|

∫
I

|f(u)− f(v)| |dv|
)2

≤ 1

|I|

∫
I

|f(u)− f(v)|2 |dv|.

Doing some calculations we prove also that

1

|I|

∫
I

∫
I

|f(u)− f(v)|2 |du||dv| = 1

|I|

∫
I

∫
I

|f(u)− fI + fI − f(v)|2 |du||dv|

≤ 4
1

|I|

∫
I

∫
I

|f(u)− fI |2 |du||dv|

= 4

∫
I

|f(u)− fI |2 |du|.

So we have that
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‖f‖2
L2,λ(T) � sup

I⊂T
I interval

1

|I|1+λ

∫
I

∫
I

|f(u)− f(v)|2 |du| |dv| <∞. (4.1.4)

In the next lemma we compare the quantities defined in (4.1.2) and (4.1.4).

Notice that it holds for some values of p bigger than 1.

Lemma 9. If 0 < λ < 1 and 0 < p < 1
1−λ then for f ∈ L2(T),

‖f‖L2,1−p(1−λ)(T) . ‖f‖Dλp,∗ .

Proof. First, we prove the case p ≤ 2. Let I be an arc of T. Using that

|u− v|2−p ≤ |I|2−p for u, v ∈ I

we get the following

1

|I|2−p+pλ

∫
I

∫
I

|f(u)− f(v)|2 |du| |dv|

=
1

|I|2−p+pλ

∫
I

∫
I

|f(u)− f(v)|2

|u− v|2−p
|u− v|2−p |du| |dv|

≤ 1

|I|pλ

∫
I

∫
I

|f(u)− f(v)|2

|u− v|2−p
|du| |dv|,

and then ‖f‖L2,1−p(1−λ)(T) ≤ ‖f‖Dλ,∗p .

Assume now that p > 2. Observe that, for any interval I ⊆ T,

1

|I|2−p+pλ

∫
I

∫
I

|f(u)− f(v)|2 |du||dv|

.
1

|I|2−p+pλ
∞∑
k=1

∫∫
2−k|I|<|u−v|<21−k|I|

|f(u)− f(v)|2 |du| |dv|

.
1

|I|2−p+pλ
∞∑
k=1

(
|I|
2k

)2−p ∫∫
|u−v|<21−k|I|

|f(u)− f(v)|2

|u− v|2−p
|du| |dv|

.
1

|I|pλ
∞∑
k=1

2k(p−2)2k
(
|I|

2k−1

)pλ
‖f‖2

Dλ,∗p

.
∞∑
k=1

1

2k(1−p(1−λ))
‖f‖2

Dλ,∗p

.‖f‖2

Dλ,∗p
.
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Finally, we will need the following technical result.

Lemma 10. Let I and J be two intervals of T such that I ⊆ J and γ ∈ (0, 1). If

f ∈ L2(T) then

|fJ − fI |2 ≤
|J |γ+1

|I|2
‖f‖2

L2,γ(T).

Proof. Using the Cauchy-Schwarz inequality and the characterization in (3.0.1) we

obtain

|fJ − fI | ≤
1

|I|

∫
I

|f(u)− fJ | |du|

≤ 1

|I|

(∫
J

|f(u)− fJ |2 |du|
)1/2

|J |1/2

=
|J |(γ+1)/2

|I|

(
1

|J |γ

∫
J

|f(u)− fJ |2 |du|
)1/2

≤ |J |
(γ+1)/2

|I|
‖f‖L2,γ(T).

4.1.2 Proofs

Proof of Proposition 2. Assume f ∈ Dλp . For an interval I ⊂ T let ζ be the midpoint

of I and let a = aI = (1− |I|)ζ. Note that

|1− az| � |I| = 1− |a| � 1− |a|2, z ∈ S(I),
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thus

1

|I|pλ

∫
S(I)

|f ′(z)|2(1− |z|2)p dA(z)

� 1

|I|pλ

∫
S(I)

|f ′(z)|2(1− |z|2)p
(1− |a|2)2p

|1− az|2p
dA(z)

� |I|p(1−λ)

∫
S(I)

|f ′(z)|2(1− |ϕa(z)|2)p dA(z)

. (1− |a|2)p(1−λ)

∫
D
|f ′(z)|2(1− |ϕa(z)|2)p dA(z)

= (1− |a|2)p(1−λ)

∫
D
|(f ◦ ϕa)′(z)|2(1− |z|2)p dA(z)

= (1− |a|2)p(1−λ)‖f ◦ ϕa − f(a)‖2
Dp

≤ ‖f‖2
Dλp .

This is valid for each interval I ⊂ T and taking supremum shows that (i) implies

(ii).

Conversely suppose (ii) holds. That is, for the nonnegative measure dµ(z) =

|f ′(z)|2(1− |z|2)p dA(z) there is a constant C such that

µ(S(I)) =

∫
S(I)

dµ(z) ≤ C|I|pλ

for all I ⊂ T, i.e. µ is a pλ-Carleson measure. Then for a ∈ D,

‖f ◦ ϕa − f(a)‖2
Dp =

∫
D
|f ′(z)|2(1− |ϕa(z)|2)p dA(z)

=

∫
D
|f ′(z)|2 (1− |z|2)p(1− |a|2)p

|1− az|2p
dA(z)

=

∫
D

(1− |a|2)p

|1− az|2p
dµ(z).

Thus we have

sup
a∈D

(1− |a|2)p(1−λ)‖f ◦ ϕa − f(a)‖2
Dp = sup

a∈D

∫
D

(1− |a|2)2p−pλ

|1− az|2p
dµ(z)

= sup
a∈D

∫
D

(1− |a|2)q

|1− az|q+pλ
dµ(z)

<∞,
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by using the characterization of Carleson measures in [104, Lemma 3.1.1] with

q = 2p− pλ > 0, completing the proof.

Proof of Proposition 3. (i) Suppose f ∈ Dλp . We apply the inequality

|g(0)|2 ≤ (p+ 1)

∫
D
|g(z)|2(1− |z|2)p dA(z),

see [111, Lemma 4.12], valid for all analytic g on D, to the function

g = (f ◦ ϕw − f(w))′ to obtain

|f ′(w)|2(1− |w|2)2 ≤ (p+ 1)

∫
D
|(f ◦ ϕw)′(z)|2(1− |z|2)p dA(z)

=
p+ 1

(1− |w|2)p(1−λ)

(
(1− |w|2)p(1−λ)‖f ◦ ϕw − f(w)‖2

Dp

)
≤ p+ 1

(1− |w|2)p(1−λ)
‖f‖2

Dλp ,

for each w ∈ D. Thus

|f ′(w)| ≤ (p+ 1)1/2

(1− |w|2)1+ p
2

(1−λ)
‖f‖Dλp , w ∈ D.

Using this and the integration f(z)−f(0) =
∫ z

0
f ′(ζ) dζ we obtain the desired growth

inequality.

(ii) We will verify that |f ′p,λ(z)|2(1 − |z|2)p dA(z) is a pλ-Carleson measure and

then Proposition 2 gives the conclusion. In doing so, it is more convenient to work

with the equivalent family of Carleson lune-shaped sets S(b, h) = {z ∈ D : |b− z| <
h}, where b ∈ T and 0 < h < 1, than with the Carleson boxes S(I), I ⊂ T. Thus it

suffices to show that

sup
b∈T

0<h<1

1

hpλ

∫
S(b,h)

|f ′p,λ(z)|2(1− |z|2)p dA(z) <∞. (4.1.5)
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We have ∫
S(b,h)

|f ′p,λ(z)|2(1− |z|2)p dA(z) = C1

∫
S(b,h)

(1− |z|2)p

|1− z|2+p(1−λ)
dA(z)

.
∫
S(b,h)

1

|1− z|2−pλ
dA(z)

.
∫
S(1,h)

1

|1− z|2−pλ
dA(z)

.
∫
|w|<h

1

|w|2−pλ
dA(w)

=

∫ h

0

1

r1−pλdr

= hpλ.

Thus (4.1.5) holds and the proof is finished.

Proof of Proposition 4. Assume p1 ≤ p2 and p1(1−λ1) ≤ p2(1−λ2) and let f ∈ Dλ1p1
and I ⊂ T. Then

1

|I|p2λ2

∫
S(I)

|f ′(z)|2(1− |z|2)p2 dA(z)

=
1

|I|p2λ2

∫
S(I)

|f ′(z)|2(1− |z|2)p1(1− |z|2)p2−p1 dA(z)

≤ |I|
p2−p1

|I|p2λ2

∫
S(I)

|f ′(z)|2(1− |z|2)p1 dA(z)

= |I|p2(1−λ2)−p1(1−λ1)

(
1

|I|p1λ1

∫
S(I)

|f ′(z)|2(1− |z|2)p1 dA(z)

)
and by Proposition 2, it follows Dλ1p1 ⊆ D

λ2
p2

.

Assume now that Dλ1p1 ⊆ D
λ2
p2

. Then it is necessary that p1 ≤ p2. The easiest way

to see this is to use the class HG of functions in Hol(D) whose Taylor series with

center at 0 has Hadamard gaps. According to [103, Theorem 1.2.1] for 0 < p < 1

we have HG∩Qp = HG∩Dp, and for 0 < p < q < 1 we have HG∩Dp ( HG∩Dq.
If we assume that p2 < p1 then Dp2 ⊆ Dp1 and using the assumption Dλ1p1 ⊆ D

λ2
p2

we will have further Qp1 ⊆ Dλ1p1 ⊆ D
λ2
p2
⊆ Dp2 ⊆ Dp1 . This would imply that

HG ∩ Dp1 = HG ∩ Dp2 which contradicts part of the above mentioned theorem. In

addition from Proposition 3 it follows easily that p1(1− λ1) ≤ p2(1− λ2).

Proof of Theorem 38. Consider a function f ∈ Dλp . By Lemma A and (4.1.3)
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‖f ◦ ϕa − f(a)‖2
Dp & ‖f ◦ ϕa − f(a)‖2

D∗p

&
∫
T

∫
T

|f(u)− f(v)|2

|u− v|2−p
(Pa(u)Pa(v))p/2 |du| |dv|

≥
∫
I

∫
I

|f(u)− f(v)|2

|u− v|2−p
(Pa(u)Pa(v))p/2 |du| |dv| ,

for any subarc I ⊆ T. If I 6= T, then we choose a point a ∈ D \ {0} such that a
|a| is

the center of I and 2π(1− |a|) the arclength. If I = T we take a = 0. With such a

point a as well as the inequality cos t ≥ 1− 2−1t2 for t ∈ (−∞,∞), we get that for

u ∈ I
Pa(u) ≥ 1

1− |a|
=

2π

|I|
, u ∈ I.

Thus

‖f ◦ ϕa − f(a)‖2
Dp &

1

|I|p

∫
I

∫
I

|f(u)− f(v)|2

|u− v|2−p
|du| |dv|,

which implies that

(1− |a|2)p(1−λ)‖f ◦ ϕa − f(a)‖2
Dp &

1

|I|pλ

∫
I

∫
I

|f(u)− f(v)|2

|u− v|2−p
|du| |dv|,

so finally we get

‖f‖2
Dλp & ‖f‖2

Dλ,∗p
.

For the other inequality we work as follows. To each point a ∈ D \ {0} we

associate the subarc Ia with center a
|a| and arclength 2π(1 − |a|). For a = 0 we set

Ia = T. Also we set

In = 2nIa, n = 0, 1, . . . , N − 1,

where N is the smallest integer such that 2N |Ia| ≥ 2π. Then, we put IN = T.

Using the elementary inequality cos t ≤ 1− 2π−2t2 for t ∈ [−π, π], we know that

for every point u ∈ T,

Pa(u) .
1

1− |a|
. (4.1.6)

Furthermore, for u ∈ T \ In we have

Pa(u) .
1

22n|a||Ia|
.
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In the sequel, we may assume |a| ≥ 1/2, otherwise, the result is obviously true.

Therefore, if u ∈ In+1 \ In, then

Pa(u) .
1

22n|Ia|
. (4.1.7)

With the above notations, we break (1 − |a|2)p(1−λ)‖f ◦ ϕa − f(a)‖2
D∗p into two

parts,

(1− |a|2)p(1−λ)‖f ◦ ϕa − f(a)‖2
D∗p = X1 +X2,

where

X1 = (2π)p(1− |a|2)p(1−λ)

∫
T

∫
Ia

|f(u)− f(v)|2

|u− v|2−p
(Pa(u)Pa(v))p/2 |du| |dv|

and

X2 = (2π)p(1− |a|2)p(1−λ)

N−1∑
n=0

∫
T

∫
In+1\In

|f(u)− f(v)|2

|u− v|2−p
(Pa(u)Pa(v))p/2 |du| |dv|.

Consider first X1. By (4.1.6) and (4.1.7) we have that

X1

(2π)p
= (1− |a|2)p(1−λ)

∫
Ia

∫
Ia

|f(u)− f(v)|2

|u− v|2−p
(Pa(u)Pa(v))p/2 |du| |dv|

+ (1− |a|2)p(1−λ)

N−1∑
n=0

∫
In+1\In

∫
Ia

|f(u)− f(v)|2

|u− v|2−p
(Pa(u)Pa(v))p/2 |du| |dv|

.
1

|Ia|pλ

∫
Ia

∫
Ia

|f(u)− f(v)|2

|u− v|2−p
|du| |dv|

+ |Ia|p(1−λ)

N−1∑
n=0

1

(2n|Ia|)p
∫
In+1\In

∫
Ia

|f(u)− f(v)|2

|u− v|2−p
|du| |dv|

=
1

|Ia|pλ

∫
Ia

∫
Ia

|f(u)− f(v)|2

|u− v|2−p
|du| |dv|

+
1

|Ia|pλ

∫
2Ia\Ia

∫
Ia

|f(u)− f(v)|2

|u− v|2−p
|du| |dv|

+ |Ia|p(1−λ)

N−1∑
n=1

1

(2n|Ia|)p
∫
In+1\In

∫
Ia

|f(u)− f(v)|2

|u− v|2−p
|du| |dv|.

Therefore

X1 . ‖f‖2

Dλ,∗p
+

1

|Ia|2−p(1−λ)

N−1∑
n=1

1

22n

∫
In+1\In

∫
Ia

|f(u)− f(v)|2|du| |dv|.
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Using the following identity

1

|I|

∫
I

|f(z)− b|2|dz| = 1

|I|

∫
I

|f(z)− fI |2|dz|+ |fI − b|2, b ∈ C, (4.1.8)

and the characterization of Morrey spaces given in (3.0.1) we have the following

1

|Ia|2−p(1−λ)

N−1∑
n=1

1

22n

∫
In+1\In

∫
Ia

|f(u)− f(v)|2|du| |dv|

=
1

|Ia|1−p(1−λ)

N−1∑
n=1

1

22n

∫
In+1\In

1

|Ia|

∫
Ia

|f(u)− f(v)|2|du| |dv|

=
1

|Ia|1−p(1−λ)

N−1∑
n=1

1

22n

∫
In+1\In

(
1

|Ia|

∫
Ia

|f(u)− fIa |2|du|+ |f(v)− fIa|2
)
|dv|.

The first term can be bounded as follows using Lemma 9

1

|Ia|2−p(1−λ)

∫
Ia

|f(u)−fIa |2|du|
N−1∑
n=1

1

22n

∫
In+1\In

|dv| . ‖f‖2
L2,1−p(1−λ)(T)

N−1∑
n=1

1

2n
. ‖f‖2

Dλ,∗p
.

Finally, considering (4.1.8), Lemma 9, Lemma 10 and the triangle inequality we get

that the second term can be bounded in the following way

|Ia|p(1−λ)

N−1∑
n=1

1

22n

1

|Ia|

∫
In+1\In

|f(v)− fIa|2|dv|

.|Ia|p(1−λ)

N−1∑
n=1

1

2n
1

|In+1|

∫
In+1

|f(v)− fIa|2|dv|

=|Ia|p(1−λ)

N−1∑
n=1

1

2n

(
1

|In+1|

∫
In+1

|f(v)− fIn+1|2|dv|+ |fIn+1 − fIa |2
)

.
N−1∑
n=1

1

2(1+p(1−λ))n

1

|In+1|1−p(1−λ)

∫
In+1

|f(v)− fIn+1|2|dv|

+ |Ia|p(1−λ)

N−1∑
n=1

n+ 1

2n

n+1∑
k=1

|fIk − fIk−1|2

.‖f‖2
L2,1−p(1−λ)(T)

(
N−1∑
n=1

1

2(1+p(1−λ))n
+

N−1∑
n=1

n+ 1

2n

n+1∑
k=1

1

2p(1−λ)k

)
.‖f‖2

Dλ,∗p
.
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Consider now X2. Using again the same techniques we obtain

X2

(2π)p
= (1− |a|2)p(1−λ)

N−1∑
n=0

∫
Ia

∫
In+1\In

|f(u)− f(v)|2

|u− v|2−p
(Pa(u)Pa(v))p/2 |du| |dv|

+ (1− |a|2)p(1−λ)

N−1∑
m=0

N−1∑
n=0

∫
Im+1\Im

∫
In+1\In

|f(u)− f(v)|2

|u− v|2−p
(Pa(u)Pa(v))p/2 |du| |dv|

. ‖f‖2

Dλ,∗p

+ (1− |a|2)p(1−λ)

N−1∑
m=0

∫
Im+1\Im

∫
I1\Ia

|f(u)− f(v)|2

|u− v|2−p
(Pa(u)Pa(v))p/2 |du| |dv|

+ (1− |a|2)p(1−λ)

N−1∑
m=0

N−1∑
n=1

∫
Im+1\Im

∫
In+1\In

|f(u)− f(v)|2

|u− v|2−p
(Pa(u)Pa(v))p/2 |du| |dv|,

where the second term is bounded by ‖f‖2

Dλ,∗p
and the third one is estimated as

‖f‖2

Dλ,∗p
+
∞∑
n=0

n

2p(1−λ)n
‖f‖2

Dλ,∗p
. ‖f‖2

Dλ,∗p
.

Combining the estimates of X1 and X2 we get the desired result

‖f‖Dλp . ‖f‖Dλ,∗p .

4.2 Pointwise multipliers

Let X be a Banach space of analytic functions on D. A function g ∈ Hol(D) is

said to be a multiplier of X if the multiplication operator

Mg(f)(z) = g(z)f(z), f ∈ X,

is a bounded operator on X. For this it is usually enough to check that Mg(X) ⊂ X

and apply the closed graph theorem. The space of all multipliers of X is denoted

by M(X). Multiplication operators are closely related to integration operators Jg

and Ig. These are induced by symbols g ∈ Hol(D) as follows

Jg(f)(z) =

∫ z

0

f(w)g′(w) dw, z ∈ D,
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and

Ig(f)(z) =

∫ z

0

f ′(w)g(w) dw, z ∈ D,

and act on functions f ∈ Hol(D). The operators Ig, Jg have been studied in a

number of papers, see for example [1, 3, 44, 52, 66]. Their relation with Mg comes

from the integration by parts formula

Jg(f)(z) = Mg(f)(z)− f(0)g(0)− Ig(f)(z). (4.2.1)

This essentially says that if g is a symbol for which two of the operators Ig, Jg,Mg

are bounded on a space X so is the third. It also says that it is possible for two of

the operators to be unbounded but the third is bounded due to cancelation.

The space of multipliers is known for several of the classical spaces such as

Hardy and Bergman spaces. In particular for H2 = D1 the space of multipliers is

M(H2) = H∞, the algebra of bounded analytic functions. For other Dirichlet spaces

Dp, p ∈ (0, 1), the situation is more complicated. The description of M(Dp) is in

terms of Dp-Carleson measures. Recall that a positive Borel measure µ on the disc

is a Dp-Carleson measure if there is a constant C = C(µ) such that∫
D
|f(z)|2 dµ(z) ≤ C‖f‖2

Dp , f ∈ Dp.

These measures were described initially by Stegenga [96] with the help of Bessel

capacities, and similar characterizations were given by other authors. In another

approach, Arcozzi, Rochberg and Sawyer [9] described these measures by a different

condition, a simplified form of which is given in [48]. Accordingly, a finite measure

µ is a Dp-Carleson measure if and only if

sup
w∈D

1

µ(S(w))

∫
S(w)

(µ(S(z) ∩ S(w)))2

(1− |z|2)2+p
dA(z) <∞,

where for w ∈ D the set S(w) on which integration takes place is the Carleson box

S(w) = {z ∈ D : 1− |z| ≤ 1− |w|, |arg(z̄w)| ≤ π(1− |w|)}.
It is convenient at this point to use the space Wp of functions g ∈ Hol(D) such

that the measure

dµg(z) = |g′(z)|2(1− |z|2)p dA(z)

is a Dp-Carleson measure. This space has been studied in [90] and [101]. The

multipliers of Dp were described in [96] as follows.
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Theorem V. Suppose 0 < p < 1 and g ∈ Hol(D). Then g ∈ M(Dp) if and only if

g ∈ H∞ and dµg(z) = |g′(z)|2(1 − |z|2)p dA(z) is a Dp-Carleson measure. In other

words,

M(Dp) = H∞ ∩Wp.

On the other hand the multipliers of Qp are completely described in [75, 105] as

follows.

Theorem W. Suppose 0 < p < 1 and g ∈ Hol(D). Then g ∈M(Qp) if and only if

g ∈ H∞ and

sup
I⊆T

(
log 1

|I|

)2

|I|p

∫
S(I)

|g′(z)|2(1− |z|2)p dA(z) <∞. (4.2.2)

Thus if we denote by Qp,log the space of functions that satisfy (4.2.2) then the

above theorem says

M(Qp) = H∞ ∩Qp,log.

It is not difficult to check that Qp,log ⊂ Wp. On the other hand it was shown in [9]

that Wp ⊂ Qp and there is a simplified proof of this in [69, Lemma 4]. Thus we

have

Qp,log ⊂ Wp ⊂ Qp, 0 < p < 1.

In what follows we study the action of the operators Ig, Jg on the spaces Dλp , and

obtain information on pointwise multipliers. Our first result is the following.

Theorem 39. Let 0 < p, λ < 1 and g ∈ Hol(D). Then Ig : Dλp → Dλp is bounded if

and only if g ∈ H∞.

Concerning the action of Jg on Dλp we have the following necessary condition.

Theorem 40. Let 0 < p, λ < 1 and g ∈ Hol(D). If Jg : Dλp → Dλp is bounded then

g ∈ Qp.

We now find sufficient conditions on g for Jg to be bounded on Dλp .

Theorem 41. Suppose 0 < p < 1.

(i) If 0 < q < p and g ∈ Qq then Jg : Dq/pp → Dq/pp is bounded.
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(ii) If 0 < λ < 1 and g ∈ Wp then Jg : Dλp → Dλp is bounded.

The above theorems in combination with (4.2.1) give the following corollary for

multipliers of Dλp .

Corollary 4. Suppose 0 < p, λ < 1 and g ∈ Hol(D). Then

(i) If g ∈ Wp ∩H∞ then Mg : Dλp → Dλp is bounded.

(ii) If g ∈ Qpλ ∩H∞ then Mg : Dλp → Dλp is bounded.

(iii) If Mg : Dλp → Dλp is bounded then g ∈ Qp ∩H∞.

We conclude this section with the following remark.

Let 0 < p < 1. We know thatWp ⊂ Qp, and this inclusion is strict [104, Theorem

6.3.4]. At the same time for 0 < q < p we have Qq ⊂ Qp with strict inclusion. For

each q < p we give an example of a function f such that f ∈ Wp but f does not

belong to Qq. Thus Wp * Qq for any q < p.

Indeed, with q, p as above consider the function

f(z) =
∞∑
k=1

akz
2k , z ∈ D

where ak = 1/2k(1−q)/2. By a theorem of Yamashita [108, Theorem 1(i)] for such

Hadamard gap series, and since

lim sup
k→∞

|ak|2k(1− 1+q
2 ) = 1 <∞,

it follows that f satisfies the growth condition

sup
z∈D
|f ′(z)|(1− |z|)

1+q
2 <∞.

Applying Proposition 4.2 of [12] (after adjusting the parameters involved to our

notation) we find that this function is a multiplier of Dp because q < p. Thus the

bounded function f belongs to Wp.

On the other hand

∞∑
k=0

2k(1−q)

 ∑
2k≤nj<2k+1

|aj|2
 =

∞∑
k=0

1 =∞,

and therefore by [103, Theorem 1.2.1] for such Hadamard gap series, f /∈ Qq.

The complete description of the multiplier space M(Dλp ) and of the symbols g

for which Jg is bounded on Dλp addreses the open question in [76] and it seems to

be a hard problem.
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4.2.1 Proofs

We will need the following technical lemma from [76, p. 488]. We state only the

part of it that we need.

Lemma B. Let u ∈ D, |v| ≤ 1 and s > −1, r, t > 0. Then∫
D

(1− |z|2)s

|1− ūz|r|1− v̄z|t
dA(z) ≤ C

(1− |u|2)r+t−s−2
, 0 < r + t− s− 2 < r

where C is an absolute, positive constant.

Using this estimate we obtain a family of test functions in Dλp .

Lemma 11. Let 0 < p, λ < 1 and c ∈ D. Then the functions

fc(z) =
1

(1− cz)p(1−λ)/2
, z ∈ D,

belong to Dλp and K = sup
c∈D
‖fc‖Dλp <∞.

Proof. Fix c ∈ D. Then for a ∈ D,

(1− |a|2)p(1−λ)

∫
D
|f ′c(z)|2(1− |ϕa(z)|2)p dA(z)

= (1− |a|2)p(2−λ)

∫
D

(1− |z|2)p

|1− cz|2+p(1−λ)|1− az|2p
dA(z) .

Now for r = 2p, t = 2 + p(1− λ), s = p, Lemma B gives the desired result.

Proof of Theorem 39. Let g ∈ H∞ then

‖Ig(f)‖2
Dλp � sup

I⊂T

1

|I|pλ

∫
S(I)

|Ig(f)′(z)|2(1− |z|2)p dA(z)

= sup
I⊂T

1

|I|pλ

∫
S(I)

|f ′(z)|2|g(z)|2(1− |z|2)p dA(z)

. ‖g‖2
∞‖f‖2

Dλp

for every f ∈ Dλp . So ‖Ig‖ ≤ C‖g‖∞ where C is a constant.

On the other hand, assume that Ig is bounded on Dλp . We will use the test

functions {fc} of Lemma 11 for {|c| > 1
2
}. Then from the Lemma there is a constant
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C such that 1 ≤ ‖fc‖Dλp ≤ C for all c, so that ‖Ig‖2 ≥ 1
C2‖Ig(fc)‖2

Dλp
and,

‖Ig(fc)‖2
Dλp = sup

a∈D
(1− |a|2)p(1−λ)

∫
D
|Ig(fc)′(z)|2(1− |ϕa(z)|2)p dA(z)

& (1− |c|2)p(1−λ)

∫
D
|Ig(fc)′(z)|2(1− |ϕc(z)|2)p dA(z)

= (1− |c|2)p(1−λ)

∫
D
|f ′c(z)|2|g(z)|2(1− |ϕc(z)|2)p dA(z)

� |c|(1− |c|2)p(1−λ)

∫
D

|g(z)|2(1− |ϕc(z)|2)p

|1− c̄z|2+p(1−λ)
dA(z) ,

now by restricting the above integral on a disc with center the point c and radius
1−|c|

2
and by applying the mean value property of subharmonic functions we get that

‖Ig‖2 & |g(c)|2

for any {|c| > 1
2
}. It follows that g is a bounded analytic function on D.

Proof of Theorem 40. We use the test functions fc(z) = (1− cz)−p(1−λ)/2 of Lemma

11. From the hypothesis there is a constant C such that

‖Jg(fc)‖Dλp ≤ C‖fc‖Dλp ≤ C sup
c∈D
‖fc‖Dλp = CK <∞,

for all c ∈ D. This means that

sup
I⊂T

1

|I|pλ

∫
S(I)

|fc(z)|2|g′(z)|2(1− |z|2)p dA(z) ≤ K ′ <∞

for all c ∈ D. For each interval I choose c = cI = (1− |I|)eiθ where eiθ is the center

of I, then |1− c̄z| � |I| for z ∈ S(I) and we have

K ′ ≥ 1

|I|pλ

∫
S(I)

1

|1− cz|p(1−λ)
|g′(z)|2(1− |z|2)p dA(z)

� 1

|I|p

∫
S(I)

|g′(z)|2(1− |z|2)p dA(z)

with K ′ independent of I. Taking the supremum of the last integral over all I ⊂ T
we see that g ∈ Qp.

Proof of Theorem 41. (i). Set λ = q/p < 1 and suppose I ⊂ T is an interval. Using
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the growth condition (4.1.1) for f ∈ Dλp we have

1

|I|pλ

∫
S(I)

|Jg(f)′(z)|2(1− |z|2)p dA(z)

=
1

|I|q

∫
S(I)

|f(z)|2|g′(z)|2(1− |z|2)p dA(z)

.
1

|I|q

∫
S(I)

1

(1− |z|2)p(1−λ)
|g′(z)|2(1− |z|2)p dA(z) ‖f‖2

Dλp

=
1

|I|q

∫
S(I)

|g′(z)|2(1− |z|2)q dA(z) ‖f‖2
Dλp

.‖g‖2
Qq‖f‖

2
Dλp ,

and the assertion follows by taking supremum on the left.

(ii). Let f ∈ Dλp . For an interval I ⊂ T let w = wI = (1− |I|)eiθ where eiθ is the

center of I. Then

1

|I|pλ

∫
S(I)

|Jg(f)′(z)|2(1− |z|2)p dA(z)

=
1

|I|pλ

∫
S(I)

|f(z)|2|g′(z)|2(1− |z|2)p dA(z)

≤ 2

|I|pλ

∫
S(I)

|f(w)|2|g′(z)|2(1− |z|2)p dA(z)

+
2

|I|pλ

∫
S(I)

|f(z)− f(w)|2|g′(z)|2(1− |z|2)p dA(z)

=AI +BI .

For the first integral, using (4.1.1) and recalling that Wp ⊂ Qp we have

AI . ‖f‖2
Dλp

1

|I|p

∫
S(I)

|g′(z)|2(1− |z|2)p dA(z) . ‖f‖2
Dλp‖g‖

2
Qp .
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For the second integral we write

BI =
2

|I|pλ

∫
S(I)

∣∣∣∣f(z)− f(w)

(1− wz)p

∣∣∣∣2 |1− wz|2p|g′(z)|2(1− |z|2)p dA(z)

. |I|p(2−λ)

∫
S(I)

∣∣∣∣f(z)− f(w)

(1− wz)p

∣∣∣∣2 |g′(z)|2(1− |z|2)p dA(z)

= (1− |w|)p(2−λ)

∫
S(I)

∣∣∣∣f(z)− f(w)

(1− wz)p

∣∣∣∣2 |g′(z)|2(1− |z|2)p dA(z)

. (1− |w|)p(2−λ)|f(0)− f(w)|2

+ (1− |w|)p(2−λ)

∫
D

∣∣∣∣ ddz
(
f(z)− f(w)

(1− wz)p

)∣∣∣∣2 (1− |z|2)p dA(z)

= (1− |w|)p(2−λ)|f(0)− f(w)|2 + Cw,

where we have used the hypothesis that dµg(z) = |g′(z)|2(1 − |z|2)p dA(z) is a Dp-
Carleson measure. The first term in the last sum is

(1− |w|)p(2−λ)|f(0)− f(w)|2 ≤ (1− |w|)p(1−λ)|f(0)− f(w)|2 . ‖f‖2
Dλp

by using (4.1.1) once more. For the second term we have

Cw = (1− |w|)p(2−λ)

∫
D

∣∣∣∣ ddz
(
f(z)− f(w)

(1− wz)p

)∣∣∣∣2 (1− |z|2)p dA(z)

≤ 2(1− |w|)p(2−λ)

∫
D
|f ′(z)|2 (1− |z|2)p

|1− wz|2p
dA(z)

+ 2p2|w|2(1− |w|)p(2−λ)

∫
D

∣∣∣∣f(z)− f(w)

(1− wz)1+p

∣∣∣∣2 (1− |z|2)p dA(z)

= 2(1− |w|)p(1−λ)

∫
D
|f ′(z)|2(1− |ϕw(z)|2)p dA(z)

+ 2p2|w|2(1− |w|)p(1−λ)

∫
D

∣∣∣∣f(z)− f(w)

1− wz

∣∣∣∣2 (1− |ϕw(z)|2)p dA(z)

. ‖f‖2
Dλp + (1− |w|)p(1−λ)

∫
D

∣∣∣∣f(z)− f(w)

1− wz

∣∣∣∣2 (1− |ϕw(z)|2)p dA(z)

= ‖f‖2
Dλp +Dw.
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Observe that

Dw = (1− |w|)p(1−λ)

∫
D

∣∣∣∣f(z)− f(w)

1− wz

∣∣∣∣2 (1− |ϕw(z)|2)p dA(z)

= (1− |w|)p(1−λ)

∫
D

∣∣∣∣f ◦ ϕw(z)− f ◦ ϕw(0)

1− wϕw(z)

∣∣∣∣2 |ϕ′w(z)|2(1− |z|2)p dA(z)

= (1− |w|)p(1−λ)

∫
D

∣∣∣∣f ◦ ϕw(z)− f ◦ ϕw(0)

1− wz

∣∣∣∣2 (1− |z|2)p dA(z).

To find an upper estimate for Dw, we follow the argument of [75, pages 551-552] (see

also [105, page 2080]). The argument consists in applying a reproducing formula

from [90], the Cauchy-Schwarz inequality, Fubini’s theorem and the estimate [111,

Lemma 3.10(b)]. We refrain from writing all the details since the argument applies

mutatis mutandis. The final steps of the calculation are as follows

Dw . (1− |w|)p(1−λ)

∫
D
|(f ◦ ϕw)′(z)|2 (1− |z|2)2+p

|1− wz|2
dA(z)

. (1− |w|)p(1−λ)

∫
D
|(f ◦ ϕw)′(z)|2 (1− |z|2)p dA(z)

. (1− |w|)p(1−λ)

∫
D
|f ′(z)|2 (1− |ϕw(z)|2)p dA(z)

. ‖f‖2
Dλp .

Collecting all the above estimates gives ‖Jg(f)‖Dλp ≤ C‖f‖Dλp which is the desired

conclusion.





Bibliography

[1] A. Aleman and J. A. Cima, An integral operator on Hp and Hardy’s inequality,

J. Anal. Math. 85 (2001), 157-176.
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[53] D. Girela and C. González, Some results on mean Lipschitz spaces of analytic

functions, Rocky Mountain J. Math. 30 (2000), no. 3, 901-922.

[54] D. Girela and N. Merchán, A generalized Hilbert operator acting on conformally

invariant spaces, Banach J. Math. Anal. 12 (2018), no. 2, 374-398.

[55] D. Girela and N. Merchán, A Hankel Matrix Acting on Spaces of Analytic

Functions, Integr. Equ. Oper. Theory 89 (2017), no. 4, 581-594.

[56] D. Girela and N. Merchán, Hankel matrices acting on the

Hardy space H1 and on Dirichlet spaces, preprint (available at

https://arxiv.org/pdf/1804.02227.pdf)

[57] G. H. Hardy and J. E. Littlewood, Some New Properties of Fourier Constants,

J. London. Math. Soc. 6 (1931), no. 1, 3-9.



114 BIBLIOGRAPHY

[58] G. H . Hardy and J. E. Littlewood, Some properties of fractional integrals, II,

Math. Z. 34 (1932), no. 1, 403-439.

[59] H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman Spaces, Grad-

uate Texts in Mathematics 199, Springer, New York, 2000.

[60] F. Holland and D. Walsh, Boundedness criteria for Hankel operators, Proc.

Roy. Irish Acad. Sect. A 84 (1984), no. 2, 141-154.

[61] F. Holland and D. Walsh, Growth estimates for functions in the Besov spaces

Ap, Proc. Roy. Irish Acad. Sect. A 88 (1988), 1-18.

[62] J. S. Hwang and P. Lappan, Coefficients of Bloch functions and normal func-

tions, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), no. 1, 69-75.
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