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Resumen

Esta tesis esta dedicada al estudio de ciertos operadores actuando en espacios de
funciones analiticas en el disco unidad.

Sea D = {z € C: |z] < 1} el disco unidad. Sea también Hol(D) el espacio
de todas las funciones analiticas en D dotado de la topologia de la convergencia
uniforme en compactos.

Un subespacio X de Hol(D) puede ser visto como un espacio de sucesiones

identificando a una funciéon f € X con la sucesion de sus coeficientes de Taylor:

oo

f(z) = Zanz" A {an}flo:o-

n=0
Sea H la matriz de Hilbert,
1 1/2 1/3 1/4
1/2 1/3 1/4 1/5

1
(1 = [1/3 1/4 1/5 1/6
(n+k+1)n,k>o 1/4 1/5 1/6 1/7

La matriz de Hilbert puede ser considerada como un operador entre espacios de

sucesiones. Formalmente, se define su accién como

1 1/2 1/3 1/4 - ag
1/2 1/3 1/4 1/5 --- ay
H({an}plo) = [ 1/3 1/4 1/5 1/6 - ag |,

1/4 1/5 1/6 1/7 --- as

- —
{an}iZo {Z m} -
n=0

k=0
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De la misma forma, H puede ser considerado como un operador (al que llamamos
el operador de Hilbert) entre espacios de funciones analiticas identificando cada
funcion analitica con la sucesion de sus coeficientes de Taylor.

Sif(z)=>,",a,2" entonces

ay "
H()(2) =Z (;—HkH) 2",
cuando el segundo miembro tenga sentido.

El operador de Hilbert esté bien definido en H', es acotado en HP para 1 < p <
oo pero no lo es en H! o H*® [34]. En un articulo reciente [65] Lanucha, Nowak y
Pavlovié consideran la cuestién de encontrar subespacios de H! cuya imagen por el
operador H estd contenida en H'. Dostani¢, Jevti¢ y Vukoti¢ [37] encontraron la
norma exacta de H como operador de H? en H? (1 < p < o0).

Sea 1 una medida de Borel positiva en [0, 1) y sea {u, 122, la sucesién de sus mo-
mentos: (i, = f[o,1) t" dp(t). La matriz de Hilbert puede generalizarse considerando

la matriz de Hankel H,, con entradas (tnik), x>0,

Ho M1 f2 43
1o p2 p3 o g
Hy= |t ps pa ps

M3 M4 s M

Al igual que anteriormente, la matriz H, induce formalmente el operador de
Hilbert generalizado H,, en espacios de funciones analiticas:

Sif(z) =7, a,z" entonces

Hu(f)(z) =) (Z umak)

n=0 \k=0

cuando el segundo miembro tenga sentido.

Widom [99, Theorem 3.1] y Power [89, Theorem 3] (véase también Peller [83]
p.42, Theorem 7.2]) probaron que #,, es un operador bien definido y acotado ac-
tuando de H? en s mismo si y sélo si p es una medida de Carleson, pu ([t,1)) <
C(l—1t),0<t<l.
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Galanopoulos y Peldez [48] estudiaron la accién del operador H, en H'. Por su
parte, Chatzifountas, Girela y Peldez [28] estudiaron #, como operador de H? en
H? (0 <p,q < o0).

Si los pasos tomados a continuacion fuesen correctos tendriamos lo siguiente:

Para f(2) = 3207 an2",
1= (Zu)

_Z<Z“k/ 1 (t) ) n

_Zak (Z/ R dp(t )

_ _ f(t)
_;ak/[m) L )_/[071) O )

Para p una medida de Borel finita y positiva en [0,1) y f € Hol(D) se define

L@ = [ . zep

cuando el segundo miembro tenga sentido para todo z € D y defina una funcion
analitica en D.

De esto se deduce que los operadores H,, e I, estan estrechamente relacionados,
si f es suficientemente buena H,(f) e I,(f) estan bien definidos y coinciden. En

[48] Galanopoulos y Peldez prueban lo siguiente.
Sea p una medida de Borel positiva en [0,1). Entonces:
(i) Eloperador I, estd bien definido en H' siy sélo si p1 es una medida de Carleson.

(ii) Si g es una medida de Carleson, entonces el operador #,, estd también bien
definido en H! y ademss,

H,(f) = L.(f), paratoda fe€ H'

iii) El operador I, es acotado de H' en sf mismo si y sélo si p es una medida
o
1-logaritmica 1-Carleson.
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Mas tarde en [28] Chatzifountas, Girela y Peldez probaron lo siguiente.

Supongamos que 1 < p < oo y sea p una medida de Borel positiva en [0,1).

Entonces:

(i) El operador I, estd bien definido en H” siy sélo si p es una medida 1-Carleson

para HP.

(ii) Si g es una medida 1-Carleson para H?, entonces el operador H,, esta también

bien definido en H? y ademas,

H.(f) = 1,(f), paratoda f e HP.

(iii) El operador I, es acotado de H? en s{ mismo si y sélo si p es una medida de

Carleson.

El Capitulo [2| estd dedicado al estudio de los operadores H, e I, en distintos
espacios de funciones analiticas. Empezamos extendiendo los resultados anteriores
a algunos espacios conformemente invariantes como el espacio de Bloch, BMOA,
los espacios de Besov o las clases (),. Todos estos resultados se encuentran en el
trabajo conjunto con Girela [54].

En el primer resultado caracterizamos las medidas p para las que el operador 1,

esta bien definido o esta acotado en BMOA y en el espacio de Bloch.

Para una medida ;o de Borel positiva en [0, 1) tenemos que el operador I, estd

bien definido en cualquiera de estos dos espacios si y solo si

2
/ log du(t) < oo,

y si esto ocurre entonces las siguientes tres condiciones son equivalentes:

(i) La medida p es una medida 1-logaritmica 1-Carleson.
(ii) El operador I, es acotado de B en BMOA.
(iii) El operador I, es acotado de BAM/OA en si mismo.
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Ademas, si se satisface ({if) entonces el operador H,, esta bien definido en el espacio
de Bloch y

H,(f) = 1,(f), paratoda f € B,

por lo que el operador H,, es acotado de B en BMOA.
También tenemos el siguiente resultado sobre compacidad:

Sea p una medida de Borel positiva en [0,1) con f[o ) log = du(t) < oo. Sip

es una medida vanishing 1-logaritmica 1-Carleson entonces:
(i) El operador I, es un operador compacto de B en BMOA.
(ii) El operador I, es un operador compacto de BMOA en si mismo.
Las condiciones que debe cumplir una medida p para que el operador I, esté bien

definido o esté acotado en BMOA y en el espacio de Bloch siguen siendo ciertas

para todos los espacios ()5 con s > 0. Tenemos lo siguiente:

Para cualquier s € (0,00) y para una medida de Borel positiva y, el operador I,
esta bien definido en )y si y sélo si

2
/ log du(t) < oo,

y si esto ocurre entonces las siguientes condiciones son equivalentes:

(i) La medida p es una medida 1-logaritmica 1-Carleson.
(ii) Para cualquier s € (0,00), el operador I, es acotado de Qs en BMOA.

Ademas, si se satisface (i), se tiene que para cualquier s € (0,00) el operador H,

coincide con [, en ) y por tanto, también es acotado de Qs en BMOA.

Hemos estudiado también el operador I, actuando en los espacios de Besov.
Como es usual, para 1 < p < 0o, p’ denotard al exponente conjugado de p, es decir,

% + 1% = 1. Hemos probado los siguientes resultados.
Sea 1 < p < 00 y sea p una medida de Borel positiva en [0, 1). Se tiene que:
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(i) Si f[o N (log %)1/19’ dpu(t) < oo, entonces el operador I, estd bien definido en
BP.

(ii) Siel operador I, esta bien definido en B?, entonces f[O,l) (log %) du(t) < oo

para todo v < %.

(iii) Si p es una medida 1/p’-logaritmica 1-Carleson entonces el operador I, es
acotado de B en BMOA.

(iv) Si u es una medida vanishing 1/p'-logaritmica 1-Carleson entonces el operador
I,, es compacto de B? en BMOA.

Trabajando directamente con el operador H,, hemos obtenido lo siguiente:

Si v es una medida de Borel finita y positiva en [0, 1) entonces:

i) Sil <p<2y>77, % < 00, entonces el operador H,, esta bien definido
en BP.

p
(ii) Si2 <p < 00y Y 1o, k’;ﬁ < 00, entonces el operador H,, estd bien definido
en BP.

En [16], Bao y Wulan probaron que existen medidas de Borel positivas p en [0, 1)
que son medidas de Carleson pero para las que ocurre que H,(B?) ¢ B?. También
probaron que si H,, es un operador acotado de B* en s{ mismo entonces p es una
medida de Carleson. Estos resultados los mejoramos y los extendemos para todos

los espacios BP con 1 < p < o0.

Si 1 < p < oo entonces:

(i) Sio< g < % entonces existe una medida de Borel positiva u en [0,1) que es
p-logaritmica 1-Carleson pero tal que H,(BP) ¢ BP.

(ii) Sip es una medida de Borel positiva en [0, 1) tal que el operador H,, es acotado

de BP en si mismo entonces p es una medida 1/p’-logaritmica 1-Carleson [55].

(iii) Siy > 1y u es una medida de Borel positiva en [0,1) que es y-logaritmica

1-Carleson entonces el operador H,, es acotado de BP en si mismo.
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Mas tarde centramos nuestra atenciéon en la accién de H, en los espacios de
Hardy. Los resultados mencionados anteriormente de Galanopoulos y Peldez y de

Chatzifountas, Girela y Peldez implican lo siguiente.

(i) Si u es una medida de Carleson, entonces el operador H,, es acotado de H' en

si mismo si y solo si ¢ es una medida 1-logaritmica 1-Carleson.

(i) Si1l < p < ooy p es una medida 1-Carleson para HP?, entonces el operador
H,, es un operador acotado de H? en si mismo si y sélo si 1 es una medida de

Carleson.

Estos resultados no cierran completamente la cuestion sobre la caracterizacion
de las medidas ;v para las que H, es un operador acotado de H? en sf mismo. En
efecto, en estos trabajos los autores s6lo consideran medidas 1-Carleson para H?.
En principio, podria existir una medida p que no fuera 1-Carleson para HP pero
para la que el operador H,, estuviera bien definido y fuese acotado en H?. Hemos

probado que éste no es el caso. De hecho, se ha probado el siguiente resultado:

Sea p una medida de Borel positiva en [0, 1).

(i) El operador H, es acotado de H' en s{ mismo si y sélo si u es una medida

1-logaritmica 1-Carleson.
(ii) Sil < p < oo entonces el operador H,, es acotado de H? en si mismo si y sélo
si i es una medida de Carleson.
En [28] el pardmetro p se tomaba finito. También damos un resultado para el

caso p = 00.

Sea p una medida de Borel positiva en [0,1). Las siguientes condiciones son

equivalentes.
. d
(i) f[O,l)M < 00.

(i) S5 tn < 00

(iii) El operador I, es acotado de H* en si mismo.
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(iv) El operador H,, es acotado de H*> en si mismo.

Estos resultados sobre la acciéon de H,, en los espacios de Hardy han sido publi-
cados en [55] y estdn contenidos en la Seccién de esta tesis.

En la Seccién [2.2] mencionamos el siguiente resultado de Galanopoulos y Peléez.

Sea p una medida Borel positiva en [0,1). Si g es una medida de Carleson
entonces H,(H') C €, donde € es el espacio de las funciones holomorfas en el

disco que son la integral de Cauchy de una medida de Borel compleja en 0D .

Llegados a este punto nos preguntamos qué puede decirse acerca de la imagen
H,(H') de H' bajo la accién del operador H,, si la medida p es 1-logaritmica
1-Carleson en [0,1).

Con respecto a esta cuestién, observamos que es facil de ver que el espacio de
tipo Dirichlet D} estd incluido en H'. Probaremos que si u es una medida 1-
logarftmica 1-Carleson en [0,1) entonces H,(H?') estd contenido en el espacio Dy.

De hecho, hemos probado un resultado mas potente.

Sea p una medida positiva de Borel en [0,1). Entonces, las siguientes condi-

ciones son equivalentes:

(i) p es una medida 1-logaritmica 1-Carleson.

(ii) H, es un operador acotado de H' en si mismo.

(iii) H, es un operador acotado de H' en Dj.

(iv) H, es un operador acotado de Dj en Dj.

Hay un salto entre las condiciones de los dos ultimos resultados, por lo que es
natural estudiar el rango de H' bajo la accién de H, cuando g es una medida

a-logaritmica 1-Carleson con 0 < a < 1. Probaremos el siguiente resultado.

Sea p una medida positiva de Borel en [0,1). Supongamos que 0 < a < 1 y
que 4 es una medida a-logarftmica 1-Carleson. Entonces H,, aplica el espacio H*

en el espacio D' (log®™!) definido como:

D'(log®™!) = {f € Hol(D) : /D|f'(z)| (log %‘ZO : dA(z) < oo} :
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Todos estos resultados se encuentran en un trabajo conjunto con Girela [50].

Enunciamos anteriormente un resultado acerca de la acotacion del operador H,,
actuando de Qs (con 0 < s < 00) en BMOA. Es natural buscar una caracterizacion
para las medidas p tales que [, y/o H, es acotado de B en si mismo o més gene-

ralmente de ), en si mismo para cualquier s > 0. Tenemos el siguiente resultado.

Sea p una medida de Borel positiva en [0,1). Las siguientes condiciones son

equivalentes.

(i) El operador I, es acotado de @), en si mismo para algin s > 0.
(ii) El operador I, es acotado de )5 en si mismo para todo s > 0.
(iii) El operador #H, es acotado de )5 en si mismo para algin s > 0.
(iv) El operador H,, es acotado de ()s en si mismo para todo s > 0.

(v) La medida p es 1-logaritmica 1-Carleson.

De hecho somos capaces de probar un resultado mas fuerte que no hace distin-

ciones entre diferentes espacios ().

Sea p una medida de Borel positiva en [0,1) y sean 0 < $1,89 < 00. Las

siguientes condiciones son equivalentes:
(i) El operador I, esta bien definido en @, y, ademads, es acotado de Q,, en Q,.
(ii) El operador H, esté bien definido en @Q),, y, ademads, es acotado de @5, en Q.
(iii) La medida p es 1-logaritmica 1-Carleson.

Este resultado se deduce de un teorema que hemos probado més general en el

que aparece el espacio de Lipschitz en media A? /2

Sea p una medida de Borel positiva en [0,1) y sea X un espacio de Banach
de funciones analiticas en D con A? p C X C B. Las siguientes condiciones son

equivalentes:
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(i) El operador I, estd bien definido en X y, ademds, es acotado de X en A? Jo-

(ii) El operador H,, estd bien definido en X y, ademds, es acotado de X en AF /2

(iii) La medida p es 1-logaritmica 1-Carleson.

(iv) Jigq) " log du(t) = O (4).

Todos estos resultados se encuentran publicados en [55] y estan incluidos en la
Seccién 2.3 de la tesis.

La Seccién [2.4] esta dedicada a extender el resultado anterior a una clase mas ge-
neral de espacios de Lipschitz en media. Los resultados de esta seccién se encuentran
en [72].

En primer lugar, mejoraremos el tltimo resultado cambiando A? /o POT AP /p bara

cualquier p > 1.

Supongamos que 1 < p < co. Sea p una medida de Borel positiva en [0,1) y
sea X un espacio de Banach de funciones analiticas en D con A? » C X C B. Las

siguientes condiciones son equivalentes.

(i) El operador H,, estda bien definido en X y, ademads, es acotado de X en el
espacio de Bloch B.

(ii) El operador H, estd bien definido en X y, ademads, es acotado de X en A} Ip

(iii) La medida p es 1-logaritmica 1-Carleson.
(iv) f[O,l) t" log ﬁdu(t) =0 (%)

Los espacios AY /p estan contenidos en BMOA. El siguiente paso es estudiar el
operador H,, actuando en espacios de Lipschitz en media generalizados no contenidos

en BMOA. Trabajamos con los espacios A(p,w) definidos como
s , w(l—r)
A(p,w) = { f analiticaen D : My(r, f') =0 5 ) s 1o,
—r

donde 1 < p < 00 y w es un peso admisible w : [0,7] — [0,00) en el sentido de

Blasco y de Souza [22] 23]. Hemos probado lo siguiente.
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Sea 1 < p < 0oy sea w un peso admisible con 51/p /‘ oo cuando ¢ N\, 0 (condicién
que implica que A(p,w) no estd contenido en BMOA ni en el espacio de Bloch).

Las siguientes condiciones son equivalentes.

(i) El operador H,, esté bien definido en A(p,w) y ademas es acotado de A(p,w)

en si mismo.

(ii) La medida p es de Carleson.

En el comienzo de nuestra investigacién empezamos a estudiar espacios conforme-
mente invariantes. BMOA tiene un papel muy importante entre estos espacios. Con
el objetivo de continuar nuestro trabajo nos hemos concentrado en los espacios de
Morrey, una generalizacién de BMOA. Para 0 < X < 1 el espacio de Morrey £**

se define como

1/2
L= feH: |fllhe= sup (%/If(e”) -’ d@) / <00
it NPT

Es claro que para A = 1 el espacio de Morrey £*! coincide con BMOA. Para
A € (0,1), el espacio de Morrey £** es un espacio propio entre BMOA y el espacio
de Hardy H?2.

El Capitulo |3|esta dedicado a esta clase de espacios. Se ha dividido el estudio en
dos secciones. La Seccién trata sobre la estructura de estos espacios caracteri-
zando para algunas clases tipicas de funciones analiticas C cudles son las funciones
de C que residen en los espacios de Morrey, prestando atencién a las diferencias y
similitudes con los espacios de Hardy y BMOA. La Seccién estd dedicada a la
accion de semigrupos de operadores de composicién en los espacios de Morrey.

En la Seccién presentamos algunos resultados conocidos para los espacios
de Morrey tales como el crecimiento de sus funciones, sus series de potencias la-
gunares, asi como una caracterizacién de ciertas series de potencias aleatorias en
L£2*. También damos una caracterizacién de las funciones en los espacios de Morrey

mediante sus coeficientes de Taylor.

[o¢]
Sea0 < A < 1lysea f(z) = > a,z" una funcién analitica, tenemos que f € £>*
n=0

(1 = |w]?*)?
supz n—l—l

weD

si y sélo si

< 00.




Si nos restringimos al caso en el que los coeficientes de Taylor de la funcién f

son no negativos tenemos lo siguiente.

o
Sea 0 < A <1lysea f(z) = > a,2" una funcién analitica con a, > 0 para todo
n=0
n > 0, se tiene que f € L£L** si y sélo si

2

1 0o (k+1)n—1
8151) - E E a; | < oo.
n= k=0 j=kn

También damos una sencilla caracterizacién de las funciones en los espacios de

Morrey que tienen coeficientes de Taylor no negativos y no crecientes.

o0
Sea 0 < A < 1ysea f(z) = > a,z" una funcién analitica con a,, > 0 para todo
n=0
n >0y {a,} no creciente, tenemos que

14X

fer osa, <nF.

~Y

Gracias a este resultado probamos que los espacios de Morrey contienen fun-
ciones con el maximo crecimiento posible en estos espacios y que las funciones con

coeficientes de Taylor no negativos y no crecientes que pertenecen a L>* pertenecen

2

T, esto es:

también a todos los espacios de Hardy H? con p <
Para 0 < A < 1 tenemos que

Anpc () H,

2
P<i=x

siendo P la clase de funciones analiticas en el disco con coeficientes de Taylor no

negativos y no crecientes,
oo
P =2 flz)= Zanz" € Hol(D) : a,, > 0y {a,} no creciente
n=0
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Al igual que con las funciones con coeficientes de Taylor no negativos y no crecientes

probamos que la interseccién del espacio de Morrey £2* con la clase de funciones

2

univalentes esta contenida en todos los espacios de Hardy H” con p < =,

es decir,

tenemos que:

Para 0 < X < 1 se tiene que

L22NU C r]HA

2
P<i=x

No sabemos si estos dos resultados se pueden extender a todo el espacio de

Morrey. Dejamos esta cuestiéon como conjetura.
Sea 0 < A < 1. ;Es cierto que

rc () B ?

P<iZx

Como dijimos anteriormente, la Seccion [3.2] estd dedicada al estudio de semigru-
pos de operadores de composicion en los espacios de Morrey. Este estudio aparece
en el trabajo [47] realizado en colaboracién con P. Galanopoulos y A. Siskakis.

Un semigrupo (uniparamétrico) de funciones analiticas es un homomorfismo con-
tinuo @ : t — ®(t) = ¢, del semigrupo aditivo de los niimeros reales no negativos al
semigrupo de composicién de todas las funciones analiticas que llevan D en D.

En otras palabras, ® = (¢;) consiste en funciones analiticas en D con ¢;(D) C Dy

para las que se satisfacen las siguientes tres condiciones:
(i) o es la identidad en D,
(il) prrs = @1 0 @, para todo t,s > 0,
(iii) ¢ — o, cuando t — 0, uniformemente en subconjuntos compactos de .

Cada semigrupo de funciones analiticas da lugar a un semigrupo (C;) de opera-

dores de composicién en Hol(D),

def

Ci(f)= fog, feHol(D).
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Existe un buen niimero de trabajos acerca de semigrupos de operadores de com-
posicién centrados en la restriccién de (C}) a ciertos subespacios lineales de Hol(DD).
Dado un espacio de Banach X de funciones de Hol(D) y un semigrupo (¢;), deci-
mos que (¢;) genera un semigrupo de operadores de composicién en X si (C}) es un
semigrupo de operadores acotados en X bien definido y fuertemente continuo. Esto

significa exactamente que para toda f € X, se tiene que Cy(f) € X para todo t > 0

y
lim [[G(f) — fllx =0.

A continuacion presentamos algunos resultados conocidos sobre este tema en

espacios clasicos de funciones analiticas.

(i) Cada semigrupo de funciones analiticas genera un semigrupo de operadores
en los espacios de Hardy H? (1 < p < o) [17], los espacios de Bergman AP
(1 <p < o0) [92], el espacio de Dirichlet [93], y en los espacios VMOA y el
espacio pequeno de Bloch By [100].

(ii) Ningun semigrupo no trivial genera un semigrupo de operadores en el espacio

H® de funciones analiticas acotadas [5], [19].

(iii) Existen bastantes semigrupos (pero no todos) que generan un semigrupo de
operadores en el dlgebra del disco. De hecho, estos pueden ser caracterizados

de varias formas [31].

Recientemente, se ha descubierto [5], 19 18] que BMOA y el espacio de Bloch
son del segundo tipo. Nuestro trabajo aqui es probar que para 0 < A < 1 los espacios
de Morrey £** son también del mismo tipo.

Introduzcamos un poco notacion y propiedades bésicas de semigrupos.

Dado un semigrupo (¢;) y un espacio de Banach X, notaremos como [p;, X]
al maximo subespacio lineal cerrado de X tal que (¢;) genera un semigrupo de
operadores en él.

Otra herramienta importante en el estudio de semigrupos es el generador in-
finitesimal. Este se define de la forma

def pi(z) — 2

G(z) = lim

Jim , z € D.
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Esta convergencia es uniforme en compactos de D asi que G € Hol(D). Es méas, G

tiene una unica representaciéon
G(2) = (bz — 1)(z — b)P(2), z € D,

donde b € Dy P € Hol(D) con Re P(z) > 0 para todo z € D. Si G no es
idénticamente nula, esto es, si (¢;) no es trivial, el par (b, P) estd tinicamente deter-
minado por (¢;) y al punto b se le llama el punto de Denjoy-Wolff del semigrupo.
Probamos un resultado acerca de la existencia del subespacio maximal referido
anteriormente para todo semigrupo (p;) y también una caracterizaciéon del subespa-

cio maximal mediante el generador infinitesimal.

Supongamos que 0 < A < 1y sea (p;) un semigrupo de funciones analiticas.
Existe un subespacio cerrado Y C £ tal que (¢;) genera un semigrupo de ope-
radores en Y y tal que cualquier otro subespacio de £ con esta propiedad estd

contenido en Y. En nuestra notacién, Y = [¢;, £24].

Ademas, si G es el operador infinitesimal del semigrupo (¢;) entonces

e, L22) = {f € L2 : G € L2},

También probamos el siguiente resultado para los espacios pequenos de Morrey.

Para 0 < A < 1, todo semigrupo (¢;) genera un semigrupo de operadores en
Lo

Particularmente, en nuestra notacion esto es,
L C [gr, L] € £,
para todo 0 < A < 1y todo semigrupo (¢;).

Podemos probar que para las contracciones y las rotaciones, la primera con-

tencion es una igualdad. Esto es,

Lo = [ez, L2 = [e72, £, para0< A< 1.
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Aunque en general la primera inclusién en esta cadena de contenciones puede ser
estricta, hemos obtenido una condicion suficiente para la igualdad y también una

condiciéon necesaria para semigrupos con punto de Denjoy-Wolff interior.

Sea () un semigrupo con operador infinitesimal G y sea 0 < A < 1.

(i) Si

lim —
110 |1 S(I) |G (2)]?

entonces Lo = [y, £2).

(ii) Si ES’A = [y, L] v el punto de Denjoy-Wolff b € D, entonces
3-A
2

. (1—1z])
ey Y

Finalmente, cerramos este capitulo con un resultado acerca de la posibilidad de

tener igualdad en la contenciéon

[pe, £L27] € L2,

Sea X un espacio de Banach de funciones analiticas. Sea 0 < A < 1 y supon-
2.\ 3=A . . sy
gamos que L>* C X C B2 y sea (¢;) un semigrupo de funciones analiticas no
trivial. Entonces [¢y, X| € X.

En particular no existen semigrupos no triviales tal que [¢;, £2*] = L2,

El Capitulo[esté dedicado a explorar una clase de espacios de funciones analiticas
que comparte propiedades con los espacios de Dirichlet y los de Morrey. La mayor
parte de los resultados en esta linea aparecen en [46].

Sean A, p € [0,1]. Decimos que f € Hol(D) pertenece al espacio de Dirichlet-
Morrey D? si

11y = £(O)] +sup(1 = [a*) V)1 f 0 g = f(a) |, < oo
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Primero presentamos algunos resultados sobre la estructura de estos espacios
en la Seccion y mas tarde estudiamos también los multiplicadores puntuales en
estos espacios en la Seccién [4.2]

Los espacios Dirichlet-Morrey pueden ser caracterizados usando medidas de Car-

leson.

Sean 0 < p, A < 1ysea f € Hol(D). Se tiene que f € D; si y sélo si

1 , ,
e = s (s [ FEPL = BRPaaG) ) < s,

S(I)

I intervalo

y la norma || f||lpy es comparable a [f(0)| + || flpxx-

También damos un resultado sobre el crecimiento radial de funciones en los

espacios Dirichlet-Morrey y probamos que esta condicién no se puede mejorar.

Sea 0 < p, A < 1. Se tiene que:

(i) Existe una constante C' = C(p, A) tal que cualquier f € D, satisface

Cllfllp

% L eD.
(1—[z)20Y

If(z)] <

(ii) La funcién f,x(z) = (1 — 2)~50"Y pertenece a D,.

Observemos que ambas partes de la proposicion anterior son validas cuando p = 1
para 0 < A < 1.

En el siguiente resultado establecemos una condiciéon necesaria y suficiente para

que un espacio Dirichlet-Morrey esté contenido en otro.
Sean A1, p1, A2, p2 € (0,1). Se tiene que

DNCDE <« p<p vy pi(1—A)<pa(l— o)

Para finalizar esta seccion, estudiamos la caracterizacion de las funciones de los

espacios Dirichlet-Morrey en términos de los valores frontera.
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Supongamos que f € H?> y 0 < p, A < 1. Entonces f € D;‘ si y sélo si
1 _ 2
SUp // | (u) fQ(U)| |dul |dv| < oo.
rer (I[P JrJr o Ju—ofP

Sea X un espacio de Banach de funciones analiticas en D). Se dice que una

funcién g € Hol(D) es un multiplicador de X si el operador de multiplicacién

o(N)(2) =9(2)f(2), feX

es un operador acotado en X. Para esto generalmente basta comprobar que M, (X) C
X y aplicar el teorema del grafo cerrado. Denotamos al espacio de todos los multi-
plicadores de X como M (X). Los operadores de multiplicacién estan estrechamente

relacionados con los operadores de integracion J, e I,. Estos estan inducidos por el

_ /Zf<w>g'<w>dw, 2 €D,
/ f zeD,

y actian en funciones f € Hol(D). Su relacién con M, viene de la férmula de

simbolo g € Hol(D) como sigue

integracion por partes

Jo()(2) = My(f)(2) — f(0)g(0) — L,(f)(2).
Tenemos una caracterizacion completa para que el operador I, sea acotado en

los espacios D .

Sea 0 < p,A <1y g e Hol(D). Se tiene que I, : Dy — D, es acotado si y sélo
sige H™.

Con respecto a la accién de J,; en D;,\ tenemos la siguiente condiciéon necesaria.
Sea 0 < p,A <1y g e Hol(D). SiJ,: D) — D, es acotado entonces g € Q.

También hemos obtenido condiciones en g suficientes para que J; sea acotado en
A
D;.

Supongamos que 0 < p < 1.
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(i) Si0<g<pyg e Q, entonces J, : DYP —5 DIP e acotado.
(i) Si0 <A <1y geW, entonces J, : D) — D) es acotado.
Donde W, es el espacio de funciones g € Hol(D) tal que la medida
dpg(2) = |g'(2)]P(1 = |2*)P dA(2)

es una medida D,-Carleson, esto es, existe una constante C' = C'(g) tal que

/D )P duy(z) < ClIfI5,  feD,

Los teoremas anteriores en combinacién con la relacién entre los operadores M,

I, y J, dan lugar al siguiente corolario sobre multiplicadores de D;‘.
Supongamos que 0 < p, A < 1y g € Hol(D). Se tiene que
(i) Sige W, N H™ entonces M, : D, — D, es acotado.
(ii) Sig € QpaN H™ entonces M, : D) — D, es acotado.
(iii) Si M, : Dy — D, es acotado entonces g € Q, N H™.

La descripcién completa del espacio de multiplicadores M (D;‘) y de los simbolos

g para las que J; es acotada en D; parece ser un problema complicado.
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Introduction

This thesis is devoted to study certain operators acting on spaces of analytic
functions in the unit disc.

Let D = {z € C: |z| < 1} be the unit disc. We shall also let Hol(ID) be the space
of all analytic functions in D endowed with the topology of uniform convergence in
compact subsets.

A subspace X of Hol(D) can be seen as a sequence space by identifying a function
f € X with its sequence of Taylor coefficients:

oo

f(z) = Zanz" A {an}flo:o-

n=0
Let ‘H be the Hilbert matrix,
1 1/2 1/3 1/4
1/2 1/3 1/4 1/5

1
g1 = [1/3 1/4 1/5 1/6
(n+k+1)n,k>o 1/4 1/5 1/6 1/7

The Hilbert matrix can be viewed as an operator between spaces of sequences.
Formally, we define its action as

1 1/2 1/3 1/4 - ag
1/2 1/3 1/4 1/5 --- ay
H({an}plo) = [ 1/3 1/4 1/5 1/6 - ag |,

1/4 1/5 1/6 1/7 --- as

- —
{an}iZo {Z m} -
n=0

k=0
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In the same way, H can be seen as an operator (called the Hilbert operator)
between spaces of analytic functions identifying every analytic function with its
sequence of Taylor coefficients.

If f(2) =>"7"panz" then

when the right hand side has sense.

The Hilbert operator is well defined in H!, it is bounded on H? for 1 < p < oo,
but it is not bounded on H* or H* [34]. In a recent paper [65] Lanucha, Nowak, and
Pavlovié¢ have considered the question of finding subspaces of H! which are mapped
by H into H'. Dostani¢, Jevti¢ and Vukoti¢ [37] found the exact norm of H as an
operator from H? to H? (1 < p < 00).

Let p be a finite positive Borel measure on [0, 1) and let {u, }22, be its sequence
of moments: p, = f[O,l) t" du(t). The Hilbert matrix can be generalized considering

the Hankel matrix H,, with entries (tn+x), ;0>

Mo H1 f2 U3
H1 f2 3 4
Hy= | Ha M3 [la [s
M3 M4 ps o He

As before, the matrix H, formally induces the generalized Hilbert operator H,

on spaces of analytic functions:
If f(z) =) .",a,z" then

Hu(f)(2) = < /~Ln+kak> 2",

n=0 \k=

when the right hand side has sense.

Widom [99, Theorem 3. 1] and Power [89, Theorem 3] (see also Peller [83] p. 42,
Theorem 7. 2]) proved that H,, is a well defined bounded operator from H? into itself
if and only if u is a Carleson measure, p ([t,1)) < C(1—1),0<t < 1.

Galanopoulos and Peldez [48] studied the action of H, on H'. Chatzifountas,
Girela and Peldez [28] studied H,, as an operator from H? into H? (0 < p,q < 00).
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If everything we wished were OK, we would have:

For f(z) =Y 7 a,2",

Hu(f)(2) = Z (Z Nn+kak>

n=0

(Z“k/ 1 (1) > n
ar (ni;o /[0 K t"*’“z”du(t)>

t* ft)
a du(t :/ ————du(t).
’“471)1—& W o) 1 —1t2 "

For pu a finite positive Borel measure on [0,1) and f € Hol(ID) we define

tnqg

n

M

k=0

M

i

0

L(f)(z) = /[ . "0 4ut), ze,

whenever the right hand side makes sense for all z € D and defines an analytic
function in D.

It turns out that the operators H, and I, are closely related. If f is good
enough H,(f) and I,(f) are well defined and coincide. In [48] Galanopoulos and
Peléez proved the following.

Let p be a positive Borel measure on [0,1). Then:
(1) The operator I, is well defined on H' if and only if x is a Carleson measure.

(ii) If p is a Carleson measure, then the operator H, is also well defined on H*

and, furthermore,

H,(f) = L.(f), forevery fe H'

(iii) The operator I, is a bounded operator from H' into itself if and only if 4 is a

1-logarithmic 1-Carleson measure.

Later in [2§] Chatzifountas, Girela and Peldez proved the following.
Suppose that 1 < p < oo and let p be a positive Borel measure on [0, 1). Then:
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(i) The operator I, is well defined on H? if and only if p is a 1-Carleson measure
for HP.

(ii) If pis a 1-Carleson measure for H?, then the operator #,, is also well defined

on H? and, furthermore,

H,(f) = 1.(f), forevery f e HP.

(iii) The operator I, is a bounded operator from HP into itself if and only if 4 is a

Carleson measure.

Chapter [2] is devoted to study the operators H, and I, on several spaces of
analytic functions. We started extending the above results to some conformally
invariant spaces as the Bloch space, BMOA, Besov spaces or the ), classes. All
these results can be found in a joint work with Girela [54].

In the first result we characterize those measures p for which the operator I, is
well defined or bounded in BMOA and in the Bloch space.

For 41 a positive Borel measure on [0,1) we have that the operator I, is well

defined in any of these spaces if and only if

2
/ log du(t) < oo,

and if this holds, then the following three conditions are equivalent:

(i) The measure p is a 1-logarithmic 1-Carleson measure.
(ii) The operator I, is bounded from B into BMOA.

(iii) The operator I, is bounded from BMOA into itself.

Moreover, if holds, then the operator H, is also well defined on the Bloch
space and

Hu(f) = 1,(f), forall feB,
and hence the operator H, is bounded from B into BMOA.

We have also the following result regarding compactness:

Let u be a positive Borel measure on [0,1) with f[o ) log = du(t) < oo. If pis

a vanishing 1-logarithmic 1-Carleson measure then:
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(i) The operator I, is a compact operator from B into BMOA.

(ii) The operator I, is a compact operator from BMOA into itself.

The results concerning the well definition and boundedness of I, in BMOA and

in the Bloch space remain true for all the ()s spaces with s > 0. That is, we have:

For any given s € (0,00) and for a positive Borel measure y, the operator I,, is
well defined in @), if and only if

2
/ log du(t) < oo,

and if this holds, then the following condition are equivalent:

(i) The measure p is a 1-logarithmic 1-Carleson measure.

(i) For any given s € (0, 00), the operator ,, is bounded from @), into BMOA.

Moreover, if (i) holds, then for any given s € (0, 00) the operator H, coincide with
I, in Q,, and, hence, it is also bounded from @), into BMOA.

We have also studied the operator I, acting on Besov spaces. As usual, for
1 < p < oo, p' will denote the exponent conjugate to p, that is, %+ 1% = 1. We have

proved the following results:
Let 1 < p < oo and let u be a positive Borel measure on [0, 1). We have:
(i) If f[071) (log %)1/;;' du(t) < oo, then the operator I, is well defined in B”.

(ii) If the operator I, is well defined in BP, then f[o,l) (log %_t)w du(t) < oo for

1
all v < o

(iii) If p is a 1/p'-logarithmic 1-Carleson measure then the operator /,, is bounded
from B? into BMOA.

(iv) If p is a vanishing 1/p’-logarithmic 1-Carleson measure then the operator I,
is compact from BP into BMOA.

Working directly with the operator H, we have obtained that:

If v is a finite positive Borel measure on [0, 1) then:
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i) 1l <p<2and )2, % < 00, then the operator H,, is well defined in B?.

(i) f2 <p < oo and Y 7, 1;;% < 00, then the operator H, is well defined in
BP.

In [16], Bao and Wulan proved that there exists a positive Borel measure p on
[0,1) which is a Carleson measure but such that H,(B?) ¢ B They also proved
that if H, is a bounded operator from B? into itself then y is a Carleson measure.

We improve these results and extend them to all B? spaces with 1 < p < o0.

If 1 <p< oo then:

(i) fo<p< i then there exists a positive Borel measure p on [0, 1) which is a
p-logarithmic 1-Carleson measure but such that H,(B?) ¢ B?.

(ii) If p is a positive Borel measure on [0, 1) such that the operator H, is bounded

from BP into itself. Then p is a 1/p’-logarithmic 1-Carleson measure [55].

(iii) If ¥ > 1 and p is a positive Borel measure on [0, 1) which is a y-logarithmic
1-Carleson measure. Then the operator H, is a bounded operator from B?

into itself.

Next, we turned our attention to the action of H, on Hardy spaces. The above
mentioned results of Galanopoulos and Peldez and Chatzifountas, Girela and Pelaez

imply the following.

(i) If p is a Carleson measure, then the operator #,, is a bounded operator from

H*' into itself if and only if p is a 1-logarithmic 1-Carleson measure.

(i) If 1 < p < oo and p is a 1-Carleson measure for H?, then the operator H,, is

a bounded operator from H? into itself if and only if i is a Carleson measure.

These results do not close completely the question of characterizing the measures
p for which H,, is a bounded operator from H? into itself. Indeed, in these works the
authors only consider 1-Carleson measures for H?. In principle, there could exist a

measure p which is not a 1-Carleson measures for H? but so that the operator H, is
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well defined and bounded on HP. We have proved that this is not the case. Indeed,

we have proved the following result.

Let p be a positive Borel measure on [0, 1).

(1) The operator H, is a bounded operator from H' into itself if and only if y is

a l-logarithmic 1-Carleson measure.

(ii) If 1 < p < oo then the operator H, is a bounded operator from H? into itself

if and only if p is a Carleson measure.
In [28] the parameter p was only taken to be finite. We also give a result for the
case p = 00.

Let u be a positive Borel measure on [0,1). Then the following conditions are

equivalent.
. du(t)

(i) f[o,l)ll_—t < 0.

(i) Dooig tn < o0

(iii) The operator I, is a bounded operator from H* into itself.

(iv) The operator H, is a bounded operator from H into itself.

These results about the action of H, on Hardy spaces have been published in

[55] and they are contained in Section [2.1 of the thesis.

In Section [2.2| we recall the following result of Galanopoulos and Pelaez.

Let p be a positive Borel measure on [0,1). If p is a Carleson measure then
H,(H') C €, where € is the space of those analytic functions in the disc which are

the Cauchy transform of a complex Borel measure on 0D.

At this point we ask ourselves what can we say about image H,(H') of H'
under the action of the operator #,, if the measure p is a 1-logarithmic 1-Carleson
measure on [0,1).

Regarding this question, let us notice that it is easy to see that the space of
Dirichlet type D} is included in H'. We shall prove that if u is a 1-logarithmic
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1-Carleson measure on [0,1) then H,(H') is contained in the space D}. Actually,

we have the following stronger result.

Let p be a positive Borel measure on [0,1). Then the following conditions are

equivalent.
(i) p is a 1-logarithmic 1-Carleson measure.
(ii) H, is a bounded operator from H' into itself.
|

(iii) H,, is a bounded operator from H' into Dg.

(iv) H, is a bounded operator from D} into Dg.

There is a gap between the last two results above and so it is natural to discuss
the range of H' under the action of H, when u is an a-logarithmic 1-Carleson

measure with 0 < a < 1. We shall prove the following result.

Let p be a positive Borel measure on [0,1). Suppose that 0 < o < 1 and
that u is an a-logarithmic 1-Carleson measure. Then H, maps H' into the space
D'(log®™") defined as follows:

DY (log® 1) — {f € Hol(D) /D|f’(z)| (log 1_L|Z|>a_ dA(z) < oo}.

All these results can be found in a joint work with Girela [56].

We gave before a result about the boundedness of the operator H,, acting from
Qs spaces (with 0 < s < o0) into BMOA. It is natural to look for a characterization
of those p for which I, and/or H,, is a bounded operator from B into itself or, more

generally, from (), into itself for any s > 0. We have the following result.

Let 1 be a positive Borel measure on [0,1). Then the following conditions are

equivalent.
(i) The operator I, is bounded from @), into itself for some s > 0.

(ii) The operator I, is bounded from @, into itself for all s > 0.
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iii) The operator H, is bounded from @), into itself for some s > 0.
oW

iv) The operator H,, is bounded from s into itself for all s > 0.
m

(v) The measure pu is a 1-logarithmic 1-Carleson measure.

In fact, we are able to prove a stronger result which does not distinguish between

different @), spaces.

Let p be a positive Borel measure on [0,1) and let 0 < s1,59 < 0o. Then the

following conditions are equivalent.

(i) The operator I, is well defined in @), and, furthermore, it is a bounded oper-

ator from @y, into Q),.

(ii) The operator H, is well defined in @, and, furthermore, it is a bounded

operator from @), into Qs,.

(iii) The measure p is a 1-logarithmic 1-Carleson measure.

This result follows from a more general theorem which we have proved where the

mean Lipschitz space A? /2 shows up.

Let u be a positive Borel measure on [0,1) and let X be a Banach space of
analytic functions in D with A? o € X C B. Then the following conditions are

equivalent.

(i) The operator I, is well defined in X and, furthermore, it is a bounded operator

from X into A%/Q.

(ii) The operator H,, is well defined in X and, furthermore, it is a bounded operator

from X into Af/Q.

(iii) The measure u is a 1-logarithmic 1-Carleson measure.

(iv) f[o,1) t"log tdu(t) = O (1).
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All these results are published in [55] and they are included in Section of the

thesis.

Section [2.4]is devoted to extend the above result to a more general class of mean
Lipschitz spaces. The results in this section can be found in [72].

First of all, we improve the last result changing A? /2 by AY I for any p > 1.

Suppose that 1 < p < oo. Let p be a positive Borel measure on [0,1) and let
X be a Banach space of analytic functions in D) with A? » C X C B. Then the

following conditions are equivalent.

(i) The operator H,, is well defined in X and, furthermore, it is a bounded operator
from X into the Bloch space B.

(ii) The operator H,, is well defined in X and, furthermore, it is a bounded operator
from X into AY .

(iii) The measure u is a 1-logarithmic 1-Carleson measure.

(iv) Jigq) t"log du(t) = O (4).

The spaces A? Jp AT€ included in BMOA. Our next step is to study the operator
H,, acting in generalized mean Lipschitz spaces not included in BMOA. We work
with the spaces A(p,w) defined as

Alp,w) = {f analytic in D : M,(r, ') = O (%) ,as T — 1},

where 1 < p < oo and w is an admissible weight w : [0, 7] — [0, 00) in the sense of

Blasco and de Souza [22, 23]. We have proved the following.

Let 1 < p < 0o and let w an admissible weight with ;’1(2 /4 0o when § N\ 0 (this

condition implies that A(p,w) is not included in the Bloch space). The following

conditions are equivalent:

(i) The operator H,, is well defined in A(p,w) and, furthermore, it is a bounded

operator from A(p,w) into itself.

(ii) The measure p is a Carleson measure.
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In the beginning of our research we started to study conformally invariant spaces.
BMOA has a very important role among these spaces. In order to continue our work,
we have focused in Morrey spaces, a generalization of BMOA. For 0 < A < 1 the
Morrey space £2* is defined as

1/2
L= feH: |fllhe= sup (%/lf(e”) —fl d9> / < 00
gk NP

It is clear that for A = 1 the Morrey space £*! coincides with BMOA. For
A € (0,1), the Morrey space £2* is a proper space between BMOA and the Hardy
space H2.

Chapter [3] is devoted to this class of spaces. We have divided the study in two
sections. In Section |[3.1| we speak about the structure of these spaces characterizing
for some typical classes of analytic functions C those functions in C which lie in
the Morrey spaces, and paying attention to the differences and similarities with
Hardy spaces and BMOA. Section [3.2] is devoted to the action of semigroups of
composition operators on Morrey spaces.

In Section [3.1] we present some known results for Morrey spaces such as the
growth of functions, their power series with Hadamard gaps, or a characterization of
certain random power series in £2*. We also give a characterization of the functions

in Morrey spaces in term of its Taylor coefficients.

For 0 < XA < 1 and for an analytic function f(z2) = Y a,2" we have that f € £**
n=0
if and only if

n

> (k+ Dagaw"™*

k=0

e 1 — 2)2—X\
oy S (1= )

< Q.
weD n—0 (7’L + 1)2

If we restrict to the case that the Taylor coefficients of the function f are non-

negative, we have the following.

For 0 < A < 1 and for an analytic function f(z) = Y a,2" with a,, > 0 for every

n=0
n > 0, we have that f € £3* if and only if
1 oo (k+1)n—1 2
ap L3 (13 0 <
nz1 k=0 j=kn
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We give also an easy characterization of functions in Morrey spaces with non-

negative and non-increasing Taylor coefficients.

For 0 < A < 1 and for an analytic function f(z) = > a,2" with a,, > 0 for every
n=0
n > 0 and {a,} non-increasing, we have that

1+

fer**sa,<n 2.

~Y

Thanks to this result, we also prove that Morrey spaces contain functions with
the maximum possible growth and that the functions with non-negative and non-
increasing Taylor coefficients which belong to £2* belong also to all Hardy spaces

HP? with p < %, that is:

Let 0 < A < 1. We define P as the class of analytic functions in the disc with

non-negative and non-increasing Taylor coefficients,

P = {f(z) = Z a,z" € Hol(D) : a, > 0 and {a,} non—increasing} :
n=0

Then
LAnpPc () H

2
P<i=x

In the same way as what happens with functions with non-negative and non-
increasing Taylor coefficients, we prove that the intersection of the Morrey space
L£2* with the class of univalent functions is contained in all Hardy spaces H? with

. that is, we have:

For 0 < A < 1 we have that

L22NU C ﬂ HP.

2
P<i=x
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We do not know if these two results can be extended to the whole Morrey space.

We leave this question as a conjecture.
Let 0 < A < 1. It is true that

rc () B ?

2
P<i=x

As we said before, Section [3.2] is devoted to the study of semigroups of com-
position operators on Morrey spaces. This appears in [47], a joint work with
P. Galanopoulos and A. Siskakis.

A (one-parameter) semigroup of analytic functions is a continuous homomor-
phism @ : ¢ — ®(t) = ¢, from the additive semigroup of nonnegative real numbers
into the composition semigroup of all analytic functions which map D into D.

In other words, ® = (¢;) consists of analytic functions on D with ¢;(D) C D and

for which the following three conditions hold:
(i) o is the identity in D,
(i) @irs = @10 s, for all t,s >0,
(iii) ¢ — o, as t — 0, uniformly on compact subsets of D.

Each such semigroup gives rise to a semigroup (C}) consisting of composition

operators on Hol(ID),
def

Ci(f)=fow, f€HoD).

There is a good number of works about semigroups of composition operators
focused on the restriction of (C}) to certain linear subspaces of Hol(DD). Given a
Banach space X consisting of functions in Hol(ID) and a semigroup (¢;), we say
that (p;) generates a semigroup of operators on X if (C}) is a well-defined strongly
continuous semigroup of bounded operators in X. This exactly means that for every
f € X, we have Cy(f) € X for all £ > 0 and

Tim [Ci(f) = fllx =0.

Some known results about this topic in classical spaces of analytic functions are
the following:
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(i) Every semigroup of analytic functions generates a semigroup of operators on
the Hardy spaces H? (1 < p < o0) [17], the Bergman spaces A? (1 < p < 00)
[92], the Dirichlet space [93], and on the spaces VMOA and the little Bloch
space By [100].

(ii) No non-trivial semigroup generates a semigroup of operators in the space H>

of bounded analytic functions [5], [19].

(iii) There are plenty of semigroups (but not all) which generate semigroups of
operators in the disc algebra. Indeed, they can be well characterized in several

analytical terms [31].

Recently, it has been discovered [3], 19, 18] that BMOA and the Bloch space are
in the second case. Our work here is to prove that for 0 < A\ < 1 Morrey spaces £>*
are also in the same case.

Let us introduce some notation and basic facts about semigroups.

Given a semigroup (¢;) and a Banach space X, we will denote by [¢;, X| the max-
imal closed linear subspace of X such that (y;) generates a semigroup of operators
on it.

Another important tool in the study of semigroups is the infinitesimal generator.
We define it as

G(z)  Jim w, z € D.

t—0t

This convergence holds uniformly on compact subsets of D, so G € Hol(D). Fur-

thermore, GG has a unique representation

G(z) = (bz—1)(z = b)P(2), z € D,

where b € D and P € Hol(D) with Re P(z) > 0 for all z € D. If G is not identically
null, that is, if (¢;) is not trivial, the couple (b, P) is uniquely determined from (¢)
and the point b is called the Denjoy-Wolff point of the semigroup.

We prove a result about the existence of the maximal subspace referred before
for all semigroup (¢;) and also a characterization of this maximal subspace via the

infinitesimal generator.

Suppose that 0 < A < 1 and let (¢;) be a semigroup of analytic functions.
Then there exists a closed subspace Y C £** such that (y;) generates a semigroup
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of operators on Y and such that any other subspace of £>* with this property is

contained in Y. In our notation, Y = [p;, £L2*].

Moreover, if G is the infinitesimal generator of the semigroup (¢;) then

[0, L2 = {f € L2} : Gf' € L2}

We also prove the following result for little Morrey spaces.

For 0 < X\ < 1, every semigroup (¢;) generates a semigroup of operators on [,?)”\.

This in particular means that in our notation,
L3 C [y, L2 C L2,
for every 0 < A < 1 and every semigroup (¢).

We can prove that for dilatations and rotations, the left hand side equality holds.
That is,

/jg”\ = ez, L% = [e7'2, L%, forO< A< 1.

Although, in general the first inclusion in this chain of contentions can be proper,
we have obtained a sufficient condition for the equality in the left hand side and also

a necessary condition for semigroups with inner Denjoy-Wolff point.

Let (¢;) be a semigroup with infinitesimal generator G' and let 0 < A < 1.
(i) If
’ 1 1 — |7
im —
110 || S(I) |G(2)[?

dA(z) =0
then ES”\ = [¢s, L2

(ii) If £2™ = [y, £2*] and the Denjoy-Wolff point b € D, then
3.2
2

1_
fim 2D

2| -1 G(2)
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Finally, we close this chapter with a result about the possibility of having equality
in the inclusion
[pe, £L27] € L2,

Let X be a Banach space of analytic functions and 0 < A\ < 1. Suppose £>* C
X c B and let (p¢) be a non trivial semigroup of analytic functions. Then
[Spta X] -,C«- X.

In particular there are no non-trivial semigroups such that [¢;, £2] = £22.

Chapter [ is devoted to explore a class of spaces of analytic functions which
shares properties with Dirichlet spaces and Morrey spaces. Most of the results in
this line are contained in [46].

Let A\, p € [0,1]. We say that an f € Hol(D) belongs to the Dirichlet-Morrey

space D;‘ if
1flloy = [£(0)] + sup(1 — [al?)2E VI f 0 pq = f(a)|lp, < oo
ac

We first give some results on the structure of these spaces in Section [4.1] and
then we study the pointwise multipliers on them in Section [4.2]

Dirichlet-Morrey spaces can be characterized using Carleson measures.

Let 0 < p, A < 1and f € Hol(D). Then f € D, if and only if

Ihne = s (e [ PR 1Py A ) < o0

I interval

and the norm || f||py is comparable to [ f(0)] + [|f [y

We also give a result about the radial growth of functions in Dirichlet-Morrey

spaces and show that this condition is sharp.

Let 0 < p, A <1 then,
(i) There is a constant C' = C(p, A) such that any f € D) satisfies

Cll.fllp

% L eD.
(1—[z)20Y

If(z)] <

xl



(i) The function f,(2) = (1 — 2)~207Y belongs to D,.

Observe that both parts of the above proposition are also valid when p = 1 for
0<A<l.

In the next result we present a necessary and sufficient condition for a Dirichlet-

Morrey space to be contained in another one.
Let A, p1, A2, p2 € (0,1). Then

DIZ\IIQD{,\;? < pr<pz and pi(1—A) <pa(l—Ao).

To end this section, we next discuss the boundary values characterization of

Dirichlet-Morrey spaces.

Suppose f € H? and let 0 < p,A < 1. Then f € D) if and only if

|f (u
ilgr) T // |2 p ]du! |dv| < 0.

Let X be a Banach space of analytic functions on D. A function g € Hol(D) is
said to be a multiplier of X if the multiplication operator

My(f)(2) = 9(2)f(2), [eX,

is a bounded operator on X. For this it is usually enough to check that M (X) C X
and apply the closed graph theorem. The space of all multipliers of X is denoted
by M (X). Multiplication operators are closely related to the integration operators
J, and I,;. These are induced by symbols g € Hol(D) as follows

= /OZ fw)d (w)dw, =ze€D,
- / Pw)gw)dw, zeD,

xli
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and act on functions f € Hol(D). Their relations with M, comes from the integra-

tion by parts formula

We have a complete characterization for the operator I, being bounded on Df,‘

spaces.

Let 0 < p,A < 1 and g € Hol(ID). Then I, : D) — D, is bounded if and only if
g € H™.

Concerning the action of J, on D; we have the following necessary condition.
Let 0 <p,A <1and g € Hol(D). If J, : D;‘ — DI’)\ is bounded then g € @Q,.
We also have obtained sufficient conditions on g for J, to be bounded on D]’)\.

Suppose 0 < p < 1.

(i) f0<g<pand g€ Q, then J, : Dg/p — Dg/p is bounded.

(i) If 0 < A <1 and g € W, then J, : D) — D, is bounded.
Where W, is the space of functions g € Hol(ID) such that the measure
dpg(2) = 1g'(2)*(1 — |2]*)" dA(2)

is a D,-Carleson measure, that is, there is a constant C' = C(g) such that

/D )P duy(z) < ClIfI5,.  feD,

The above theorems in combination with the relation between operators Mg, I,

and J, give the following corollary for multipliers of DI’}.
Suppose 0 < p, A < 1 and g € Hol(D). Then
(i) If g € W, N H™ then M, : D) — D, is bounded.
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ii) If g € Q,x N H*® then M, : D} — D) is bounded.
p 9 “p P

iii) If M, : D} — D} is bounded then g € Q, N H>.
g P P p

The complete description of the multiplier space M (D];\) and of the symbols ¢

for which J, is bounded on D;‘, seems to be a hard problem.
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Chapter 1
Preliminaries

This chapter is devoted to present some of the main spaces which will be the

object of our work.

We shalllet D = {z € C: |z| < 1} denote the open unit disc in the complex plane
C and T = 0D will be the boundary of D. We shall also let Hol(D) be the space
of all analytic functions in D endowed with the topology of uniform convergence in

compact subsets.
If 0<r<1 and f € Hol(D), we set

1

27 ' 1/p
M5 = (50 [ lreepar) L 0<p<

Meo(r, ) = sup [f(2)].

|z[=r

For 0 < p < 0o, the Hardy space H? consists of those f € Hol(D) such that

def
[ fllae = sup My(r, f) < oo
0<r<1

(see [40], 49] for the theory of HP-spaces). In particular, it is known that whenever
f € HP, 0 < p < oo, f has finite non-tangential limits a.e. on T. We shall also
denote this function defined on T by f.

If 0 < p < ooand a > —1, the weighted Bergman space A2 consists of those
f € Hol(D) such that

I (@) [1- |z|2>a|f<z>|pdA<z))”p o

1



2 Chapter 1. Preliminaries

The unweighted Bergman space Af is simply denoted by AP. Here, dA(z) = %dx dy
denotes the normalized Lebesgue area measure in D. We refer to [43 59, [111] for
the theory of these spaces.

The space of Dirichlet type D? (0 < p < oo and « > —1) consists of those
f € Hol(D) such that f' € AP. In other words, a function f € Hol(D) belongs to
Dr if and only if

1/p
1oz 2 1£0)] + (<@+1> [a- \zP)“\f’(z)!”dA(z)) < .

We recall that the Bloch space B consists of those f € Hol(D) such that
1f1ls = 1£(0)] + Slelg(l — [z 1f'(2)] < oo.

We refer to [0, [111] for the theory of Bloch functions.
We shall write I for an interval of T and || for its length. If ¢ € L'(9D), we let

1 denote the mean of f over the interval I, that is,

def 1 / 10
Yr (e
1]

The mean oscillation of v over I is
1 i0
[ = ulr = =7 [ [(e”) — ] db.
1| /1
We say that 1) has bounded mean oscillation or that v € BMO(T) if

1 .
sup —/W(e’e) — | df < oc.
it 1

We can also consider the small version of this space: We say that ¢ has vanishing
mean oscillation or that ¢ € VMO(T) if

1 )
lim — “) — ] do = 0.
tim oo [ 10(e) = il d0 =0

We define BMOA as the space of those functions f € H! such that the function
e s f(e?) of the boundary values of f belongs to BMO(T) and, in the same way,
we define VM OA as the space of those functions f € BMOA such that the function



of the boundary values of f belongs to VMO. These spaces can be equipped with
several different equivalent norms [15], 49} 52]. We often work with the one given in
terms of Carleson measures.

If I C T is an interval, the Carleson square S(I) is defined as
L I
S(I)={re": e el, 1—u§r<1}.
2m
Also, for a € D, the Carleson box S(a) is defined by

arg(az)
2m

(4
< Loly

S(a):{zel[):l—\zygl—\a], < —

If s > 0 and p is a positive Borel measure on D, we shall say that p is an

s-Carleson measure if there exists a positive constant C' such that
wu(S(I)) < C|I°, for any interval I C JD,
or, equivalently, if there exists C' > 0 such that

1 (S(a)) <C(1 —|a|)®, forall a €D.

I
If p satisfies lim M = 0 or, equivalently, lim _HARAS)) (S(al)
[I|—0 |]’5 la|—1 (1 _ |CL| )s

that p is a vanishing s-Carleson measure.

= 0, then we say

An 1-Carleson measure, respectively, a vanishing 1-Carleson measure, will be
simply called a Carleson measure, respectively, a vanishing Carleson measure.

As an important ingredient in his work on interpolation by bounded analytic
functions, Carleson [27] (see also Theorem 9.3 of [40]) proved that if 0 < p < co and
p is a positive Borel measure in D then H? C LP(dp) if and only if p is a Carleson
measure. This result was extended by Duren [39] (see also [40, Theorem 9.4]) who
proved that for 0 < p < ¢ < oo, H? C L%dp) if and only if p is a ¢/p-Carleson
measure.

If X is a subspace of Hol(D), 0 < ¢ < oo, and p is a positive Borel measure in
D, u is said to be a “q-Carleson measure for the space X” or an “(X, q)-Carleson
measure” if X C Li(dp). The g-Carleson measures for the spaces H?, 0 < p,q < 00
are completely characterized. The mentioned results of Carleson and Duren can
be stated that if 0 < p < ¢ < oo then a positive Borel measure p in D is a g-

Carleson measure for H? if and only if p is a ¢/p-Carleson measure. Luecking [70]
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and Videnskii [97] solved the remaining case 0 < ¢ < p. We mention [2I] for a
complete information on Carleson measures for Hardy spaces.

Now we can give a characterization of BMOA and VMOA in terms of Carleson
measures: Let f € Hol(D), then f € BMOA (resp. VMOA) if and only if the
measure |f'(2)]*(1 — |z|*)dA(z) is a Carleson measure (resp. vanishing Carleson

measure), and we equip both spaces with the norm [52],

Jo 1F'(2)P(1 = |2[%) dA(z)
sup .
ICT 7]

I interval

The following chain of embeddings [15, [49] 52] holds

1 Baoa = [£(0)]* +

H*>* C BMOA C B.

For w € D, we let ¢,, denote the M&bius transformation defined by

w—z

pulz) = 1—wz
Then ¢, is a conformal mapping from the unit disc onto itself and interchanges the
origin with w.

Let us denote by Aut(D) the group of all conformal mappings from ID onto itself.
It is known that

Aut(D) = {Apy :w € D, |A| = 1}.

We can give a characterization of BMOA and VMOA in terms of H? norms:
Let f € Hol (D), then f € BMOA if and only if {f o ¢, — f(a)}sep is a bounded
family in H2. The condition || f o ¢, — f(a)|lzz — 0, as |a| — 1, is equivalent to
saying that f € VMOA. We equip both spaces with the following norm [52], which

is called the Garsia’s norm.
| fllBmoa = [£(0)] + sup 1f 0 pa — fla)lla>-
ac

Fefferman’s duality theorem [52] gives a very important result about these spaces.

Let X C Hol(D) and let X* denote the dual space of X, that is, the space of all
continuous linear functionals T : X — C.

There is a bijection between the dual space of H' and BMOA. If f € BMOA
then, the operator T defined by

1 7 ;
Te(g) =limo— [ f(e")g(re”)df, g€ H',



belongs to (H')" and ||Ty|| < || fllBaoa-

Conversely, for every T € (H')" there exists a unique f € BMOA such that
T =Ty

In a similar way, there is a bijection between H' and the dual space of VMOA.
If g € H' then, the operator S, defined by

Sy( —11m—/ f(e®g(re?®)ds, feVMOA,

r—1 27

belongs to VMOA* and ||Sy|| < ||g]| -
Conversely, for every S € VMOA* there exists a unique g € H! such that
S =29,

So we conclude that
(Hl)* ~ BMOA and VMOA* ~ H!

A space X C H(D) equipped with a seminorm p is called conformally invariant

or Mobius invariant if there exists a constant C' > 0 such that
supp(gop) < Cplg), g€X,
©

where the supremum is taken on all Mobius transformations ¢ of I onto itself.
BMOA and B have the important property of being conformally invariant spaces
[52].

Other important M&bius invariant spaces are the QQs-spaces (s > 0) and the
analytic Besov spaces B? (1 < p < 00).

If 0 < s < o0, we say that f € Q; if f is analytic in D and

LFO + po, ()P < oo,

where

po.(f) & (sup/|f Pg(z,0)* dA(: >)1/2.

a€b
Here, g(z, a) is the Green’s function in D, given by ¢(z, a) = log ‘1;—5; ‘ All Q)5 spaces
(0 < s < 00) are conformally invariant with respect to the semi-norm pg, [35], 103].
These spaces were introduced by Aulaskari and Lappan in [11] while looking for
new characterizations of Bloch functions. They proved that for s > 1, @), is the

Bloch space. Using one of the many characterizations of the space BMOA (see,



6 Chapter 1. Preliminaries

e.g., [15, Theorem 5] or [52, Theorem 6. 2]) we see that @1 = BMOA. In the limit
case s = 0, (), is the classical Dirichlet space D of those analytic functions f in D

satisfying
/ If'(2)|?dA(2) < .
D

It is well known that D C VMOA. Aulaskari, Xiao and Zhao proved in [14] that

DC Qs CQs, T BMOA, 0< s <89<1.

—=

We mention the book [103] as an excellent reference for the theory of Q)s-spaces.
For 1 < p < 00, the analytic Besov space BP is defined as the set of all functions
f analytic in D such that

1£1lse Z (LFO)F + pp(f)?)? < o0,

where
pp(f) = (/Du - W)pQ\f’(Z)\pdA(z)y/p'

All BP spaces (1 < p < 00) are conformally invariant with respect to the semi-norm
pp (see [8, p.112] or [35, p.46]). We have that D = B2 A lot of information on
Besov spaces can be found in [8, 35, [36] [61], 110, 111]. Let us recall that

B C BT CVMOA, 1< p<q <o.

We close this chapter noticing that, as usual, we shall be using the convention
that C' = C(p, «, q, 3, ...) will denote a positive constant which depends only upon
the displayed parameters p,«,q, ... (which sometimes will be omitted) but not
necessarily the same at different occurrences. Moreover, for two real-valued func-
tions F4, By we write By < Ey, or By 2 FEs, if there exists a positive constant C'
independent of the arguments such that E; < CFEs, respectively Fy > CFE,. If
we have Fy < Fy and Fy; 2 E simultaneously then we say that E; and F are

~

equivalent and we write £y =< Fjs.



Chapter 2

A generalized Hilbert matrix
acting on spaces of analytic

functions

In this chapter we shall study a class of integral operators associated with certain
Hankel matrices acting on different spaces of analytic functions. Most of our results
concerning this topic are included in [54], [55], [56] and [72].

If 1 is a finite positive Borel measure on [0,1) and n = 0,1,2,..., we let pu,

denote the moment of order n of u, that is,

= [ du)
[0,1)

and we let 1, be the Hankel matrix (t, x)n kx>0 With entries pu, x = fln+k-

Mo H1 H2 M3
M1 p2 p3 g

H, =
M2 U3 a5

The matrix H,, can be viewed as an operator on spaces of analytic functions by

its action on the Taylor coefficients:

{an}zozo = {Z Nn,kak} .
k=0 n=0

7
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Ho H1 H2 M3 ... Qo Zzozoﬂkak
M1 p2 p3 M4 o ar | ZZO:OM:H%

po gy g ps o | az || e ko
To be precise, if f(z) = > po,arz* € Hol(D) we define

Hu(f)(2) = Z <Z Mn,kak) 2",

n=0

whenever the right hand side makes sense and defines an analytic function in D.

If p is the Lebesgue measure on [0,1) the matrix #, reduces to the classical
Hilbert matrix # = ((n+k+1)7"), ;5 which induces the classical Hilbert op-
erator H, a prototype of a Hankel operz&or which has extensively studied recently
(see [2, B3, B4, B7, 63, 65]). Other related generalizations of the Hilbert operator
have been considered in [45] and [81].

Hardy’s inequality [40, page 48] guarantees that H(f) is a well defined analytic
function in D for every f € H'. However, the resulting Hilbert operator H is
bounded from H? to H? if and only if 1 < p < oo [34]. In a recent paper [65]
Lanucha, Nowak, and Pavlovi¢ have considered the question of finding subspaces of
H' which are mapped by H into H'.

The question of describing the measures p for which the operator H, is well
defined and bounded on distinct spaces of analytic functions has been studied in a
good number of papers (see [10], 28] 48|, B4, 55] (72, [74], 89, 99]). Carleson measures
play a basic role in these works.

Galanopoulos and Peldez [48] studied the question of characterizing the measures
(1 so that the generalized Hilbert operator H,, becomes well defined and bounded on
H'. Indeed, they proved that if p is a Carleson measure then the operator H,, is
well defined in H', obtaining en route the following integral representation

f(t)

Ho(f)(z) = / O ), zep, forange
[0,1) <

For simplicity, we shall write throughout the chapter

() = /[ . IO o), (2.0.1)



whenever the right hand side makes sense and it defines an analytic function in D.
In [28], Chatzifountas, Girela and Peldez extended the above results studying the
operator H, acting from H” into H?, 0 < p,q < co. In these works, an extension of
the classical definition of Carleson measures shows up:
Following [109], if y is a positive Borel measure on D, 0 < o < 00, and 0 < s < 00
we say that p is an a-logarithmic s-Carleson measure if there exists a positive
constant C' such that

u(s(1)) (tog )
15

< (C, for any interval I C OD.

If  (S(1)) <log %) = o(|I|%), as [I| — 0, we say that x is a vanishing a-logarithmic

s-Carleson measure.

A positive Borel measure p on [0,1) can be seen as a Borel measure on D by

identifying it with the measure i defined by
fa(A) = p(AN[0,1)), for any Borel subset A of D.

In this way a positive Borel measure p on [0,1) is an a-logarithmic s-Carleson

measure if and only if there exists a positive constant C' such that

(1) (1ow

t) <C(—t)P, 0<t<l,

and g is a vanishing a-logarithmic s-Carleson measure if

2

w([t, 1)) <log1 t)azo((l—t)s), as t — 1.

Our main aim in this chapter is to improve the above results about the gen-
eralized Hilbert matrix H, acting on H? spaces (1 < p < oo) and the study of
this operator in some of the most important conformally invariant spaces as well as
in mean Lipschitz spaces. A key tool will be a description of those positive Borel

measures p on [0,1) for which H,, is well defined in these spaces and satisfies that

Hu(f) =1,(f) for all f.
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2.1 A generalized Hilbert matrix acting on Hardy

spaces

Let us start with some of the previous results about H, and I, on Hardy spaces.
In 1966, Widom [99, Theorem 3. 1] (see also [89, Theorem 3] and [83] p.42, Theo-
rem 7. 2]) proved that H,, is a bounded operator from H? into itself if and only p is a
Carleson measure. More recently, Galanopoulos and Peldez in [48] and Chatzifoun-
tas, Girela and Peldez in [28] have extended these works studying the action of #,,
on H' and HP for 0 < p < oo respectively. Some of their results are the following

ones:
Theorem A ([48]). Let u be a positive Borel measure on [0,1). Then:
(i) The operator 1, is well defined on H' if and only if pu is a Carleson measure.

(ii) If u is a Carleson measure, then the operator H, is also well defined on H*

and, furthermore,
Hu(f) = L(f), for every f € H'.

(iii) The operator I, is a bounded operator from H' into itself if and only if u is a

1-logarithmic 1-Carleson measure.

Theorem B ([28]). Suppose that 1 < p < co and let p be a positive Borel measure
on [0,1). Then:

(i) The operator 1, is well defined on HP if and only if pu is a 1-Carleson measure
for HP.

(11) If i is a 1-Carleson measure for H?, then the operator H, is also well defined

on H? and, furthermore,
Hu(f) = 1u(f), for every f € H".

(iii) The operator I, is a bounded operator from HP into itself if and only if p is a

Carleson measure.

Theorem[A] and Theorem[B] immediately yield the following.



2.1. A generalized Hilbert matrix acting on Hardy spaces 11

Theorem C. Let p be a positive Borel measure on [0,1).

1) If u is a Carleson measure, then the operator H, is a bounded operator from
12 Iz

H?' into itself if and only if u is a 1-logarithmic 1-Carleson measure.

(11) If 1 < p < oo and p is a 1-Carleson measure for H?, then the operator H, is

a bounded operator from HP into itself if and only if p s a Carleson measure.

Theorem|C] does not close completely the question of characterizing the measures
p for which #H,, is a bounded operator from H? into itself. Indeed, in Theorem[C] we
only consider 1-Carleson measures for H?. In principle, there could exist a measure
p which is not a 1-Carleson measure for H? but so that the operator H, is well
defined and bounded on H?. Our first result in this section asserts that this is not

the case.
Theorem 1 ([55]). Let pu be a positive Borel measure on [0,1).

(i) The operator H, is a bounded operator from H' into itself if and only if u is
a 1-logarithmic 1-Carleson measure.

1 < p < oo then the operator 15 a bounded operator from into itse
1) If 1 then th tor H,, 1s a bounded t HP into itsel

if and only if p i1s a Carleson measure.

In [28] the parameter p was only considered to be finite. Here we give a result
for the case p = oo.

Theorem 2 ([55]). Let p be a positive Borel measure on [0,1). Then the following

conditions are equivalent.
, dp(t)
(1) f[O,l)% < oo.
(ii) 3 g b < 0.
(i) The operator I, is a bounded operator from H> into itself.

() The operator H,, is a bounded operator from H™ into itself.
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2.1.1 Proofs

This section is devoted to prove Theorem[l] and Theorem[2]

Proof of Theorem |1|(i). Suppose that H,, is a bounded operator from H' into itself.

For 0 < b < 1, set
o) = =L, seD
2)=-——"7=, 2 .
’ (1—bz2)?’

We have that f, € H' and || fy||gn = 1. Since H,, is bounded on H*, this implies

that
12 1 H (o)l (2.1.1)

We also have,
= Zakvbzk, with Arp = (1 — bg)(k’ + 1)bk

Using Hardy’s inequality, (2.1.1) and the definition of the ay;’s, we obtain
o0 1 o0
L2 I Hu(fo)llar 2 Zﬁ (Z Mn+k:ak,b>
n=1 k=0
S (SSas [ etann
" \= [0.1)

n=1 k=0
> (1-1%) Z (Z kb / t””‘“dy(t))
n:l [b,1)
o0 1 o0
> 1 o b2 - kbn+2k
2a-my (z )

= (1=0*)pu([b, an (f: k:ka)

=1

= =) (e )

Then it follows that

(1)) = o( 1‘?), as b 1.

IOg s

Hence, p is a 1-logarithmic 1-Carleson measure.
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The converse follows from Theorem[C](i). O

Proof of Theorem (zz) Suppose that 1 < p < oo and that u is a positive Borel
measure on [0,1) such that the operator H, is a bounded operator from H? into
itself.

For 0 < b < 1, set

f(z) = (%)Up, 2 eD.

We have that f, € H? and || fy||g» = 1. Since H,, is bounded on H?, this implies
that
12 (o)l - (2.1.2)

We also have,
= Zahbzk, with A p = (1 _ b2>1/pk%,16k‘

Since the ayy’s are positive, it is clear that the sequence {72 ftntrarp}oo of the
Taylor coefficients of #H,,(fs) is a decreasing sequence of non-negative real numbers.

Using this, Theorem A of [7§], (2.1.2)), and the definition of the ay;’s, we obtain
12 [H (o)l 2 an ? (Zﬂn+kakb>
00 p
=) np? a / "R dp(t
By
P
(1—b?) an 2 (Z kr bk / ¢k du(t))
[b,1)
00 p
2
> (1 _ bZ) anf2 (Z k;—lanerM ([b, 1)))
(1 o bZ an 2bnp (Z k1b2k>

o0

2 p 1 p—21np
= (1=0)p([b,1) (1_b>2;” b
= p([b,1))" ! as b— 1.

(1= by
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Then it follows that

w([p,1)) = 01 —=0b), asb—1,

and, hence, u is a Carleson measure.

The other implication follows from Theorem[C](ii). ]
Proof of Theorem[3 The equivalence (i) <> (ii) is clear because
e ( = Z t" | du( t"dp
— ult Z ult Z -
[0,1) 0,1 \izo [0,1)

The implication (i) = (iii) is obvious.
(iii) = (i): Suppose (iii). Let f be the constant function f(z) = 1, for all z. Then

(iii) implies that there exists a positive constant C' such that

/ du(t)

Taking z = r € (0,1) in this inequality, we have

<C, zeD.

/ ) o e (0,1).
0.1

Letting r tend to 1, (i) follows.

(iii) = (iv): Suppose (iii). We have seen that then (i) holds, and it is easy to
see that (i) implies that y is a Carleson measure. Using part (ii) of Theorem[A] it
follows that #,, is well defined in H*® and that #H,(f) = 1,(f) for all f in H*>°. Then
(ili) gives that H, is bounded from H* into itself.

(iv) = (iii): Suppose that (iv) is true and, as above, let f be the constant function
f(z) =1, for all z. Then H,(f) € H®. But H,(f)(z) = > .~ pnz" and then it is
clear that

H.(f) e H* & Z,Un<00-

n=0

Thus we have seen that (iv) = (ii). Since (ii) <> (iii), this finishes the proof. O
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2.2 Further results on the action of a generalized

Hilbert matrix on H'!

Let us recall some results concerning the Hilbert operator H and the integral
operator
g

I dt, e D,
f(2) g z

which is defined when the right-hand side converge for all z € D and the resulting
function If is analytic in D.
As we said before, if f € H', f(z) =Y 7, a,z* by Hardy’s inequality [40, p. 48]

we have that

an
<
>y <l

and then H f is a well defined analytic function for every f € H'. By the Fejér-Riesz
inequality [40, Theorem 3. 13, p. 46] we also have that

1
A|ﬂmﬁ§ﬂVMu

and then If is a well defined analytic function for every f € H'. Furthermore,
Hf =1f for every f € H'.

Diamantopoulos and Siskakis [34] proved that #H is a bounded operator from
H? into itself if 1 < p < oo, but this is not true for p = 1. In fact, they proved
that H (H') € H'. Cima [29] has recently proved the following result.

Theorem D.

(i) The operator H maps H' into the space € of Cauchy transforms of measures

on the unit circle 0D.
(1)) H: H' — € is injective.

We recall that if ¢ is a finite complex Borel measure on 0D, the Cauchy trans-
form Co is defined by

[ oA
C’U(z)—/aml_zz, e D.



16 Chapter 2. A generalized Hilbert matrix acting on spaces of analytic functions

We let .# be the space of all finite complex Borel measure on JD. It is a Banach
space with the total variation norm. The space of Cauchy transforms is € = {Co :
o € A}. It is a Banach space with the norm ||Col| of inf{||7|| : C7 = Co}. We
mention [30] as an excellent reference for the main results about Cauchy transforms.
We let A denote the disc algebra, that is, the space of analytic functions in D with
a continuous extension to the closed unit disc, endowed with the || - || ge-norm. It
turns out [30, Chapter4] that A can be identified with the pre-dual of € via the
pairing ,

(g,Co) o limi/ 7rg(rew)mal&7 ge A (2.2.1)

0

r—1 27

This is the basic ingredient used by Cima to prove the inclusion H(H') C €.
In [48, Theorem 2. 2] Galanopoulos and Peldez proved the following.

Theorem E. Let p be a positive Borel measure on [0,1). If p is a Carleson
measure then H,(H") C €.

This result is stronger than Theorem|DJ(i).

In view of Theorem [A] and Theorem [E] the following question arises naturally.

Question 1. Suppose that p is a 1-logarithmic 1-Carleson measure on [0,1). What

can we say about the image H,(H') of H' under the action of the operator H, ?

To answer Question [1} let us start noticing that it is easy to see that the space of
Dirichlet type Dy is included in H'. Actually, we have DY, € H? for 0 <p <2
(see [08, Lemma1.4]). The following result of Pavlovié [78, Theorem 3.2] implies
that for a function f € Hol(ID) whose sequence of Taylor coefficients is decreasing
we have that f € D} & f € H'.

Theorem F. Let f € Hol(D), f(z) = > .~ an2", and suppose that the sequence
{a,} is a decreasing sequence of non-negative real numbers. Then f € D} if and

only if Y~ 2 < 00, and we have

o

an
£y = 3 =22

n=0

We shall prove that if p is a 1-logarithmic 1-Carleson measure on [0,1) then
H,(H') is contained in the space Dj. Actually, we have the following stronger

result.
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Theorem 3 ([56]). Let o be a positive Borel measure on [0,1). Then the following

conditions are equivalent.

(i) w is a 1-logarithmic 1-Carleson measure.

(ii) H, is a bounded operator from H' into itself.

(i) H, is a bounded operator from H' into Dy.

(iv) M, is a bounded operator from D} into Dj.

There is a gap between Theorem[E] and Theorem[3] and so it is natural to discuss
the range of H' under the action of H, when u is an a-logarithmic 1-Carleson
measure with 0 < a < 1. We shall prove the following result.

Theorem 4 ([50]). Let p be a positive Borel measure on [0,1). Suppose that
0 <a <1 and that p is an a-logarithmic 1-Carleson measure. Then H, maps
H' into the space D'(log®™') defined as follows:

D'(log®™) = {f € Hol(D / If'(z (log |Z|>a_1 dA(z) < oo} :

All these results can be found in a joint work with Girela [56]. In the same work

we study the action of the operators H, on the Bergman spaces A? and on the

Dirichlet spaces D?.

2.2.1 Proofs

We include the proof of Theorem [E] for the sake of completness.

Proof of Theorem@. We shall argue as in the proof of Theorem@ in [29]. Suppose
that u is a Carleson measure and f € H'. Recall that H,f = I,.f. Hence, we have
to show that I,f defines a bounded linear functional on the disc algebra A with

the duality relation . Take g € A and 0 < r < 1. Using the definition of I,
and Fubini’s theorem, we obtain

o [t Tteman = oL [ oo ( . 0 du(t)) i
_ /{01 70 (271” /QW%CM) d(t)
_ /{Ol)m (2;/' 1%(12) du(t).
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Then using Cauchy’s integral formula it follows that

1 2

g(re?) I,f(re?)d = / f(t)g(r?t) du(t). (2.2.2)

21 Jo [0,1)

Since p is a Carleson measure, we have that fol |f(@®)|du(t) < || f|lzr, and then it
follows that

/[01) [F()g(®)] dp(t) < ||g||Hoo/ [f @) dp(t) S Ngllzes [ f1] - (2.2.3)

[0,1)

Since g € A we have that g(r*t) — g(t), as r — 1, uniformly on [0,1). Then using

(2.2.3) and (2.2.2), we obtain that the limit lim,_,, o f027r g(re®)I,f(re?)dd exists

and that

2
g = ting- [ gt TG dp
defines a continuous linear functional on A. O]

In the proof of Theorem[3| we shall use the following result which can be found
in [54, Proposition 2. 5].

It is worth noticing that for p a positive Borel measure and v defined as

dv(t) = log

du(t
T dnlt),

v being a Carleson measure is equivalent to p being an 1-logarithmic 1-Carleson

measure. Actually, we have the following more general result.

Proposition 1. Let p be a positive Borel measure on [0,1), s > 0, and o > 0. Let
v be the Borel measure on [0,1) defined by

dv(t) — (log 2 )ad,u(t).

1—t
Then, the following two conditions are equivalent.
(a) v is an s-Carleson measure.

(b) p is an a-logarithmic s-Carleson measure.

Proof.
(a)= (b). Assume (a). Then there exists a positive constant C' such that

/[t,l) (log 1 . u)a dp(u) < C(1—1)°, te0,1).
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Using this and the fact that the function u +> logﬁ is increasing in [0,1), we

obtain

2 @ 2 o
(1og ) [ anty < [ (1og )du(U)éC(l—t)s, te o).
L=t/) Jiy (VRN

This shows that p is an a-logarithmic s-Carleson measure.
(b)= (a). Assume (b). Then there exists a positive constant C' such that

(log 3 i t)au([t, 1) <C(l—t)7, 0<t<l. (2.2.4)

For 0 <u <1, set F(u) = p([0,u)) — 1([0,1)) = —p([u,1)). Integrating by parts
and using (2.2.4]), we obtain

o) = [ (152 auta)

%) i) - g (1o 2 ) ()

= (v

+a

o e f e 2
<C(1-ty +Ca/j%du

<(A—t)P, 0<t<l.

Thus, v is an s-Carleson measure. O
Proof of Theorem|3 We already know that (i) and (ii) are equivalent by Theorem[A]

To prove that (i) implies (iii) we shall use some results about the Bloch space.
We recall that a function f € Hol(D) is said to be a Bloch function if

def
I£lls = 1) + sup(l - |21 (2)] < oo

The space of all Bloch functions will be denoted by B. It is a non-separable Banach
space with the norm || - || just defined. A classical source for the theory of Bloch
functions is [6]. The closure of the polynomials in the Bloch norm is the little Bloch

space By which consists of those f € Hol(D) with the property that

tim (1= [2[3)]/(2)] = 0.
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It is well known that (see [6 p. 13])

[f () < (1 lls log (2.2.5)

1— 2]

The basic ingredient to prove that (i) implies (iii) is the fact that the dual (Bp)”
of the little Bloch space can be identified with the Bergman space A! via the integral

pairing

h f) = /Dh(z)f(z) dA(z), heBo, fe AL (2.2.6)

(See [111, Theorem 5. 15]).

Let us proceed to prove the implication (i)=(iii). Assume that p is a 1-
logarithmic 1-Carleson measure and take f € H'. We have to show that I,f € D}
or, equivalently, that (1, f ) € A'. Since B, is the closure of the polynomials in the

Bloch norm, it suffices to show that

S |Rlsllfl|zr, for any polynomial h. (2.2.7)

| p@ A G aAe)

So, let h be a polynomial. We have

[ TR A = [ 1) / J)%W(ﬂ) JA(2)

_ tf(t)
_ /D h(2) /[O T 0 4AC)

_ T h(z)
_ /[0 T /D e e 1A dn)

Because of the reproducing property of the Bergman kernel [IT1], Proposition 4. 23],
[y A%, dA(z) = h(t). Then it follows that

(1-tz)?
[ e @AY @A) - /[ TR () (2:2.8)
D 0,1
Since p is a 1-logarithmic 1-Carleson measure, the measure v defined by
dv(t) =1 dp(t
(1) = log —— du(?)

is a Carleson measure by Proposition [I} This implies that

[ 1s0hos 12 duo) S 1l
[0,1)
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This and ([2.2.5)) yield
[ [T ) < Wit e
0,1

Using this and (2.2.8), (2.2.7)) follows.
Since D} C H', the implication (iii) = (iv) is trivial.

Now we turn to prove the implication (iv) = (i). Assume that #, is a bounded
operator from D} into D). We argue as in the proof of Theorem . For 1 <b<1
set

1—b?

fb(Z) = m, z e D.

We have f/(z) = 2(11(_1;;;) (z € D). Then, using Lemma 3. 10 of [I11] with ¢ = 0 and

c =1, we see that

Illoy = [ s dA) <1
1 < [ ———dA(z) < 1.
PP p[1 -0z
Since H,, is bounded on Dy, this implies that

L2 1 (fo)llpg - (2.2.9)

We also have,
fb<2) = Zak,bzk, with Arp = (1 — b2)(k' + 1)bk
k=0

Using Hardy’s inequality and the fact that D C H' (or, alternatively, Theorem ,
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(2.2.9), and the definition of the a;’s, we obtain
L2 [[H, (fb)le ~ Z (Zﬂn+kakb>
- (Z Ae,b / " dp )
-
> (1—b?) Z (Z kb / T du(t)>
n:l [b,l)
(Z kbn+2k ))
n=1
= (1= (b, E: (zyﬁﬁ

n=1

> (1—10b%)

Mg
S| e

= (1= 2pa((p1) (tog b) (1 —bW'

Then it follows that

(1)) = o( 1‘?), as b 1.

IOg s

Hence, 1 is a 1-logarithmic 1-Carleson measure. O]

Before embarking into the proof of Theorem[d] we have to introduce some notation
and results. Following [79], for a € R the weighted Bergman space A'(log®)
consists of those f € Hol(D) such that

| F1] a1 1oge def / |f(2) ( T ’> dA(z) < 0.

This is a Banach space with the norm || - || 41(0g2) just defined and the polynomials
are dense in A'(log®). Likewise, we define

D'(log®) = {f € Hol(D) : f' € A'(log™)}.

We define also the Bloch-type space B(log®) as the space of those f € Hol(D)
such that

© 2 2 - /
Il 110N+ supt = ) (o =) 17 <o
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and

(log _22>
Boflog™) = { J € Hol(D) : f'(2) =o | S0 | as Jo] 01
The space B(log®) is a Banach space and By(log®) is the closure of the polynomials
in B(log™).
We remark that the spaces D!(log®), B(log®), and By(log®) were called ‘Blloga,
Bloge, and bjgge in [79]. Pavlovié identified in [79, Theorem 2.4] the dual of the

space By(log”).

Theorem G. Let o € R. Then the dual of By(log®) is A'(log®) wia the pairing

(h,g) = /D h(=) gz dA(2), h € By(log®), g€ A(log®).

Actually, Pavlovi¢ formulated the duality theorem in another way but it is a
simple exercise to show that his formulation is equivalent to this one which is better

suited to our work.

Proof of Theorem. Let p be a positive Borel measure on [0,1) and 0 < a < 1.
Suppose that g is an a-logarithmic 1-Carleson measure. Take f € H!. We have
to show that I,f € D'(log®™") or, equivalently, that (I,f)" € A'(log®"). Bearing
in mind Theorem and the fact that By(log®™') is the closure of the polynomials
in B(log®™"), it suffices to show that

S NPl saoge—1y I f |z, for any polynomial h.  (2.2.10)

/D h(=) (I f) (2) dA(2)

So, let h be a polynomial. Arguing as in the proof of the implication (i) = (iii)

in Theorem[3] we obtain
/D h(z) (LY (2) dA(z) = /[0 T O dutt) (2.2.11)

Now, it is clear that

2 67
B S Wl (1o =)

(log 1 2 t>a du(t).

and then it follows that

/m i TR0 dn(t) S [hllsgegey /[0 )
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Using the fact that the measure (log ﬁ)a du(t) is a Carleson measure (Proposition

this implies that
o

This and (2.2.11]) give (2.2.10)). O]

tf(t) h(t)‘ dp(t) S Al sgoge—l1 f 1l

2.3 A generalized Hilbert matrix acting on con-

formally invariant spaces

We start our study on conformally invariant spaces with BMOA and the Bloch

space. Let us recall that

H*C BMOAC () H" and BMOACB.
0<p<oo
The Bloch space has a very important role among all conformally invariant spaces.
Rubel and Timoney [91] proved that B is the biggest natural conformally invariant
space.
Our first result in this section is devoted to characterize those p for which the
operator [, is well defined in BMOA and in the Bloch space. It turns out that they

coincide.

Theorem 5 ([54]). Let p be a positive Borel measure on [0,1). Then the following

conditions are equivalent:

(1) Jion) log 1% du(t) < oo.
(i) For any given f € B, the integral in converges for all z € D and the

resulting function 1,(f) is analytic in D.

(iii) For any given f € BMOA, the integral in converges for all z € D and
the resulting function 1,(f) is analytic in D.

The next step is characterizing the measures p so that I, is bounded in BMOA
or B and seeing whether or not I, and H,, coincide for such measures. We have the

following results.
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Theorem 6 ([54]). Let v be a positive Borel measure on [0, 1) with
f[o,1) log I%du(t) < 00. Then the following three conditions are equivalent:

(i) The measure p is a 1-logarithmic 1-Carleson measure.
(11) The operator 1, is bounded from B into BMOA.

(iii) The operator I, is bounded from BMOA into itself.

Theorem 7 ([54]). Let pu be a positive Borel measure on [0, 1) with
f[O,l) log %t du(t) < oo. If uis a 1-logarithmic 1-Carleson measure, then H,, is well
defined on the Bloch space and

H,(f) = L.(f), forall feB.

Theorem[6] and Theorem[7] together yield the following.

Theorem 8 ([54]). Let u be a positive Borel measure on [0,1) such that is a 1-
logarithmic 1-Carleson measure. Then the operator H, is bounded from B into
BMOA.

We have also the following result regarding compactness.

Theorem 9 ([54]). Let u be a positive Borel measure on [0,1) with
f[O,l) log % du(t) < oo. If u is a vanishing 1-logarithmic 1-Carleson measure then:

(1) The operator 1, is a compact operator from B into BMOA.

(11) The operator I, is a compact operator from BMOA into itself.

As it was said in the preliminaries, the (), spaces have the following relation with
BMOA, the Bloch space and the Dirichlet space:

DC Qs CQs, T BMOA, 0<s1<s9< 1.

In the limit case s = 1, ()4 is the space BMOA and for s > 1, all the spaces @,
coincide with the Bloch space.

It is well known that the function F(z) = log 125 belong to Qs, for all s > 0, (in
fact, it is proved in [I2] that the univalent functions in all Qs-spaces (0 < s < 00)
are the same). Using this we easily see that Theorem Theorem@ and Theorem

can be improved as follows.
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Theorem 10 ([54]). Let pu be a positive Borel measure on [0,1). Then the following

conditions are equivalent:
(1) Jiony log 1% du(t) < oo.

(i) For any given s € (0,00) and any f € Qs, the integral in converges for
all z € D and the resulting function I,,(f) is analytic in D.

We remark that condition (i1) with s > 1 includes the points (ii) and (iii) of Theo-
reml[3.

Theorem 11 ([54]). Let u be a positive Borel measure on [0,1) with
f[O,l) log &t du(t) < oo. Then the following two conditions are equivalent:

(i) The measure p is a 1-logarithmic 1-Carleson measure.
(ii) For any given s € (0,00), the operator I, is bounded from Qs into BMOA.

We remark that (ii) with s > 1 reduces to condition (ii) of Theorem|t, while (ii)

with s = 1 reduces to condition (iii) of Theorem|6

Theorem [7] and Theorem [I1] together yield the following.

Theorem 12. Let i be a positive Borel measure on [0,1) such that is a 1-logarithmic
1-Carleson measure. Then, for any given s € (0,00), the operator H, is bounded
from Q4 into BMOA.

We remark that for s > 1 the theorem reduces Theorem|8,

At this point it is natural to look for a characterization of those u for which I,
and/or H, is a bounded operator from B into itself or, more generally, from @, into

itself for any s > 0. We have the following result.

Theorem 13 ([55]). Let p be a positive Borel measure on [0,1). Then the following

conditions are equivalent.
(1) The operator 1, is bounded from Qs into itself for some s > 0.
(11) The operator I, is bounded from Qs into itself for all s > 0.

(iii) The operator H, is bounded from Q, into itself for some s > 0.
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(iv) The operator H, is bounded from Qg into itself for all s > 0.

(v) The measure p is a 1-logarithmic 1-Carleson measure.

In fact, we are able to prove a stronger result which does not distinguish between

different @), spaces.

Theorem 14 ([55]). Let pu be a positive Borel measure on [0,1) and let 0 < $1,59 <

o0o. Then following conditions are equivalent.

(i) The operator 1, is well defined in Qs, and, furthermore, it is a bounded oper-

ator from Qs, into Qs,.

(11) The operator H,, is well defined in Qs, and, furthermore, it is a bounded op-

erator from Qs, into Qs,.

(111) The measure p is a 1-logarithmic 1-Carleson measure.

These results cannot be extended to the limit case s = 0. Indeed, the function
F(z) = log £ does not belong to the Dirichlet space D.

Since the Dirichlet space is one among the analytic Besov spaces, D = B2, this
case will be covered in our study of the operator on these spaces.

From now on, if 1 < p < oo we let p’ denote the exponent conjugate to p, that
is, p’ is defined by the relation % + z% =1 1If fe B’ (1l <p < o) then, see [61]

or [110],
1/p'
|f(z)] = o <<1Og ﬁ) ) ,as |z = 1, (2.3.1)

and there exists a positive constant C' > 0 such that

1/p
1f(2)] < CIflls» (log ) , zeD, feBr (2.3.2)

2
1= [7]

Clearly, (]2.3.1[) or (]2.3.2[) implies that the function F(z) = log-2- does not

11—z

belong to B? (1 < p < o0), a fact that we have already mentioned for p = 2. Our

substitutes of Theorem[5] and Theorem[f] for Besov spaces are the following.

Theorem 15 ([54]). Let 1 < p < oo and let pu be a positive Borel measure on [0,1).
We have:
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(i) If f[o N (log ﬁ)l/pl du(t) < oo, then for any given f € BP, the integral in
2.0.1)) converges for all z € D and the resulting function 18 analytic in
2.0.1 for all D and th [ fi L.(f [

D.

(i) If for any given f € BP, the integral in converges for all z € D and the
resulting function 1,(f) is analytic in D, then f[o N (log %)7 du(t) < oo for
all v < }%.

Theorem 16 ([54]). Suppose that 1 < p < oo and let pu be a positive Borel measure
on [0,1).

(1) If pis a 1/p'-logarithmic 1-Carleson measure then the operator I, is bounded
from BP into BMOA.

(11) If p is a vanishing 1/p'-logarithmic 1-Carleson measure then the operator I,
1s compact from BP into BMOA.

These results follow using the growth condition (2.3.2), the fact that if v <
z% then the function f(z) = (log I%Z)W belongs to BP (see [61, Theorem 1]), and
with arguments similar to those used in the proofs of Theorem[5, Theorem[6], and
Theorem[9. We shall omit the details.

Let us work next with the operator H, directly. The first results that we have
obtained are sufficient conditions on y which ensure that H, is well defined on the

Besov spaces.

Theorem 17 ([54]). Let p be a finite positive Borel measure on [0, 1).

/

(i) If1 <p < 2andd ;- % < 00, then the operator H,, is well defined in BP.

(ii) If 2 <p < oo and D -, k’;% < o0, then the operator H,, is well defined in
BP.

Let us turn to study when is the operator H, bounded from B? into itself. Let
us mention that Bao and Wulan [16] considered an operator which is closely related
to the operator #,, acting on the Dirichlet spaces D, (p € R) which are defined as

follows:



2.3. A generalized Hilbert matrix acting on conformally invariant spaces 29

For p € R, the space D, consists of those functions f(z) = > 7 a, 2" analytic
in D for which

o 1/2
def _
I1£llp, = (Z(?Hl)l p\an\2> < oo.

n=0
Let us remark that Dy is the Dirichlet spaces D = B2, while D; = H?2.

Bao and Wulan proved that if p is a positive Borel measure on [0,1) and 0 <
p < 2, then the operator H, is bounded from D, into itself if and only if p is a
Carleson measure. Let us remark that this does not include the case p = 0. In fact,

the following results are proved in [16].

Theorem H.

(i) There exists a positive Borel measure p on [0,1) which is a Carleson measure

but such that H,(B?*) ¢ B*.

(11) Let p be a positive Borel measure on [0,1) such that the operator H, is a

bounded operator from B? into itself. Then p is a Carleson measure.

We can improve these results and, even more, we shall obtain extensions of these
improvements to all B spaces (1 < p < 00). More precisely we are going to prove

the following results.

Theorem 18 ([54]). Suppose that 1 < p < 0o and 0 < 8 < 117. Then there exists a
positive Borel measure p on [0,1) which is a B-logarithmic 1-Carleson measure but

such that the operator H, does not apply BP into itself.

Next we prove that p being a S-logarithmic 1-Carleson measure for a certain

is a necessary condition for H, being a bounded operator from B? into itself.

Theorem 19 ([55]). Suppose that 1 < p < oo and let p be a positive Borel measure
on [0,1) such that the operator H, is bounded from BP into itself. Then p is a

1/p'-logarithmic 1-Carleson measure.

Finally, we obtain a sufficient condition for the boundedness of H,, from B? into
itself.

Theorem 20 ([54]). Suppose that 1 < p < 0o, v > 1, and let p be a positive Borel
measure on [0,1) which is a y-logarithmic 1-Carleson measure. Then the operator

H,, is a bounded operator from BP into itself.
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2.3.1 Preliminary results

In this section we shall collect a number of results which will be needed in our
work.

The following lemma will be needed in the proof of Theorem[7]

Lemma 1. Let p be a positive Borel measure in [0,1). If p is a 1-logarithmic

1-Carleson measure then the sequence of moments {u,} satisfies

1
,un:O< ), as n — oo.
nlogn

Actually, we shall prove the following more general result.

Lemma 2. Suppose that 0 < o < 3, s > 1, and let u be a positive Borel measure

on [0,1) which is a B-logarithmic s-Carleson measure. Then

@ a—p3
/ tF (log 2 ) du(t) = O (M) , ask — oo.
[0’1) 1 - t ks

Lemmal[l] follows taking o =0, § =1, and s = 1 in Lemma[2]

Proof of Lemma|2 Arguing as in the proof of the implication (b) = (a) of Proposi-
tion[l, integrating by parts and using the fact that u is a S-logarithmic s-Carleson

measure, we obtain

ot (o5 23
:k/olﬂ([t, ) <10g 1:)& dt + a/olu([m))tk (1Og 1 2 t)a_l %

1 2 a—f 1 2 a—p-1
gk/ (1 —t)*t"* ( log dt + a/ (1 —t)*"'* ( log dt.
0 1—t 0 1—t

Now, we notice that the weight functions

wi(t) = (1=1)° <10g 1— t)a_ﬁ and  wy(t) = (1 — )" (10g 1 i t)a_ﬁ_l

are regular in the sense of [82] (see [82, p.6] and [4, Example?2]). Then, using

Lemma 1.3 of [82] and the fact that the w;’s are also decreasing, we obtain

' k—1 2 ap ' k—1 2 s
1= (1 dt < 1= (1 dt
[a-oe (e 2) as [ a0 ()
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and

1 2 a—pB-1 1 9 a—F—1
/(1—t)31tk log dt 5/ (1 —1)*1* ( log dt

1
%
(log k)o—P~1
ks '

S

Using these two estimates in (2.3.3)) yields

2 \“ (log k)*=7
tk (log ) du(t) S ————
/[(\)’1) 1 - t ( ) ks

finishing the proof. [l

We shall also use the characterization of the coefficient multipliers from B into
¢! obtained by Anderson and Shields in [7].

Theorem I. A sequence {\,}5°, of complex numbers is a coefficient multiplier from
B into ¢ if and only if

00 2n+1 1/2
>3 ) e
n=1 k=27+41

Bearing in mind Definition 1 of [7], Theorem [I] reduces to the case p = 1 in
Corollary 1 in p. 259 of [7].

We recall that if X is a space of analytic functions in D and Y is a space of
complex sequences, a sequence {\,}>° , C C is said to be a multiplier of X into Y
if whenever f(z) =>">° a,2" € X one has that the sequence {\,a,}7, belongs to
Y. Thus:

By saying that {\,}2°, is a coefficient multiplier from B into ¢! we mean that

It f(z) = Zanz" € B then Z | Anan| < 0.
n=0 n=0

Actually, using the closed graph theorem, we can assert the following:

A complex sequence {\,}°°, is a multiplier from B to ¢! if and only if there
exists a positive constant C' such that whenever f(z) = > >°  a,z" € B, we have
that > 7 o [Anan| < C|f]ls.

In the proof of Theorem[13] we will use as a basic ingredient a characterization

of the functions f(z) = Y a,2z" whose sequence of Taylor coefficients {a,}22, is
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a decreasing sequence of nonnegative numbers which lie in the ()s-spaces. This is
quite simple for s > 1 (recall that Q, = B if s > 1).

Hwang and Lappan proved in [62 Theorem 1] that if {a,} is a decreasing se-
quence of nonnegative numbers then f(z) = >~ a,2" is a Bloch function if and
only if a, = O (%)

Fefferman gave a characterization of the analytic functions having nonnegative
Taylor coefficients which belong to BMOA, proofs of this criterium can be found
in [24, 52 [60, O5]. Characterizations of the analytic functions having nonnegative
Taylor coefficients which belong to @, (0 < s < 1) were obtained in [13, Theorem 1. 2]
and [I0, Theorem 2. 3]. Using the mentioned result in [13, Theorem 1. 2], Xiao proved
in [103], Corollary 3.3. 1, p. 29| the following result.

Theorem J. Let s € (0,00) and let f(z) = o a,z" with {a,} being a decreasing

sequence of nonnegative numbers. Then f € Qg if and only if a, = O (%)

Being based on Theorem 1.2 of [13], Xiao’s proof of this result is complicated.
We shall give next an alternative simpler proof. It will simply use the validity of the
result for the Bloch space and the simple fact that the mean Lipschitz space A? /2
is contained in all the Qs spaces (0 < s < o) (see [10, Remark4, p.427] or [103]
Theorem4. 2. 1.]).

We recall [40, Chapter 5] that a function f € Hol(ID) belongs to the mean Lips-
chitz space A3 s if and only if

1) = 0 (=)

We have the following simple result for the space A7 /-

Lemma 3. If {a,}:°, is a decreasing sequence of nonnegative numbers and f(z) =

Yo ganz" (z € D), then f € Af/Q if and only if a, = O (%) .
Proof. If a,, = O (1), then

1
1—7r’

[ee] oo
MQ(’I“, f/)? _ Zn2’an’2T2n—2 S Zr2n—2 5
n=1 n=1

and, hence, f € A} ,.
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Suppose now that {a, }°, is a decreasing sequence of nonnegative numbers and
fen Jo- Then, for all n

n

= 1
Zkzazrqu < ZkQair%‘2 — My(r, f)? < — (2.3.4)
k=1 k=1
Taking r =1 — < in (2.3.4), we obtain
> Kap S on. (2.3.5)
k=1
Since {a,} is decreasing, using (22.3.5)) we have
aiZkQ S ZkQai Sn
k=1 k=1
and then it follows that a,, = O (%) ) O

Now Theorem[]] follows using the result of Hwang and Lappan for the Bloch
space, Lemma[3], and the fact that

Al CQsC B, foralls. (2.3.6)

Using (2.3.6), it is clear that Theorem[14] follows from the following result.

Theorem 21. Let pu be a positive Borel measure on [0,1) and let X be a Banach
space of analytic functions in D with Afﬂ C X C B. Then the following conditions

are equivalent.

(1) The operator 1, is well defined in X and, furthermore, it is a bounded operator
from X into A3 Ja-

(11) The operator H,, is well defined in X and, furthermore, it is a bounded operator
from X into Af/z.

(111) The measure p is a 1-logarithmic 1-Carleson measure.

(iv) Jig1)t" log du(t) = O (3).
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Proof. According to Proposition (1] ([54, Proposition 2.5]), p is a 1-logarithmic 1-
Carleson measure if and only if the measure v defined by dv(t) = log 7du(t) is a
Carleson measure and, using Proposition 1 of [2§], this is equivalent to (iv). Hence,
we have shown that (iii) < (iv).

Set F(z) = log 1= (z € D). We have that F € X.

(i) = (iv): Suppose (i). Then

1

L = [ B T g

)1—t2

is well defined for all z € D. Taking z = 0, we see that f[O,l) log -5 du(t) < oo. Since
F € X we have also that I,(F) € A} ,, but

[e.9]

log - 1
IFZ—/ = au(t) = </ t"lo dt)z”.
uw(F)(2) o T—tz p(t) = > o BT ()

n=0

Since the sequence { f[O,l) t" log ﬁdu(t)}zo_o is a decreasing sequence of nonnegative
numbers, using Lemmal[3] we see that (iv) holds.

(iv)= (i): Suppose (iv) and take f € X. Since X C B, it is well known that
1f(2)] < log I—LM’ see [0 p.13]. This and (iv) give

/{O RACLZORE <%) | (2.3.7)

Then it follows easily that 1,(f) is well defined and that

L0 =X ([ eroan) =
Now ([2.3.7)) implies that f[o 0 t"f(t)du(t) = O (%) and then it follows that I,(f) €
A2,
/2

The implication (iv) = (ii) follows using Theorem (7| ([54, Theorem 2.3]) and the
already proved equivalences (i) < (iii) < (iv).
It remains to prove that (ii) = (iv). Suppose (ii) then #H,(F) € Af/Q. Now

[e.9]

Hre - 3 (1)
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Notice that the sequence {d - w1 o is a decreasing sequence of nonnegative

numbers. Then, using Lemma and the fact that H,(F) € A /9> we deduce that

i“’;ﬁ*’“ - (%) (2.3.8)

Now

- Hntk . / !
= du(t) = "o du(t).
2] / > du(t) o g (1)

Then (iv) follows using (22.3.8)). O

In order to to prove Theorem (17| we need some results on the Taylor coefficients
of functions in BP. The following result was proved by Holland and Walsh in [61],
Theorem 2.

Theorem K.

(1) Suppose that 1 < p < 2. Then there exists a positive constant C, such that if
f€BPand f(z) =Y yarz" (z €D) then

>k akl” < Cppplf)P-

k=1

(ii) If2 < p < oo then there exists C, > 0 such that if f(z) =Y o ,ar 2" (z €D)
with Y o kP~ ag|P < oo then f € BP and

() < Cy > R HalP.
k=1

If p # 2 the converses to (i) and (ii) are false.

Theorem[K] is the analogue for Besov spaces of results of Hardy and Littlewood
for Hardy spaces (Theorem 6.2 and Theorem 6.3 of [40]).

In spite of the fact that the converse to (ii) is not true, the membership of f in
BP (p > 2) implies some summability conditions on the Taylor coefficients {ay} of
f. Indeed, Pavlovi¢ has proved the following result in [80, Theorem 2. 3] (see also
[64, Theorem 8.4.1(iv)]).
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Theorem L. Suppose that 2 < p < oo. Then there exists a positive constant C,
such that if f € BP and f(z) = o, ar 2 (z € D) then

> " klarl? < Cypy(f)P-

k=1

We shall need a number of results on Besov spaces, as well as some lemmas, to
prove Theorem [I§ and Theorem [20] First of all we notice that the Besov spaces can
be characterized in terms of “dyadic blocks”. In order to state this in a precise way
we need to introduce some notation.

For a function f(z) =Y a,2z" analytic in D, define the polynomials A, f as

follows:
20+1_1

Ajf(z) = Z akzka fOI'j > ]-7

k=27

A0f<2) =aqg+ aiz.

Mateljevi¢ and Pavlovié¢ proved in |71, Theorem 2. 1] (see also [78, Theorem C]) the
following result.

Theorem M. Let 1 < p < o0 and o > —1. For a function f analytic in D we
define

Qi(f) = / P = [2)dA(z),  Qa(f) = Y 27" V|A, fb,.
n=0

Then, Q1(f) = Q2(f).

Theorem[M] readily implies the following result.

Corollary 1. Suppose that 1 < p < oo and f is an analytic function in D. Then
feBr & Y 2" IAfE, < .
n=0

Furthermore,

po(F)P =Y 27" E AL f |5
n=0
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Using Corollary[l] we can prove that the converses of (i) and (ii) in Theorem[K]
hold if the sequence of Taylor coefficients {a,} decreases to 0. This is the analogue
for Besov spaces of the result proved in [57] by Hardy and Littlewood for Hardy
spaces (see also [77, 7.5.9], [78] and [112, Chapter XII, Lemma6.6]). Analogous
results for the spaces Db _; (p > 1) and for Bergman spaces A? (p > 1) were proved
in [78, Theorem 3.1] and [26], Proposition 2.4] respectively.

Theorem 22. Suppose that 1 < p < oo and let {a,}°, be a decreasing sequence of
non-negative numbers with {a,} — 0, as n — oco. Let f(z) =Y " a,z" (z € D).
Then

o0
febB’ & an_lafl < o0.

n=1
Furthermore, pp(f)P =< > .07 nP~tak.
Proof. For every n, we have
2n+1
2(ALf) () = Z ka2~
k=27 41

Since the sequence A = {k}7°, is an increasing sequence of non-negative numbers,
using Lemma A of [78] we see that

12 (Anf) e = 21 A f - (2.3.9)

Now, set h(z) = 3.2, 2" (z € D). Since the sequence A = {a,}32, is a decreasing
sequence of non-negative numbers, using the second part of Lemma A of [7§], we see
that

agn | Anhlfe S [Anf e S s [ Anhly. (2.3.10)

Notice that h(z) = = (z € D). Then it is well known that M,(r,h) =< (1 — r)%_l

(recall that 1 < p < o0). Following the notation of [71], this can be written as
h e H <p,oo,1 - %) Then using Theorem 2.1 of [T1] (see also [77, p.120]), we

deduce that ||A, f|5, < 2"P~Y. Using this and (2.3.10)), it follows that
20 Vah, < A S S 277 Vab, (2.3.11)

2
Using Corollary[l] (2-3.9), and (2.3.11), we see that
P = 22 e 1)”ZA Fll = ZQ”HAanHp ~ Zanagn-

n=0
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Now, the fact that {a,} is decreasing implies that Y2 2"ab, < Y > nP laP and,
then it follows that p,(f)? =< >.°7 nP~'ak. O

n=1

Remark 1. If f is an analytic function in D, f(z) = > 7 a,2" (¢ € D), and
1 < p < oo then any of the two conditions f € BF and Y oo n?a,P < oo
implies that {a,} — 0. Consequently, the condition {a,} — 0 can be omitted in
the hypotheses of Theorem[22]

Suppose that § > 0, s > 1, 1 < p < oo, and p is a positive Borel measure
on [0,1) which is a S-logarithmic s-Carleson measure. Using Lemmal2] and The-
orem, it follows that H, is well defined on BP. Also, it is easy to see that
f[O,l) (log ﬁ)l/pl du(t) < oo, a fact that, using Theorem(i), shows that [, is
also well defined in BP. Using then standard arguments it follows that I, and H,
coincide in BP. Let us state this as a lemma.

Lemma 4. Suppose that § > 0, s > 1, 1 < p < o0, and p is a positive Borel
measure on [0,1) which is a B-logarithmic s-Carleson measure. Then the operators
H, and I, are well defined in B* and H,(f) = 1.(f), for all f € BP.

The following lemma will be used to prove Theorem[20] It is an adaptation of
[45, Lemma 7] to our setting. The proof is very similar to that of the latter but we

include it for the sake of completeness.

Lemma 5. Let p, v, and p be as in Theorem|20. Then, there exists a constant
C = C(p,7, 1) >0 such that if f € B?, g(2) = > pey ek € Hol(D), and we set

v =S ([ s au)

k=0 0
then

1
H&MWSC(/F““WMM@)mmmun23

0
Proof. For each n =1,2,..., define

1
T, (s) = / 2 () d(t), s > 0.
0
Clearly, 1), is a C*°(0, oo)-function and

(2.3.12)

N | —

HMMSARH“WMW@,SZ
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Furthermore, since supy,; (log %)2 22 = C(2) < oo, we have

|ﬂmnsélo%$ﬂt”1t%ﬂy“vwwmw

<02 /0 22 f () du(t) < C(2) /0 2 () dult), s >3
(2.3.13)

Then, using (2.3.12)) and (2.3.13)), for each n = 1,2,..., we can take a function
®,, € C=(R) with supp(®,) € (2,4), and such that

D,(s) ="T,(s), se[l,2],

and )
Ag, = max |P,(s)| + max |D](s)] < C/ 2 ()| dp(t).
seR seR 0
Following the notation used in [45] p.236], we can then write

ontl_1

1
Ayh(z) = Z Ck (/ R E (1) d,u(t)) ok
k=2n 0
antl_1 L
= Z P <2—n) 2K =TWaer % Apg(2).
k=27

So by using part (iii) of Theorem B of [45], we have
1Al = [[War * Angllmr < CpAs, |Ang] o

gc(/ﬁf“ﬂﬂmmmﬂuAmmp

0

[l
2.3.2 Proofs
Proof of Theorem [3
(i)= (ii). It is well known that there exists a positive constant C' such that
2
1f(2)] < C|flls log———, (z€D), forevery f € B, (2.3.14)

1— 12|’
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(see [0, p.13]). Assume (i) and set A = f[o D log % du(t). Using (2.3.14) we see
that

/ F@Oldu(t) < ClIf s / log —— dy(t) = AC|flls, feB. (23.15)
0,1) o1y 1—t

This implies that

AC
/[01) |1|f—(t2,|,5| du(t) < 1_|—|“Q||B (zeD), feB. (2.3.16)

Using (2.3.15)), (2.3.16]), and Fubini’s theorem we see that if f € B then:

e For every n € N, the integral f[o yt" f(t)du(t) converges absolutely and

sup < 0.

n>0

/[0 O an)

e The integral f[o y % du(t) converges absolutely, and

/[0,1) 1f—(t2z anlt) = ni; (/[071) t"f(t) dﬂ(t)) 2 zeD.

Thus, if f € B then I,(f) is a well defined analytic function in I and

o0

L =Y ([ o). e

n=0

The implication (ii) = (iii) is clear because BMOA C B.

(iii) = (i). Suppose (iii). Since the function F(z) = log 12> belongs to BMOA,
1,,(F)(z) is well defined for every z € D. In particular

LFYO) = [ 107 du)

is a complex number. Since p is a positive measure and log % >0 forall t € [0, 1),
(i) follows. O

Proof of Theorem @ Since f[o N log li_tdu(t) < 00, (2.3.14) implies that

/ |f(t)| du(t) < oo, forall feB
[0,1)
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and this implies that

e

Using this, Fubini’s theorem and Cauchy’s integral representation of H!-functions
[40l Theorem 3. 6], we deduce that whenever f € B and g € H' we have

Qﬁ[u re)g(e?)df = 2 f_—e g(e?)d 2.3.17
[ neeng@ma = [T([ SOV e s

> g(e?)df
:/m,nf Y (/ %) du(t) = 2m | SO0 du(®), 0<r <1

(i)= (ii). Using Proposition [l| we assume that v is a Carleson measure and take

feBand ge H'. Using (2.3.17) and (2.3.14)), we obtain
27
[ nneeg@mas) = | [ ot
0
2
S | flls lg(rt)|log dp

du(t)do < 1 H'.
1—7“6’975 p(t)dd < oo, 0<r<1,feB ge

[0,1)

t) = Iflls /[ ot dv(t)

Since v is a Carleson measure
/[ o) dv0) 5 o < gl
0,1

Here, as usual, g, is the function defined by ¢.(z) = g(rz) (z € D).
Thus, we have proved that

27
/ Iu(f)(?"ﬁ”)g(ew)de' < fllsllgllm, feB, geH

Using Fefferman’s duality Theorem (see [52, Theorem 7. 1]) we deduce that if f € B
then 1,(f) € BMOA and

11.(H)llBreoa < [Iflls-
The implication (ii) = (iii) is trivial because BMOA C B.

(iii) = (i). Assume (iii). Then there exists a positive constant A such that
”Iu(f)”BMOA < AHf”BMOA, for all f € BMOA. Set

2

F(z) =logT—,

z € D.




42 Chapter 2. A generalized Hilbert matrix acting on spaces of analytic functions

It is well known that F* € BMOA. Then I,(F) € BMOA and

”IN<F)”BMOA < A“FHBMOA-

Then using again Fefferman’s duality theorem we obtain that

2 .
[ B e emat] < ol g 1
0

Using ([2.3.17)) and the definition of F', this implies

_ 2
[t tog mwﬂsmmugeﬂ% (2.3.18)
0,1)] L=t

Take g € H'. Using Proposition 2 of [28] we know that there exists a function
G € H' with |G||gr = ||g|lz and such that

lg(s)] < G(s), forall se]|0,1).

Using these properties and (2.3.18)) for G, we obtain

2 2
/ lg(rt)] log —— dpu(t) < | G(rt)log —— du(t)
< C|G I < CIGlan = Clgllan

for a certain constant C' > 0, independent of ¢g. Letting r tend to 1, it follows that

2
/|wm% au(t) < lglws, g€ H

This is equivalent to saying that v is a Carleson measure so, by Proposition [1} u is

a l-logarithmic 1-Carleson measure. O

Proof of Theorem [7. Suppose that p is a 1-logarithmic 1-Carleson measure. Then,
using Lemma [T, we see that there exists C' > 0 such that

n>2. (2.3.19)

’Hn‘ S )
nlogn

It is clear that

k?log® k > 2*"n?(log2)?, if 2" +1 <k <2"™ forall n.
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Then it follows that

[e's) gntl 1/2 00 1/2 [e's)
1 2™ 1
E E —_— < g < > = E — < 00.
2 ~ 292n n/2
n=1 (k:Z"Jrl kZ lOg k) n=1 n=2 n2 /

n=1
Using this, (2.3.19) and Theorem , we obtain:

The sequence of moments {1, }°°, is a multiplier from B to £'. (2.3.20)

Take now f € B, f(z) = > —,a,2" (z € D). Using the simple fact that the
sequence {u, 152, is a decreasing sequence of positive numbers and ([2.3.20)), we see
that there exists C' > 0 such that

k=0 k=0

This implies that H,(f)(z) is well defined for all z € D and that, in fact, H,(f)
is an analytic function in . Furthermore, since (2.3.21]) also implies that we can

interchange the order of summation in the expression defining H,(f)(z), we have

Hu(f)(z) = Z ( Mn+kak> 2t = Zak (Z Mn+k2n>
n=0 k=0 k=0 n=0
— Zak (Z/ ki n du(t)) = Z/ du(t)
= \no /o) = Joy L — 12

- [ L% = e, cem
O

Before embarking into the proof of Theorem[J]it is convenient to recall some facts
about Carleson measures and to fix some notation.

If 1 is a Carleson measure on DD, we define the Carleson-norm of u, denoted

N (u), as

S(1
N(p) = sup p(SU)
et M

We let also £(p) denote the norm of the inclusion operator i : H' — L'(du). Tt

turns out that these quantities are equivalent: There exist two positive constants

Ay, Ay such that

AN () < E(n) < AN (), for every Carleson measure p on D.
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For a Carleson measure 4 on D and 0 < r < 1, we let u, be the measure on D

defined by
dpr(2) = Xgr<jz)<13dp(2).

We have that p is a vanishing Carleson measure if and only if

N(p,) =0, asr—1.

Proof of Theorem[9 Since BMOA is continuously contained in the Bloch space, it
suffices to prove (i).

Suppose that p is a vanishing 1-logarithmic 1-Carleson measure. By Proposition
[l v is a vanishing Carleson measure. Let {f,,}>°, be a sequence of Bloch functions
with sup,,>, || fxlls < 0o and such that {f,} — 0, uniformly on compact subsets of
D. We have to prove that I,,(f,) — 0in BMOA.

The condition sup,,-, || fn||s < oo implies that there exists a positive constant A/
such that

|fn(2)| < Mlog 1—L]2\’ zeD, n>1. (2.3.22)

Recall that for 0 < r < 1, v, is the measure defined by

dvy(t) = X{r<t<1y dv(t).

Since v is a vanishing Carleson measure, we have that N (v,) — 0, as r — 1, or,

equivalently,
E(v,) — 0, ast — 1. (2.3.23)

Take g € H' and r € [0,1). Using (2.3.22)) we have

/ mwmmwwzf mwmmm@+/ Fu®)llg(®)] du(t)
[0,1) [0,r) [r,1)

o) du(t)

< [ inlowiaut + 01 [ o
:Agmmwwwwwf 19(6)| du, (1)

[0,1)

S/ [fa@llg(@)] du(t) + MEwy)lgllar-
[0.7)

Using ([2.3.23)) and the fact that {f,} — 0, uniformly on compact subsets of D, it
follows that
lim |£a(®)]lg(t)| du(t) = 0, forallge H'.
)

n—oo [0’1
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Bearing in mind ([2.3.17]), this yields

2w
/ L(fn)(re®)g(e) dQD =0, forallge H'.
0

lim ( lim
n—oo \ r—1

By the duality relation (H')" = BMOA, this is equivalent to saying that I,,(f,) —
0in BMOA. [

Proof of Theorem[1]). Tt is clear that Theorem[21] actually implies the result. m
Let us to prove the theorems about Besov spaces.

Proof of Theorem. Suppose that 1 < p < co and f € B, f(z) = Y ;o arz"

(z € D). Since the sequence of moments {p,}>°, is clearly decreasing we have

D lpnkllar] < luxllaxl,  for all n > 0.

Consequently, we have:

(i) f1 < p<2and f € B, f(z) = > ,axz" (z €D), then
Z|Mn+kak| < Z|Hk”ak| = Zk1“|ak|k1/pu n > 0.
k=1 k=1 o=

Then using Holder inequality and Theorem(i), we obtain
o.9] o0 1/p [e'e) | |p/ ]-/pl
S sl < (z kp—wam) (z “T)
k=1 k=1 k=1
N A
k
L > 0.
n(EBE) e

/
P

Then it is clear that the condition > .7, u ’,“J

series appearing in the definition of H,(f) defines an analytic function in D.

< oo implies that the power

(ii) f2 < p < oo and f € BP, f(z) = Y oo, ax2” (z € D), then

kZ|/~bn+kak| Z|Nk|’ak| = Zk |ak|k1/p n > 0.
=1
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Then using Holder inequality and Theorem([[] we obtain
S S |1ax]”
TSN (zw) (Z b
=1

||
(Z k' /p , nz0.

/

Then we see that the condition Y-, |:1§|/I;

appearing in the definition of H,(f) defines an analytic function in D.

< oo implies that the power series

Proof of Theorem[18 Let p be the Borel measure on [0,1) defined by

2 -8
du(t) = (log - t) dt.

Since the function x (log %)_ﬁ is decreasing in [0, 1), we have

([t 1)) = /t1 (loglix)ﬁ o < (1—1) <loglit)6, 0<t<l.

Hence, p is a S-logarithmic 1-Carleson measure. Then, taking o = 0 in Lemma[2]

1
= (g )
On the other hand,

-1 2\ 1 % 1
> 1 dt > thdar > —— .
k= / <0g 1 —t) ~ <logk>ﬁ/o ~ k(logk)?

Thus, we have seen that p is a S-logarithmic 1-Carleson measure which satisfies

we see that

1

n <X —————. 2.3.24
a n(logn)s ( )
Take p € (1,00) and o > % and set
1
an, = n=2012 ...,

(n+1) (log(n +2))*’



2.3. A generalized Hilbert matrix acting on conformally invariant spaces 47

and

g(z) = Zan 2", zeD.
n=0

Notice that {a,} | 0 and that >_°>°  nP~!la,[’ < oco. Hence, by Theorem , g € BP.

We are going to prove that #,(g) ¢ BP. This implies that #,(B?) ¢ BP,
proving the theorem.

We have H,,(g)(2) = > 2o O req Hn+kar) 2™. Notice that ay > 0 for all k and
that the sequence of moments {u,} is a decreasing sequence of non-negative num-
bers. Then it follows that the sequence {7~ ftnrrar }ory of the Taylor coefficients
of H,(g) is decreasing. Consequently, using again Theorem , we have that

oo 0 p
H.(g9) € BY & Zn”_l Zﬂn+kak < o0. (2.3.25)
n=1 k=0
Usmg the definition of the sequence {ak} and the simple inequalities +1<; >
— and log(n + k) < (logn)(log k) which hold whenever k,n > 10, say, we obtain
0o 0o p 00 00 p
Z npil Z Hn+ kO > Z npil Z Hnt kG
n=1 = n=10 k=10

1 1 g
(n+ k) (log(n + k))? k (log k)“] )

23w (f:

n=10 k=10
o P
1
> —— | = 0.
Z logn n(log n)r? (,;m k? (log k)*+’ )
Bearing in mind ([2.3.25)), this implies that H,(g) ¢ B? as desired. O

Proof of Theorem[19. Suppose that 1 < p < oo and let u be a positive Borel measure
on [0, 1) such that the operator H, is bounded from B? into itself. For % <b<1,

set

1o\ 1
a(z) = (log = b2> log T8 7 e D.

We have,

, 1\ b
gb(z) = <log1_b2) 1—bZ7 ZGD

and then, using Lemma 3. 10 of [I11] with ¢ = p — 2 and ¢ = 0, we have

[a-prerane < (g ) [ g4 <o
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In other words, we have that
g € BP and ||gp||lgr < 1.
Since H,, is a bounded operator from B? into itself, this implies that
12 ([ Hu(gn) |50 (2.3.26)

We have

i k. with log — S
= A pe w1 a = O -_—.
: kb2 kb g 112 i

Since the ay;’s are positive it follows that the sequence {d"7°  flnrrarptoe, of the

Taylor coeflicients of H,(g) is a decreasing sequence of non-negative real numbers.

Using this, Theorem , and (2.3.26)) we see that

L2 Hu(9)le 2 an ! (Zun+kakb)

1 TS —1 bk n+k '
= (log = 62> an Z? . 1)75 du(t)
n=1 k=1
IR Eal4 +k ’
p— _ n
> (logl_b2> Zn Z ’ [bl)t du(t)
n=1 k=1
1 —1 oo . 00 bn+2k p
> (1og1_62) S (S0 wy
n=1 k=1
1 —1 oo ) 00 ka p
— (log 1 —b2> an* b Z? w([b,1))"
n=1 k=1
1\ 1
= (1 b,1))"
(e 2) g (1)
1\
= (1 b,1))"
(ogl_bQ (1_b)pu([7 )
Then it follows that p ([b,1)) < —2=2—+. This finishes the proof. O

(log 55) 7

Proof of Theorem. By the closed graph theorem it suffices to show that H,(B?) C
BP.
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Take f € BP. Since p is a y-logarithmic 1-Carleson measure, using Lemmald] we
see that

o0

) = 40 = X ([ eswau) sep

n=0

Also, using Corollary[I] we see that

Hu(f) € B” < Y 270 V)AL (H,(f)) [ < oo, (2.3.27)

n=1

Now, we have

Using Lemmalp| we obtain that

1A (Ho(F)) 0 < ( /[ ) du(t)) N2

(1-r)*"F

and then it follows that |A,F||gr = O (2"(2*%)> (see, e.g., [T1]). Using this and

with F(z) = > 12, (k+ 1)zF (2 € D). Now, we have that M,(r, F) = O ( L 1)

the estimate |f(¢)] < (log ﬁ)l/p/, we obtain

L ) 1/p’
1A (K (1)) Nl < 279 / 2741 (log — du(t) ),

which using the fact that u is a y-logarithmic 1-Carleson measure and Lemmalf2]

implies
2 T

1A, (Hu(F)) e < 278270y ™ = 2/ =7,

~Y

This, together with the fact that v > 1, implies that
S 2 (1)) [ D 2Dl et
n=1 n=1
= an(l_”_l < 0.
n=1

Bearing in mind ({2.3.27)), this shows that 7,(f) € BP and finishes the proof. [
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2.4 A generalized Hilbert matrix acting on mean

Lipschitz spaces

The mean Lipschitz space A7 /2 showed up in Theorem [21| of Section H This
section will be devoted to study the operator H,, acting on general mean Lipschitz
spaces. Let us present the definition of these spaces.

If f € Hol(D) has a non-tangential limit f(e?) at almost every e € 9D and
0 > 0, we define

T, . 1/p
wp(8, 1) = sup (— 1o - senp de) if1<p<oo,

o<ltj<s \27 J_»

0<|t|<é \ O€[—m,m]

Woo (0, f) = sup (ess.suplf(e“‘”t)) —f(ew)\)-

Then wy(-, f) is the integral modulus of continuity of order p of the boundary values
f(e?) of f.

Given 1 <p < oo and 0 < a < 1, the mean Lipschitz space AP consists of those
functions f € Hol(D) having a non-tangential limit almost everywhere for which
wy(0, f) = O(6%), as § — 0. If p = oo we write A, instead of AZ°. This is the usual
Lipschitz space of order a.

A classical result of Hardy and Littlewood [58] (see also [40, Chapter 5]) asserts
that for 1 <p < oo and 0 < a < 1, we have that A? C H? and

AP = {f € Hol(D) : My(r, ') = O (ﬁ) } |

It is known that if 1 < p < oo and a > % then each f € A? is bounded and has a
continuous extension to the closed unit disc [25, p.88]. This is not true for o = %,
because the function f(z) = log(1l — z) belongs to A’l’/p for all p € (1,00). By a
theorem of Hardy and Littlewood [40, Theorem 5.9] and of [25, Theorem 2.5] we

have
AP

q
1/pCA

1/qCBMOA 1<p<q<oo.

The inclusion Azl’/p C BMOA, 1 < p < oo was proved to be sharp in a very strong
sense in [20], (50} [51] using the following generalization of the spaces AP which occurs

frequently in the literature.
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Let w : [0,7] — [0,00) be a continuous and increasing function with w(0) = 0
and w(t) > 0 if t > 0. Then, for 1 < p < oo, the mean Lipschitz space A(p,w)

consists of those functions f € H? such that
wp(d, f) = O(w()), asd — 0.

With this notation we have A2 = A(p, §%).

The question of finding conditions on w so that it is possible to obtain results
on the spaces A(p,w) analogous to those proved by Hardy and Littlewood for the
spaces AP has been studied by several authors (see [22] 23, 25]). We shall say that
w satisfies the Dini condition or that w is a Dini-weight if there exists a positive
constant C' such that

é
/ %t)dtgau(d), 0<d<l
0

We shall say that w satisfies the condition b; or that w € b; if there exists a positive
constant C' such that

/@dtgcﬂ, 0<d<l.
s 12 0

In order to simplify our notation, let AW denote the family of all functions

w: [0, 7] — [0, 00) which satisfy the following conditions:
(i) w is continuous and increasing in [0, 7].
(i) w(0) =0 and w(t) > 0if ¢ > 0.
(ili) w is a Dini-weight.
(iv) w satisfies the condition b.

The elements of AW will be called admissible weights. Characterizations and
examples of admissible weights can be found in [22] 23].

Blasco and de Souza extended the above mentioned result of Hardy and Little-
wood showing in [22, Theorem 2.1] that if w € AW then,

Alp,w) = {f analytic in D : M,(r, f') = O (w(l%_:)) ,as r — 1} .
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In [20, 5T B0] it is proved that if 1 < p < oo and w is an admissible weight such

that
w(d)

SL/p
then there exists a function f € A(p,w) which is a not a normal function (see [0]

— 00, as 0 — 0,

for the definition). Since any Bloch function is normal, if follows that for such
admissible weights w one has that A(p,w) Z B.

Theorem [21] of the above section gives a result for a Banach space X satisfying
that A? p C X C B. This result can be improved changing A2 /o by A} Ip for any
p > 1.

Theorem 23 ([72]). Suppose that 1 < p < co. Let ji be a positive Borel measure on
[0,1) and let X be a Banach space of analytic functions in D with Af/p Cc X cB

Then the following conditions are equivalent.

(1) The operator H,, is well defined in X and, furthermore, it is a bounded operator
from X into the Bloch space B.

(ii) The operator H,, is well defined in X and, furthermore, it is a bounded operator

: p
from X into A] Ip-

(111) The measure p is a 1-logarithmic 1-Carleson measure.
(iv) [0 t" 1og du(t) = O (3).
As an immediate consequence of Theorem[23] we obtain the following result.

Corollary 2. Let i be a positive Borel measure on [0,1) and 1 < p < co. Then the
operator H,, is well defined in All’/p and, furthermore, it is a bounded operator from

Azlj/p into itself if and only if p is a 1-logarithmic 1-Carleson measure.

Let us turn our attention now to the spaces A(p,w) with ;’ffg oo, as 0 N\ 0

which, as noted before, are not included in the Bloch space. We have the following

result which shows that the situation is different from the one covered in Theorem[23l

Theorem 24 ([72]). Let 1 < p < oo, w € AW with 3;1(2 /0 oo when 0 N\ 0. The

following conditions are equivalent:

(i) The operator H, is well defined in A(p,w) and, furthermore, it is a bounded
operator from A(p,w) into itself.

(i) The measure p is a Carleson measure.
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2.4.1 Preliminary results

In this section we shall present some results that we will use in the proofs of the
above theorems.

A key ingredient in the proof of Theorem[2]] is the fact that for any space X
with A%/Q C X C B the functions f € X of the form f(z) = > a,z" whose
sequence of Taylor coefficients {a, } is a decreasing sequence of non-negative numbers
are the same. Indeed, for such a function f and such a space X we have that
feX & a,=0 (%) . This result remains true if we substitute A? /9 by A’ Ip for
any p > 1. That is, the following result holds:

Lemma 6. Suppose that 1 < p < oo and let f € Hol(D) be of the form f(z) =
> g anz™ with {a, 22, being a decreasing sequence of nonnegative numbers. If X
is a subspace of Hol(D) with A7, C X C B, then

fex < an:O(l).

n

Lemmalf] is a consequence of the following one which gives a characterization for
functions with decreasing coefficients in all A(p,w) spaces with 1 < p < oo and w

being an admissible weight.

Lemma 7. Let 1 <p < oo, we AW and let f(z) = " anz" with {a,};> being

a decreasing sequence of nonnegative numbers. Then

feApw) < apn=0 (w(l/m). (2.4.1)

nlfl/p

The proof of Lemmal[7] is based in the following result of Girela and Gonzélez
[53, Theorem 2]. We recall that for a function f(z) = )", a,2" analytic in D, the

polynomials A, f are defined as follows:

Theorem N. Let 1 < p < oo and let w be an admissible weight. If f € Hol(D)
with f(z) =Y 0" a,2" then

re) = 1oxflm =0 (v (5))-
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Proof of Lemma([7. By Lemma A of [78], since a, \, 0, we have
AN fllar < agn2NAP) N >

So by Theorem [N] we have that
w (1/2)

N ON(-1/p)
This easily implies (2.4.1]). O

We also need the following result to prove Theorem [24]

feANp,w) & an N > 1.

Lemma 8. Suppose that 1 < p < co. Let v be a positive Borel measure on [0,1), and
let w € AW satisfying that v=/Pw(x) 7 oo, as x \, 0. Then following conditions

are equivalent:

(i) vp < 2Dy > 9,

nl=1/p>

(i) v([b,1]) < (1 —b)'"Pw(1 —b), b € [0,1).

Proof. Suppose (i). Then we have that

nl_l/p Up nl_l/p nl_l/p

L2507 e /H tdv(t) = s /[1_1/n,1> £ du(?)
nl_l/p n
S (= 1, 1) (1 - 1)

n

S 1n1) it <1 _ i)m

w(1l/n) m>2 m

So v([1 —1/n,1)) < <L for p > 2.

~ pl-1/p
Let now b € [1/2,1). There exists n > 2 such that 1 — X <b < 1— #1 so using
the above we have that

w(1l/n)

V([b’ 1)) < V([l - 1/71, 1)) 5 nl-1/p"

This, and the facts that w(1/n)n'/? < w(1/(n+1))(n +1)"/? and that the weight w

increases give (ii).
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Suppose now (ii). Then
1
vy — / £ du(t) = n / V[t 1)) dt
[0,1) 0
1
< n/ (1 —t)""YPu(1 —t)t" L dt
0
-1 1
= n/ + / (1 =) Pw(1 — )t tat).
0 1-1

The first integral can be estimated bearing in mind that (1 — ¢)""/Pw(1 —t) /oo
when t 1 as follows

1—1
n / (1= ) og(1 — £y gt
0
-
<0 VP4(1 /n) / (1= ) at
0

—wam (1-3) (G- 2
/)

~ nl-1/p°

To estimate of the second integral we use that (1 —¢)'~%/Pw(1 —¢) \, 0 when t 1

to obtain

1
n/ (1 — )" YPu(1 —t)t" L dt
1

_1
n

1
gnl/”w(l/n)/ t"tdt
1_1

()
w(l/n)

~ pl-1/p’

Then (i) follows. O

2.4.2 Proofs

To prove Theorem we only need to use Lemma [6] and follow the proof of
Theorem Let us prove Theorem [24]
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Proof of Theorem[24. (i) = (ii) Suppose that #, : A(p,w) — A(p,w) is bounded.
By Lemma we have that the function f defined by f(z) => 7, nl(l/f}pz belongs
to the space A(p,w) so, by the hypothesis, H,(f) belongs also to A(p,w). Now

w(1/k)
Hu(f) Z (Z Ll /1/p 'u"“‘?) 2"

Notice that > -, % ok N\ 0, as n 7 0o, so using again Lemma |7|it holds that

w(1/k) n 1/k’ ik g w(l/n)
Z kal 1/p Hn+k = / l Z kl )5 nl_l/p7

that is, the moments of the measure v defined by

satisfy that

so by Lemma[§) we have that v([b, 1)) < (1 — b)'~"YPw(1 —b), b€ [0,1).

According to the definition of the measure

(1— b YPw(1 — b) = v([b, 1)):/ dv(t)

[b,1)

w(l/k)
= [ s
()30 S8
k=1

and the sum can be estimated as follows
w(l/k)  _ [Twl/z) ,
Z k1-1/p b /1 x1-1/p b" dx
k=1
_1
s [Py,
1

xlfl/p

> (1= ) YPw(1 — b)bTs (L - 1)

1-0
w(l—0b)
(1—0b)t/r

Vv
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Finally, putting all together we have that

u(lb 1) S 1

so p is a Carleson measure.
(ii) = (i) To prove this implication we need to use again the integral operator
I,, considered before.
Suppose that u is a Carleson measure supported on [0,1) and let f € A(p,w).
We claim that
£ ()]

/ HOL 406 < . (2.4.2)
[

0,1) 1 —tz]
Indeed, using Lemma 3 of [53] we have that

w(l — [2])

felpw)=If) 3 A=)

zeD. (2.4.3)

Then we obtain

|f(?)] 1
/[0,1) 11— tz] du(t) < =740 Jo | F(8)] dpu(t)

< 1 w(l—1)
~ 1=z Jpay (L =t)l/P

dpu(t).

If we choose 7 € [0,1) we can split the integral in the intervals [0,7) and [r,1). In

the first one, as w is an increasing weight we have

w(l—1t) y du(t)
/[o,r) a—p MO =l /[U,r) (1—t)/r

dp(t)
< w(l) /[071) (1 _ t)l/p

<1

?

because p is a Carleson measure. Using this and the condition j;l(j? oo, as 0 N\ 0

we can estimate the other integral as follows

[r1)
Swl—=r)(1- r)l_l/p
< 1.

Y
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So we have that for f € A(p,w) and z € D, (2.4.2) holds. This implies that I,(f) is
well defined, and, using Fubini’s theorem and standard arguments it follows easily

that H,(f) is also well defined and that, furthermore,

Hu(f)(2) = 1u(f)(2), z€D.

Now we have,

LG = [ G, sep,

so the mean of order p of I,(f)" has the form

M, (r, 1,(f)) = (% /_7; /[0’1) %du(ﬂ ’ d9> Up.

Using again (2.4.3)), the Minkowski inequality and a classical estimation of integrals

we obtain that

W) s [ ol ([ =) " aute

/()]
N /[0’1) mdﬂ(ﬂ

w(l—1t)
S /[071) (1= t)/p(1 — tr)21/p du(t).

At this point we split the integrals on the sets [0,7) and [r,1).
In the first integral we use that 2~ "/Pw(x) oo, as x \, 0, and the fact that if
p is a Carleson measure (so that p,, = f[o,1) t"du(t) < +) to obtain

w(l—1t) w(l—r) du(t)

/M A= pie = e P = T /M (L try2 1/
w(l—r) du(t)

ST /[01) (1 tr)1o

w(l—r) n
S [ ey

[0,1)

w(l—r) =
S (1 — )i/ nz_:l ni/p

w(l—r)
~(l-r)
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In the second integral we use that w is an increasing weight and the fact that the

measure p being a Carleson measure is equivalent to saying that the measure v

defined by du(t) = - W_isal— %—Carleson measure so that the moments v,, of v

(1-t)t/»
1

satisfy v, S ——. Then we obtain
p

n

w(l—t) dv(t)
[ a0 set -0 [

Sw(l—r)

Sw(l—r)

dv(t)

< w(1— A
> w( 7”) /[071) (1 _ t,,,,)Qfl/p

NE

nll/pr”/ t" dv(t)
[0,1)

1

S
Il

T?’l

hE

I
—

n

:w(l—r)
(I—r)

Therefore 1,,(f) € A(p,w) and then the operator I, (and hence the operator #,,) is

bounded from A(p,w) into itself.

O






Chapter 3
Morrey spaces

This chapter is devoted to Morrey spaces, which were introduced by Charles B.
Morrey Jr. [73] in 1938 in connection with partial differential equations, and were
subsequently studied as function classes in harmonic analysis on Euclidean spaces,
extending the notion of functions of bounded mean oscillation. The analytic Morrey
spaces were introduced more recently and they have been studied by several authors,
see for example [68], [102], [106], and [107].

We recall the definition and some of their properties. Observe that

/|f(ei9) —f[fd0 =0  as || -0,
1

for every f € H?, and the rate of this convergence to 0 depends clearly on the
degree of oscillation of f around its average f; on I. Given \ € (0, 1] we can isolate
functions f for which this rate of convergence is comparable to |I]*.

Thus for f € H? and 0 < A < 1 we say that f belongs to the Morrey space £2*

if
def
[ fllzz2 = [FO)] + ([ fll c2x(m) < 00,
where
1 ” 2 \"?
[fllczamy = sup —A/\f(el)—f[\ o) . (3.0.1)
I.ItCT . ’[| I

Clearly, £>! = BMOA. The Morrey spaces increase when the parameter A

decreases, so we have the following relation:
BMOACL* c L CcH?Y 0<)M<)M\<L1L (3.0.2)

61
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It turns out that an equivalent norm is
11_
1fll2r = 1£(0)] + sup(l — )2V f o a — fla)llaz, (3.0.3)
ac
and the following Carleson measure characterization is also valid

2 1 / 2 2
fecr A@supm/sm /()21 = |2]?) dA(2) < oo. (3.0.4)

ICT

See Lemma 2.3 of [66] for both characterizations.
In the same way as it is defined the space VM OA we can consider the space L’g’)‘

as the space of functions in £** such that
1 ; 2
lim —— O — fi]" do =o.
o 1) = il 0 =0

Characterizations similar to and can be obtained for these spaces.

One important thing when we research in complex analysis is to have a good
variety of examples of functions which belong to the spaces we are working with.
Because of that, the next section is devoted to explore the structure of Morrey
spaces, characterizing for some typical classes of analytic functions C those functions
in C which lie in the Morrey spaces, and paying attention to the differences and
similarities with Hardy spaces and BMOA.

The second section will be devoted to the actions of semigroups of composition

operators on these Morrey spaces. Most of our results concerning this topic are
included in [47].

3.1 Structure of Morrey spaces

One of the most important types of analytic functions are the lacunary series.
We say that a power series centered at 0 is a lacunary power series or a power series
with Hadamard gaps if it is of the form

[e.9]

E apz"*

k=0

where {n;}72, is a sequence of non-negative integers for which there exists > 1
such that
Ngy1 > Ing, for all k > 0.
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It is well known (see [52, Theorem 9.3]) that the lacunary power series in BMOA

coincide with those in H?.

Theorem O. Let [ > 1 and let f € Hol(D) which is given by a power series with
Hadamard gaps of the form Y -, apz™ with ngy > Ing for all k > 0. Then, the

following are equivalent.

(i) f € BMOA.
(ii) f € H>.
(1) f} lar]? < oo.
k=0
(iv) f € HP for some p € (0,00).

Since Morrey spaces are between BMOA and H? we have the same character-
ization for them, so we can not distinguish lacunary series in Morrey spaces from
those in BMOA or H.

It is well known that functions in BMOA have logarithmic growth,

2
f € BMOA = |f(z)] ,§log1—H, z e D. (3.1.1)
— |z
This does not remain true for functions in Morrey spaces. Indeed, we have by
Lemma 2 of [67] that the chain of contentions in (3.0.2)) can be improved as follows:

His C L2 CH?, 0<A<lLl (3.1.2)

This easily implies that for ¢ > 0 the function f(z) = (1 — z)~" 2 *¢ belongs to the
Morrey space L3

The substitute of for Morrey spaces is the following result, which can be
found in [66].

Theorem P. Let 0 < A < 1. If f € L** then

1/ 22
f) S ——"=, z¢€D (3.1.3)
(1—lz[)=
Thanks to the fact that Morrey spaces are between two Hardy spaces we observe
that certain random power series in Hardy spaces and Morrey spaces are the same.

We shall consider random power series of the form

[ee]
E Enln 2",
n=0
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where {e,}22, is a choice of signs, that is, {€,}7°, C {—1,1}. By (3.1.2), the
following result ([40, Theorem A.5]) can be extended to all Morrey spaces £** with

0< A<l

Theorem Q. Let f(z) = Y " ena,2" be an analytic function in the disc where

{en}S2, is a choice of signs. Then
(1) If 3 |an]* < oo, then for almost every choice of signs {€,}°%,,
n=0

feH? forall p< .

(11) If > |a,|* = oo then for almost every choice of signs {€,}°,, [ has a radial
n=0

limit almost nowhere and hence f ¢ HP for any p < oc.

Here we notice a difference between Morrey spaces and BMOA. By results in
[6] and [42] we have the following.

Theorem R. Let f(z) = > 7 €na,2" be an analytic function in the disc where

{en}22, is a choice of signs. Then

(i) If Y |an)?logn < oo, then for almost every choice of signs {€,}°%,, [ €
n=0
BMOA.

(ii) Given a sequence of non-negative numbers {c, }5°, which decreases to 0, there

o
exists a sequence of positive numbers {a, }°°, such that > c,a®logn < oo but

n=0
f & B for almost every choice of signs {e,}5>, (Note that BMOA C B).

So there exist random power functions which belong to every Morrey spaces £
with 0 < A < 1 for almost every choice of signs but do not belong to BMOA for
almost any choice of signs.

Coming back to the chain , we have that the first inclusion, H = C

1—X

L£2* 0 < X\ < 1, is proper because, for example, the function f(z) = (1 —2)" "2,
which gives the maximum growth, does not belong to the Hardy space H T (The-
orem 5.9 of [40]) but it is in the Morrey space £>*. We can prove this in some
different ways, maybe the most interesting is by a characterization of functions with

non-negative Taylor coefficients in Morrey spaces.
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Theorem 25. Let 0 < A < 1 and f(z) = > a,2™ a function in Hol(D). Then,
n=0
f € L% if and only if

n

Z(k + 1)ak+1wn_k

k=0

I
up —_
weld n—0 (n + 1)2

We remark that for A = 1, this reduces to the known result for BMOA which
can be found in [52].
If we consider the case where a,, > 0 for every n > 0 then, the above result

reduces to the following:

The function f(z) = Y a,2" belongs to £2* if and only if

n=0

sup Z (a=r (i(k’ + 1)ak+1fr"k) < 0. (3.1.4)

O<r<l k—0

In this case we can give a simpler equivalent characterization.

Theorem 26. Let 0 < A <1 and f(2) = > a,2" a function in Hol(D) with a, > 0
n=0

for every n > 0. Then f € L>* if and only if

2

(k+1)n—1
sup —— /\ Z a; | < oo. (3.1.5)
n21 T j=kn

Let us see now an easy characterization of functions in Morrey spaces with have
non-negative and non-increasing Taylor coefficients.

o0

Theorem 27. Let 0 < A < 1 and f(2) = > a,2" a function in Hol(D) with a, > 0
n=0
for every n > 0 and {a,} non-increasing. Then

A
fel* <a,<n” =

~

Using this characterization we obtain a new proof of the fact that, for 0 < A < 1,
the function f(z) = (1 — z)~"2 belongs to the Morrey space £2*. Indeed, by
Theorem 2.31 of [112] we know that f(z) = > 7 A,z", where A, = w with
a =12 <1 50 by the theorem above we obtain directly that f € £>*.

Theorem [27] gives us also the following result
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Corollary 3. Let 0 < A < 1. We define P as the class of analytic functions in the

disc with non-negative and non-increasing Taylor coefficients,

P = {f(z) = Zanz" € Hol(D) : a,, > 0 and {a,} non-mcreasing} :
n=0

Then
LAnPc () H
P<iZs
We can also find differences between BMOA and Morrey spaces if we regard the
univalent functions. We recall that a function is said univalent if it is analytic and
injective. We denote U as the class of univalent functions in the unit disc. There

exists a geometric characterization for univalent functions in the spaces BMOA and
the Bloch space which can be found in [35] 87].

Theorem S. Let f € U. Then the following conditions are equivalent.
o feEB.

e f € BMOA.

e f(D) does not contain arbitrarily large discs.

The function f(z) = (1—z)~"2" mentioned above, is univalent and belongs to the
space £2*. Tt is clear that f(ID) is a sector of the complex plane in that arbitrarily
large discs are contained, so the class of univalent functions in a Morrey space £2*
with 0 < A < 1 is pretty larger than that of the univalent functions in BMOA or
the Bloch space.

The importance of univalent functions in Morrey spaces lies in the following

result, which gives us a similar contention as in Corollary
Theorem 28. Let 0 < A < 1. Then
crnuc () B
P<iZx
We do not know if the results of Corollary [3| and Theorem [2§8] can be extended

to the whole Morrey space. We leave this question as a conjecture.
Question 2. Let 0 < A < 1. It is true that
crc () B ?

2
P<i=x
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3.1.1 Proofs
Proof of Theorem [25. We know that
Lf = fFO)]1Z2n XSHP — |w]*)'~ A/ [F(2)P(1 = |ow(2)|?) dA(2)
_ 2 A 2 |Z|2
= sup(1 - fuf’) /|f s dAC)

In the proof of Theorem 9.9 of [52], it is obtained by Parseval’s identity that for
weD

)2 |Z’2 _ S 1
/‘f ||1 w2 )”;(nﬂ)(mz)

so considering the weight and taking suprema we have that

n

> (k+ Dagpw™™

k=0

—

I = PO < sup(t = [ [ 17 = dAC)

n

> (k+ Dagaw"™*

k=0

)2 !
= msup(1l — |w|?) g(n+1)(n+2)

weD
2

= sup(1 — |w|?)
weD

Z k -+ 1)ak+1w”’k
k=0

[l
Proof of Theorem |26, We have just to prove that (3.1.4]) and (3.1.5) are equivalent

for a sequence {an} ° o wWith a,, > 0 for all n.

So take such a sequence {a,} of non negative numbers and suppose first that
(3.1.4) holds. Let A be the supremum in (3.1.4]). Bearing in mind that there exist

two absolute constant ¢, c2 > 0 (independent of n) such that

1 J
1-— <
Cl_( n+1> =

if 0 < j < 2n, by Theorem 9.11 of [52] we have that for every n > 1

2

00 (k+1)n—1 1 0o 1 s 1 s—j 2
| <c D (1 ——
S wn] <Yy <;<y+ >( n+1) )

k=0 j=kn
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SO

1
CESEP I IPPRLLY

j=kn

1 <1 L. ICEAY
O(n+1)2/\;(8+1)2 (Z(J“)aﬁ“ (l_n—Jrl) ) = oA

=0
This gives (3.1.5).
Conversely, suppose that a,, > 0, for all n, and that (3.1.5)) is satisfied. It is easy
to see that (3.1.5) implies that there exist positive constants ¢, co, c3 such that

2n
Z a; < cln%, for all n, (3.1.6)
j=n
Z My < CQTL%, for all n, (3.1.7)
m=1

and

00 o+(k+1)N
I D 4] <N, foralla,NeN. (3.1.8)

k=0 \ j=a+kN

Fix r € (0,1). Let N be the positive integer satisfying

1
P
NS TSN

(then N > 2). Then

© (1 — 222 [ ; 2
SO (S

n=0 k=0
C X1 " 1\ )
< 1 1——
S Vo ;% CESIE (;(k+ )Gkt 1 ( N) )
C
< N2 (Ax + Bn),
where
2
00 1 1 n—=k
n=0 0<k<?
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and

By = 2 © i ok > (k+ Dagn (1 - %)H

5<k<n
It is clear that (3.1.4]) will follow from

Ax + By = O(N*™), as N — 0. (3.1.10)

Using (3.1.9) and (3.1.7)) we obtain

2

1 n/2
(k -+ 1)&k+1 (1 — N)

o0 B 1 n B
<C> (n+1)' (1 — N) < CN*, (3.1.11)
n=0

= 1
WO Gy

0<k<2

On the other hand

2
00 1 2n 1 2n—k
By < — 1—— < (CI .1.12
N—Cz(2n+1)2<;k“’“( N) )—CN (3:.1.12)

where

=3 (B (1))

n=0 \k=n

Fix a large positive integer M such that

1
1 MN

1_i 2M N 1
< N> < e forall N (3.1.13)
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Using , and , we obtain
NM [/ 2n 2
Iy < Z (Z ak)
=0 \k=n
oo 2n 2n—MN 1 2n—k 2
S E (-5
n=NM \k=2n—MN k=n
o) 2n 2
<C(NMPP+2 ) < > ak>

n=NM \k=2n—MN
00 2n—M N 1 2n—k 2
ey (Talig)")
n=NM k=n N

MN-1 oo a+MN (k+1)

SCINMP 42 Y > Yo g

a=0 k=0 \ j=a+MNk

1—- 1L
<C(NM)*™ +20(NM)*™ +2 ( N ) Tun

<C(NM)*™ + I, forall N.

1
IM2—A

Then it follows that

Clearly, this implies that

if the sequence {a,} contains only finitely many non zero terms. Then a limit

argument shows that this is true in the general case. Using this, (3.1.12]), (3.1.11]),
we obtain (3.1.10]). This finishes the proof. O]

Proof of Theorem . We suppose that a, < n=s Using the characterization
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obtained in Theorem [26] we have that

1 00 kn4+n—1 2 1 ) kn+n—1 2 1 [e%S) 9
14N 1+ 14+
‘ < BERE DN RO DY
nHZ(Z“J) ~n1—>\Z<Z] 2) SnHZ(”k s 2)
k=0 j=kn k=0 j=kn k=0
1 e n1—>\
T A Z D) <C
k=0
so f € L2

We suppose now that f € £2*, being a,, non-negative and non-increasing. Then

00 kn+n—1 2 2n—1 2 -1\ 2
1-X 2.2
n Z E a; > E Q > | agn—1 E =N Gy, 4
Jj=n

k=0 j=kn j=n

hence

]
The proof of Corollary [3]is a direct consequence of Theorem [27] and Theorem A
of [78].
Proof of Theorem . Let p < 2. If f € U we know by Theorem A of [34] that

1
fEHp<:>/ M? (r, f)dr < occ.
0

Since f € £2*, using (3.1.3) we obtain that

1 1
dr 1
Mfo(r,f)drg/ — = < 00.
/0 0 (1—r)272 128

3.2 Semigroups on Morrey spaces

This section is devoted to the action of semigroups of composition operators on
Morrey spaces. Let us start with the definition of a semigroup and some of its main
elements.

A (one-parameter) semigroup of analytic functions is a continuous homomor-

phism @ : ¢ — §(t) = ¢, from the additive semigroup of nonnegative real numbers
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into the composition semigroup of all analytic functions which map D into D.
In other words, ® = (¢;) consists of analytic functions on D with ¢;(D) C D and

for which the following three conditions hold:
(i) o is the identity in D,
(il) prrs = props, forall t,s >0,
(iii) @1 — o, as t — 0, uniformly on compact subsets of D.
It is well known that condition (éi7) above can be replaced by
(it3") For each z € D, py(2) — 2, as t — 0.
Some basic examples of semigroups are:
(i) The trivial semigroup, ¢:(z) = z, t > 0.
(i) The dilatations of the disc with respect to the origin, ¢;(2) = e 'z, t > 0.
(iii) The rotations of the disc, ¢;(2) = €'z, t > 0.

Each such semigroup gives rise to a semigroup (C;) consisting of composition

operators on Hol(ID),
def

Ci(f) = foww, [ €Hol(D).
There is a good number of works about semigroups of composition operators focused
on the restriction of (C;) to certain linear subspaces of Hol(D). Given a Banach
space X consisting of functions in Hol(D) and a semigroup (¢;), we say that (¢;)
generates a semigroup of operators on X if (C}) is a well-defined strongly continuous
semigroup of bounded operators in X. This exactly means that for every f € X,
we have Cy(f) € X for all ¢ > 0 and

lim [[C(f) = fllx = 0.

t—0t

Thus the crucial step to showing that (y;) generates a semigroup of operators in
X is to pass from the pointwise convergence lim+ fowi(z) = f(z) on D to the
t—0

convergence in the norm of X.
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This connection between composition operators and semigroups opens the pos-
sibility of studying spectral properties, operator ideal properties or dynamical prop-
erties of the semigroup of operators (Cy) in terms of the theory of functions. The
papers [I7] and [85] are considered the starting point in this direction.

Classical choices of X treated in the literature are the Hardy spaces H?, the disc
algebra A, the Bergman spaces AP, the Dirichlet space D and the chain of spaces
@, and Q)¢ which include the spaces BMOA, the Bloch space as well as their little
oh analogues. See [93, [94] [T00] for composition semigroups on these spaces.

Some results of semigroups on these spaces are the following:

(i) Every semigroup of analytic functions generates a semigroup of operators on
the Hardy spaces H? (1 < p < oo) [17], the Bergman spaces A? (1 < p < 00)
[92], the Dirichlet space [93], and on the spaces VMOA and the little Bloch
space By [100].

(ii) No non-trivial semigroup generates a semigroup of operators in the space H>
of bounded analytic functions [5, 19].

(iii) There are plenty of semigroups (but not all) which generate semigroups of
operators in the disc algebra. Indeed, they can be well characterized in several

analytical terms [31].

Recently, it has been discovered ([5], [19] and [I8]) that BAM/OA and the Bloch
space are in the second case, i. e., the only semigroup (p;) such that Cy(X) C X
for all ¢ > 0 and lin}r IC:(f) — fllx = 0 where X = BMOA, B is the trivial one.

t—0

Let us introduce some notation and basic facts about semigroups. All this basic
information can be found in [38, Chapter VII] and [94].

Given a semigroup (¢;) and a Banach space X, we will denote by [¢;, X| the max-
imal closed linear subspace of X such that (y;) generates a semigroup of operators

on it.

Another important tool in the study of semigroups is the infinitesimal generator.
We define it as

G(z) 4 Jim oilz) — 2

Jim , z € D.
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This convergence holds uniformly on compact subsets of D so G € Hol(D). Moreover

G satisfies

G (oi(2)) = a“‘giz) - G(z)a%tiz), €D, t>0.

Further G has a unique representation
G(2) = (bz — 1)(z — b)P(2), z € D,

where b € D and P € Hol(D) with Re P(z) > 0 for all z € D. If G is not identically
null, that is, if (¢;) is not trivial, the couple (b, P) is uniquely determined from (¢;)
and the point b is called the Denjoy-Wolff point of the semigroup. This point plays a
crucial role in the dynamical behavior of the semigroup [32]. The next fundamental
results about the structure of semigroups depending on the Denjoy-Wolff point can
be consulted in [17, Section 3] and [94) Section 3]. Before of that we need to define
some geometric concepts which can be found in [41], Section 2.7] and [86], Section
2.3].

A logarithmic spiral is a curve in the complex plane of the form
w(t) =wee™™, teR,

where wy and ¢ are complex constants with wy # 0 . A domain D containing the
origin is said to be spirallike if there exists ¢ € C such that for each point wy # 0 in
D the arc of the spiral w(t) = wee™ from wy to the origin lies entirely in D.

A domain D containing the origin is said to be close-to-convex if C\ D is the
union of closed halflines such that the corresponding open half-lines are disjoint.

Let us come back to the structure of semigroups. Under normalization, the
Denjoy-Wolff point b € D may be assumed to be 0 (if b € D) or 1 (if b € OD). If
b =0, then

pu(2) = h™H(e™"N(2)),

where h is a univalent function from D onto a spirallike domain €2, h(0) = 0,
Re ¢ >0, and we™ € Q) for each w € Q, ¢t > 0. If b = 1, then

oi(2) = h ™1 (h(2) + ct),

where h is a univalent function from D onto a close-to-convex domain 2, h(0) = 0,
where Re ¢ > 0, and w + ¢t € Q for each w € Q,t > 0.
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Our work here has been to prove that for 0 < A < 1, Morrey spaces £>* are
in the same case that H>*, BMOA and the Bloch space: No non-trivial semigroup
generates a semigroup of operators on them.

First of all we give some results about semigroups on Morrey spaces. The first
one is a result about the existence of the maximal subspace referred before for all
semigroup (¢;). The second one is a characterization of this maximal subspace via

the infinitesimal generator.

Theorem 29. Let 0 < X\ < 1 be and (¢;) a semigroup of analytic functions. Then
there exists a closed subspace Y C L** such that (@) generates a semigroup of oper-

ators on'Y and such that any other subspace of L** with this property is contained
mY.

As we have said above, we note that space Y as [¢;, £2*].

Theorem 30. Let 0 < A < 1 and let (p;) be a semigroup of analytic functions with

nfinitesimal generator G. Then

[on, L2 = {f € L2} : Gf € L2},

The following result ensures that little Morrey spaces are in the same case that
VMOA and the little Bloch space.

Theorem 31. For 0 < X\ < 1, every semigroup (¢;) generates a semigroup of

2,0
operators on Ly".

This in particular means that in our notation,

L2 C @y, L2 € L2, (3.2.1)

for every 0 < A < 1 and every semigroup ().
This chain of inclusions leads us to wonder about those semigroups with an

extreme character, that is, those giving equality

£3’)\ = [901}, £27)\] or [90157 EZ)\] = £2’)\'

We can prove that for dilatations and rotations, the left hand side equality holds.

Theorem 32. Suppose 0 < X\ < 1 and f € L**; then the following are equivalent:
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(i) f ey
(i) lim [[£(e"2) ~ fllzs =0
(i) T || f(e12) = fllgza = 0.

In our notation this theorem can be written as

/jg”\ = [e“z, £2’)‘] = [e_tz, EQ’)‘], for 0 < A < 1.

However, in general the first inclusion in (3.2.1) can be proper. An example of

this type is the semigroup

pi(z)=et2+1—et t>0,2€D.

1—-X

For this semigroup and for 0 < A < 1, the function f(z) = (1—2)~ "2 which belongs

to £2* but not to £, satisfies
1f 000 = flleza = 63 (1 = 2)75" = (1= 2)7 T f|gar = € (7" = 1) —> 0,
thus f € [g&t, [:2’)‘].

We have obtained some necessary and sufficient conditions for equality in the

left hand side of (3.2.1)).

Theorem 33. Let (¢;) be a semigroup with infinitesimal generator G. Let 0 < A <
1. Assume that for some 0 < a < 1/2,

(1 B |Z|)a . 0(1)

= 1.
B as |z| —

Then L3 = [@y, £22].

Clearly, the semigroups ¢;(2) = €'z and ;(z) = e~z of Theorem [32] satisfy this
condition because, in both cases, the infinitesimal generator is G(z) = cz, where
ce C\{0}.

Theorem [33| can be proved as a consequence of a stronger theorem.

Theorem 34. Let (¢;) be a semigroup with infinitesimal generator G. Let 0 < A <

1. Assume that

5 1 1— |z
im —
=0 [1| Jgy |G(2)]?

dA(z) =0

then L2 = [pr, L2,
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2 2a
U))IQ <1so

If G satisfies the hypothesis of Theorem |33| then (1|5
1 1-—
lim — 2

1
dAz<lirn—/ 1— 2D 22 dA(2
BT Jo GRS g [, (T 1ED T dAR)

< lim [I]*72* = 0.

~ 1—0

We have this necessary condition for semigroups with inner Denjoy-Wolff point.

Theorem 35. Let (¢;) be a semigroup with infinitesimal generator G' and Denjoy-
Wolff point b € D. If Lo = [py, £L22], then

e
=1 G(2)

3=
2

= 0.

Finally, we close this chapter with a result about the right hand side inclusion
of . Let us start first with some background about the same problem in the
Bloch space and BMOA. In Theorem 3 of [I§] it is proved that if (¢;) is a non-
trivial semigroup then [p,, B] € B. In fact the result is true for the more general
class of Bloch spaces B*, a > 0, defined by

B = {f € Hol(D) : sztelg(l — 12))?|f'(2)| < oo} .

In this proof it is used strongly that, for all a > 0, B is a Grothendieck space with
the Dunford-Pettis property. This geometric property of a-Bloch spaces is really
hard to check (we do not know whether Morrey spaces satisfy it or not) and it
is false for BMOA. For that, this method does not work for this space and this
question has remained open for BMOA for some years. Recently, in [5] the authors

solved this problem proving the following.

Theorem T. Let X be a Banach space. Suppose H>* C X C B. Then there are no
non-trivial semigroups such that [y, X] = X.

In particular, there are no non-trivial semigroups such that [o;, BMOA] = BMOA.

We have been able to adapt their steps in order to prove the following.

3=X

Theorem 36. Let X be a Banach space. For 0 < \ < 1, suppose L** C X C B2~
and let (¢¢) be a non trivial semigroup of analytic functions. Then [, X]| C X.

In particular there are no non-trivial semigroups such that [¢;, £L2*] = L2
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3.2.1 Proofs

This section is devoted to prove all the results about semigroups on Morrey
spaces.
Proof of Theorem [29 Let 0 < A < 1 be. By Corollary 1 of [106] we have that
Cy : L2 — L£2* are bounded for all ¢t > 0 and

1-X
L+ |90t(0>|)2
o il g < [ N A t>0.
I olens < (T2 7 e
Since sup |¢:(0)| = M < 1 we have that

tel0,1]

1—X
1 0 2 C
sup ||Cyl|zzx < C sup (M) < —— < 0.
t€[0,1] te0,] \ 1 — |:(0)] (1-M)=

Bearing this in mind, we obtain directly the result by Proposition 1 of [I8]. O
Proof of Theorem|[30, As we claimed in the proof of Theorem [29] for every 0 < A < 1

sup ||Cillz2r = M < 0. (3.2.2)

t€[0,1]
Since Morrey spaces trivially contain the constant functions we have directly the
result by Theorem 1 of [I8]. O
Proof of Theorem . Let 0 < A < 1. If (¢) is a semigroup of analytic functions,
then every composition operator C;(f) = f o ¢, is bounded on E(Q)”\ for 0 < A < 1.
This is because each ¢; belongs to the Dirichlet space D (recall that ¢; is univalent)
and therefore also in £5*. Thus the composition semigroup (C;) consists of bounded
operators on Lo,

The only thing we have to prove is that 1im+ IC:(f) — fllz2n = 0 for every
t—0
fe E(Q)’)‘. Bearing in mind |’ we have that for any polynomial P

1C(f) = fllezr < (M +D[[f = Pllgon + [|Co(P) — Pl 2

holds, so, since polynomials are dense in (L2, - ||21), it is enough to prove

lim+ |ICH(Q) — Qg2 = 0 for a polynomial . This is straightforward because
t—0

T Qo ¢~ Qllo =0 and |- e2s S |- 0
Proof of Theorem[3]). Tt suffices to show that

(fel* Gf e} cLi
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Of course, it ﬁ dA(z) is a vanishing Carleson measure then is a Carleson measure
and also a A-vanishing Carleson measure.

For an interval I C T of center e and its Carleson box S(I) we consider the point
zr = (1 —|I|)e®.

We assume that:
o fc L Then sgpﬁfsm 1 (2)P(1 = |2]) dA(z) S 1.
o f'G e L

Let us prove that &i'go ﬁ Jsn 1" (2)P(1 = |2]) dA(z) = 0.

T /S S FERa—Iasc)

B e D
-1 /S G g aac)

1 2) — F( 2 (1—2]) .
|z

BN Ly = B
+ |]|)\ /S(I)‘F( I)| |G(Z)|2 dA( )
_L 2) — F(» o (1 —12]) .
R Jy )~ e gy 240
|

L1 (-
FIEE R /sm GE)P

now using the growth condition of Morrey spaces we have

1 Nl
ST / IO~ e P gy aAe)

IFl2, 1 [ (1 -2
+ . dA(z
T =) I Jo GE A4
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and since 1 — |z7| = ||

B P
=7 . 1P~ Pl gy 44

+||F||E2A|I|/I) . )Z||2) dA(z)

:A[ + B].

Since hm 7] fS(I) ‘é(zl ||2 dA(z) = 0 we have |HT0BI =0

_ 1 2) — F(» 2 (1—12]) .
1= T o 1P = PO g 409
I
ST o

(-2

dA(z).
|G (=)

Let p be the measure defined by du(z) = l((l;zj"g dA(z) in S(I) and the null measure

in D\ S(I). Then

A< I /
D

since p is a vanishing Carleson measure it is also a Carleson measure, so we deduce

F(z) = F(z1)|”

1—22

FC) = Fe)f

1 -7

that
SN (ren [|FE = F(zp)]?
B S S e 1
5(Jp 3 )(1 al#= [ 1F(©) = Plan)P Lt g
n(S(J)) 5
S(Sgp ] )HFHLH
Actually

p(S(7) _ p(S()NSH))

L /]
so we need only consider arcs J with J N T # ().

o If 7] > |1]

W(S())  u(SU)NSD) (S _ p(S(D))
oo S o S o o M=o
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o If |J| < |I|, then J C 3I where 3] is the arc with same center as I an length
31,

So in general

n(S(J)) 1 / 1— 2|
sup ———= < sup — dA(z
PSS s 1Gmp A0

so if [I| — 0 then |J| — 0 too, so

y 1 1—|z|
im sup —
=0 yesr ] sy [G(2)?

dA(z) =0

because
_ 1—|z|
lim —

110 |J] S 1G(2)?

dA(z) = 0.

Thus in any case

p(S(J))

B2 0,
[l

and then it follows that
A 1 — 0.

]
Proof of Theorem [35. Without loss of generality, we may assume that b = 0. The

infinitesimal generator then is
G(z) = —2P(2),

where P is analytic with Re P > 0. If P is constant, the result is clear. Otherwise

consider the function

m(z):/ozﬁdu:—/ozﬁdu.

As in Theorem 3.3 of [19] we deduce that m € BMOA and hence in £%*. As in the

calculations of this theorem we observe that

(mo @) () — m(z) = / 2,(2)ds.

[ eiteias

Hence

[(mo) (2) — m(2)]? = < / (=) ds.
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By the Theorem 3.3 of [19] we obtain
lm o —mllc2x S llm o @r —ml[Baoa < [m(0:(0)) —m(0)] + Ct,

SO PH& |lm o ¢; — m)|g2a = 0. Thus m € [y, £2*] and by the hypothesis m € £37.
ﬁ

The following standard argument for functions in E%’)‘ completes the proof.

For a € D we consider o,, then

(1=1al)* m/(@)]* = (1= [a]?)" [(m o o) (0)
S (=1a)' ™ [ 1mo o) ()P~ 4P dAC)

(by the change of variables w = 0,(z))

— (1 af? “/| (1 Jou(w)]?) dA(w)
= (= o) [P B E D )

1 — quwl|?

and this last integral tends to 0 as |a| — 1 because m € £3*. Tt follows that

(1—|a?) 7 (1—1]a®)T m'(a)
lim = lim

—_— =0.
lal—1 G(a) la]—1 a

Getting into the proof of Theorem [36] we need the following result.

Theorem 37. Given any nontrivial semigroup (y;), and 0 < A < 1 there exists

f € L** such that
lminf | f o @ = f jssx > 1.

Prime ends are a key ingredient in the proof of this theorem, so we will now
review some basic facts about prime ends introduced by Carathéodory in order to
describe the boundary behavior of a univalent function A from D onto a simply
connected domain Q C C U {oo}; see [88, Section 2.4]. A crosscut C of Q is an
open Jordan arc in  such that C'\ C consists of one or two points on 9. Here C
denotes the closure of C' in the Riemann sphere. If C' is a crosscut of €2, then Q\ C
has exactly two components. The diameter of a set £ C C U {co} in the spherical
metric is denoted diam® E.

A null-chain (Cy,)n>o of Q is defined as a sequence of crosscuts of 2 such that
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(i) C,NCpyy =0 for all n > 0.
(ii) C, separates Cy and C,,1; for all n > 0.
(iii) diam™ C, — 0 as n — oco.

Let V,, be the component of 2\ €}, not containing Cy, and define V! similarly for
(C?). The null-chains (C),) and (C7) are called equivalent if, for every sufficiently
large m, there exists n such that V,, C V, and V,, C V,,,. This is an equivalence
relation on the set of all null-chains of 2. The equivalence classes are called the
prime ends of Q. A point a € CU{oo} is called a principal point of the prime end P
if there exists a null-chain (C),) representing P such that C,, — {a} in the spherical

metric as n — oo. The set I(P) = (V,, is non-empty, compact and connected in

CU{oo}. We call I(P) the impressinon of P. If I(P) is a single point we call the
prime end degenerate.

We call a prime end P accessible if there exists a Jordan arc that lies, except
for one endpoint on 02, in € and intersects all but finitely many crosscuts of every
null-chain (C,,) that represents P.

We will also need the following result from univalent function theory which states
that univalent functions have no Koebe arcs. For our purposes, it may be stated as

follows:

Theorem U. [86, Lemma 9.3 and Corollary 9.1] Suppose that h : D — C is
univalent, {n,} is a sequence of Jordan arcs in D, and h(n,) converges to a point
wo € CU {00}, i.e.,

h(z) = wo, 2 € MNp, n— 0.

Then the Fuclidean diameter of n, satisfies diammn,, — 0, as n — oo.

Proof of Theorem . Let (¢¢) be a nontrivial semigroup, and let b be the corre-
sponding Denjoy-Wolff point. After normalization, we may assume that b is either

0 or 1. First we deal with the case that b = 0, so that each ; is given by

pi(2) = ™ (e7h(2)),

where h is a univalent function from D onto a spirallike domain €2, h(0) = 0,
Re ¢ >0, and we™ € Q for each w € Q, t > 0.
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When Re ¢ = 0, the () are rotations of the disc. The function
f(2) = (1 — 2)~(=Y/2 gatisfies f € £>* and

im |1 —r)5 = =250

r—1- 2

However, for 6 # 0
lim |f'(re)|(1 = )2 =0.

r—1-

If @ (2) = ze' for real a # 0, then, for all ¢ between 0 and 27 /]al,

1f o @t = fll 252 2 sup | f'(elr))i(r) = f/(r)](1 - r)e

0<r<1
1—A
- 2
Replacing f with % gives the result.

Next consider the case where Re ¢ > 0, so that (¢;) does not consist of automor-

phisms. Since {2 is spirallike about 0, we can choose wy € 9€) such that
lwo| = inf{|w]| : w € 00}.

Then [0,wp) C Q. For all sufficiently large values of n, let C, be the connected
component of {w € Q : |w — wy| = 1/n} that intersects [0,wp). Then (C,) is a
null-chain that represents an accessible prime end P with principal point wy. As in
Theorem 3.1 of [5], rl_i}?f h(r~o) exists (and is equal to wy), where vy € D corresponds
to P. Thus,

lim @ (ry) = h (e “wy) €D, t > 0.

r—1-
EESY
Since ¢; is univalent and bounded, ¢; is in the Dirichlet spaces, and ¢, € B,* .
Hence
3-)

tim |¢4(r0)|(1 — 1) = 0.
r—1-
Letting f(2) = (1 —752)"~Y/2, we have

3=a 1 —A

lim |f'(ry)|(1—7)2 =—=>0.
r—1— 2

However, f’ is continuous on D, so for fixed ¢t > 0

T | (1(rm0))| = /(b (e wp))| < o0,
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Thus, for all t > 0,

If o= fll json > Timsup |/ ((ry0))h (ry0) = ' (r0) (1 =7) = > 2 (323

r—1- 2

and replacing f with {7 gives the result.

If the DenJoy—Wolff pomt bis 1 then ¢y(2) = h™'(h(z)+ct) where h is a univalent
function from D onto a close-to-convex domain Q, h(0) = 0, Re ¢ > 0, and w+ct € Q
for each w € ,t > 0. If the ¢; are automorphisms, then the map w +— w + ¢t is an
automorphism of Q. It follows that €2 is a half-plane or strip, and 92 in C consists
of impressions of degenerate prime ends which are not fixed under w +— w-+ct, t > 0.
Let wy € C be one such impression, and let vy be the corresponding point in 0D.
Then ¢;(75) € OD but o;(Y) # 7o for all ¢ > 0. Let f(z) = (1 —Fpz)~*"%/2. Then

1=
im [f/(r0)|(1 —7)°2 = —= >0,
r—1— 2

but
lim [f'(ry)|(1—1)"7 =0
r—1-—

for all v € dD, v # 7. The function f satisfies that f’ extends continuously to
D\ {70}. Now fix some ¢ > 0. Since 7 is not a fixed point of ¢;, composition with
¢ moves the radius [0,7y) away to where f is well-behaved. For v, = ¢;(79), we

have that f’ extends to be continuous at 74, so
lim f'(@i(r0)) = f'(n)-

Since ¢y is an automorphism, ¢} is bounded on . For fixed ¢ > 0,

1 00—l oo > imsup | (ei(m0))eh(r0) — f/(ro)l(1 )5 > 22,

r—1— 2

As before, replacing f with - )\ gives the result.

In the non—automorphlsm case, for t > 0 the map given for w € Q by w — w+ct
is not onto. Let t > 0 and w € Q\ (Q+ ct). Then there is t, € (0,¢] such that
wo = w — ctg € I8, but (wp,w] C 2. As in the case b = 0, wy is the principal point of
an accessible prime end, and the same argument terminating with completes
the proof. O
Proof of Theorem |36. Each test function f in Theorem n is in £>*, and hence in
X from the hypothesm that £2* C X. Since X C B’z , the Closed Graph Theorem
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shows that || - ||B¥ < |+ lx and bounding the #52-Bloch norm away from 0 bounds
the X norm as well. Thus it follows from Theorem [37] that f ¢ [, X], and so



Chapter 4
Dirichlet-Morrey spaces

The final chapter is devoted to explore a class of spaces of analytic functions
which shares properties with Dirichlet spaces and Morrey spaces.

We mentioned the Dirichlet spaces D, in Section 2.3} If 0 < p < oo they can be
also defined as the spaces of analytic functions f € Hol(D) for which

113, = £ + / PP — 2P dA(z) < oo

The quantity || - ||p, is a norm. Clearly D; = H? with equivalence of norms, and
Dy is the classical Dirichlet space denoted by D. For p > 1, D, coincides with the
weighted Bergman space A;Q. If 0 < p < q then

DcD,cCD,

and there is a constant C' = C(p, q) such that || f||p, < C|f|p, for each f € D,.

The conformally invariant version of these spaces are the spaces @),

[flle, = [F(O)] + sup 1f o ¢a = f(a)llp,,

We recall that Qg = D, Q1 = BMOA, while for all p > 1, @, coincides with the
Bloch space B.
If 0 <p<1and f €D, the following estimate is valid

Cllfllo,

P a € Dv
(1= lal?)2

If o ¢a — fla)llp, <

87
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with the constant C' depending only on p. In the case of the Hardy space H? = D,
condition (3.0.3)) says that f € £2* for 0 < A < 1 if the stronger growth bound

Cllfll g2
©Pa — a 2 S 1 )

holds. Motivated by this we define the Dirichlet-Morrey spaces as follows.
Let A, p € [0,1]. We say that f € Hol(ID) belongs to the Dirichlet-Morrey space
D) if
P

1/l = 1£(O)] + sup(1 - jal®)2 V| f o pu — f(a)|lp, < oc. (4.0.1)

It is clear D;‘ is a linear space and the above quantity is a norm, under which D?, is
a Banach space. We see that D} = £2* and that for each p, D; = ()p and Dg =D,.
Furthermore we have

QCD,CD,  0<A<L

In the next section we will state some basic properties of Dirichlet-Morrey spaces
and discuss briefly their characterization in terms of boundary values. In Section
[4.2] we will concentrate on the boundedness of integration operators and pointwise
multipliers on these spaces. Most of our results concerning this topic are included
in [40].

4.1 Structure and properties of Dirichlet-Morrey

spaces

The following proposition gives a Carleson measure characterization of D;‘, which

is analogous to (3.0.4) for Morrey spaces.

Proposition 2. Let 0 < p,A < 1 and f € Hol(D). Then the following are equiva-

lent,
(i) feD,.

.. 1 1/2
(i) 1fllae = 5w (e Sl LF/RP(L = [P dA()) T < oo,

I interval

and the norm | f||py is comparable to |f(O)] + || flpx-
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In the next proposition we give a result about the radial growth of functions in

Dirichlet-Morrey spaces and show that this condition is sharp.
Proposition 3. Let 0 < p, A < 1 then,

(i) There is a constant C' = C(p, \) such that any f € DI’,\ satisfies

CllflIpy
|f(2)] < W7 € D. (4.1.1)
(ii) The function f,(z) = (1 — 2)"20=A belongs to D,.

Observe that both parts of the above Proposition are also valid when p = 1 for
0< A<,
We set in the next result a necessary and sufficient condition to a Dirichlet-

Morrey space is contained in another one.
Proposition 4. Let A\j,p1, Ao, p2 € (0,1). Then
D;‘ll - D;‘; < p1 < py and p1(1 — X)) < pa(1 — Ag).

Xiao obtained in [103, Lemma 6.1.1] and [103, Theorem 6.1.1] the following

characterizations of Dirichlet spaces and (), spaces in terms of boundary values.

Lemma A. (i) If f € H* and 0 < p < 1, then f € D, if and only if
flu) = f(v)|?
191 = [ [ R ) <

and furthermore, || f|lp, < |f(0)] + HfHD;;-

(ii) If f € H* and 0 < p < 1, then f € Q, if and only if
_ 2
sup //Mkiuﬂdvl < 00.
1) Ju—vFr

ICT
I interval

We have used the simplified notation u = ¢ € T and |du| = d.
The proofs of these results can be adapted to obtain the following characteriza-

tion of Dirichlet-Morrey spaces.

Theorem 38. Suppose f € H? and let 0 < p,\ < 1. Then f € D; if and only if

> _ ) = f)P
I/l = sup mm/}/} o |dul |dv| < oc. (4.1.2)

|27
I interval
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4.1.1 Preliminary results

In this section we shall collect a number of results which will be needed in the
proof of Theorem

As in [I03, Theorem 6.1.1] by the change of variables, z = ¢, (u), v € D | we
easily establish that

o [ [ = )P o
I o eully, =y [ [ LR (PP duljdel, (@13
where - |2
— |a
QWPG(U):W

is the Poisson kernel.

We recall also the boundary characterization of functions in Morrey spaces, given
in (3.0.1)), for f € H> and 0 < A < 1, f € £>?* if and only if

1
1£1Z27my = sup —A/If(U)—fz|2|dUI<00,
et M ;

I interval

where f7 is the average of the function f over the arc I C T, that is

1
fi= / £(v)do].

For any arc I C T we use the Cauchy-Schwarz inequality to obtain the following

()~ if? < (m / ()~ () |dv|)2
<7 [l = 5 av),

Doing some calculations we prove also that

B 2
i [ [ = s laullao) - m i [ 1= i+ = 1)
i / 7(u) — Ff? |dulld

4 / F(u) = f1f? |dul.

So we have that
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HfHLm (1 = su%? W//\f f()|? |dul |dv| < . (4.1.4)

I interval

In the next lemma we compare the quantities defined in ) and -
Notice that it holds for some values of p bigger than 1.

Lemma 9. If0 <A <1 and 0 < p < % then for f € L*(T),

[fllcza-ra-x¢ry S I flipy..-

Proof. First, we prove the case p < 2. Let I be an arc of T. Using that
lu — o> P <|I*? foruvel

we get the following

e [, 1100 = F@)F ]
e <>|2 .
=g el

L 1) = fw)P
S W Rl

and then || f[[ z2.1-pa-x () < ||f||D/\*.
Assume now that p > 2. Observe that, for any interval I C T,

T / J 1) = £ lduljdo

— % |du) |d
S/ / o ) = £ ]

711\*7" // |f(u) — f(v)[?
VAR Z TN qul |d
NIIIQ ”“’AZ( u—vl<2i—kjr [ = 0[PP i e
S Z?’““’*W 1Y e
~ [|p,\ 9k—1 Dy*

NZ 2k(1 —p(1=-X)) ”fHD“

<||f||Dm
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Finally, we will need the following technical result.

Lemma 10. Let I and J be two intervals of T such that I C J and vy € (0,1). If
f € L*(T) then

|J|'Y+1

2
— <
|fr—=fiI” < 1]

111z xy

Proof. Using the Cauchy-Schwarz inequality and the characterization in (3.0.1]) we
obtain

1 f1|_,[| [ 1) = sl

1/2
< ( [ 17— nf \du\) ]2

|J|(+D/2 1/2
= <|J|v/‘f /il 'd“‘)

|J|Or+D/2
< THfHE?W(T)-

4.1.2 Proofs

Proof of Proposition @ Assume f € D;)\. For an interval I C T let ¢ be the midpoint
of I and let @ = a; = (1 — |I])¢. Note that

1—az| < |I|=1—|a| x1—1af’, 2z€S(),
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thus
1 / 201 _ 2\p A
1 L, PP Ry asc)

1 , 1 — |af2)2
= i [ PR = PP e dace

- | 7|P(1=2X) "(N?(1 — 2)|2)P Py
<11 / FEPA = a2 dA(2)
— PP [ PR e dAC)

— (1 Japypi> / (o a) (2) 21 — 227 dA(2)
= (1= PPV f o 0 — F@)IB,

< [17113.

This is valid for each interval I C T and taking supremum shows that implies
).

Conversely suppose holds. That is, for the nonnegative measure du(z) =
|f/(2)]2(1 — |2]*)? dA(z) there is a constant C' such that

u(S) = [ du(e) < cpap?
S(1)
for all I C T, ie. pis a pA-Carleson measure. Then for a € D,

I o pa= F@)ly, = [ 11RO~ leu(2) Y dAC)
/‘ oA PP =y

11 —az|?
(1 — |a[*)”

= [ ———du(2).

|1 —az|?

Thus we have
1— ’a‘2>2p—p)\
|1 —az|?

(1 — |af?)?

M —agem #7)

sup(1— [aPPON | f o gy — fla)|fB, = sup / ( du2)

a€eD a€D

= sup
a€eD JD

< 00,
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by using the characterization of Carleson measures in [104, Lemma 3.1.1] with

q = 2p — pA > 0, completing the proof. n
Proof of Pmposztzon@ i) Suppose f € DA We apply the inequality

9(0) < p+1/|g 21— |22 dA(2),

see [I11, Lemma 4.12], valid for all analytic g on D, to the function
g = (f opy— f(w)) to obtain

F@PQ =0l P < (+1) [ 17000 ()P~ ) dAG)

p+1 _

= T ol ((1 — WPVl o pu = S, )
p+1

S (1 _ |w|2)p(1_/\) ||f||DZA,7

for each w € D. Thus

(p+1)2

(1= JwP)™

[f(w)] <

1)\||f||Da IUGD

Using this and the integration f(z) fo f'(¢) d¢ we obtain the desired growth

inequality.

(i) We will verify that |f) ,(2)[*(1 — |2[*)P dA(z) is a pA-Carleson measure and
then Proposition [2] gives the conclusion. In doing so, it is more convenient to work
with the equivalent family of Carleson lune-shaped sets S(b,h) = {z € D: |b—z| <
h}, where b € T and 0 < h < 1, than with the Carleson boxes S(I),/ C T. Thus it
suffices to show that

1
sup — Y 1—1|2|*)PdA 00. 4.1.
b /S(bvh)up, P | dA(2) < (4.15)

per hPA
0<h<1
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We have

(1= =)

by |1 — 2[2PU=Y AA(2)

/s(b,h) AP = |27 dA(z) = Cl/

S

1
< A
/S(b,h) 1 — 2|2 =)
1
< — _dA(z
Jogpy T A
1
< . dA(w
/|w|<h e AW

h
1
= /0 pEE— dr

= WP,

Thus (4.1.5) holds and the proof is finished. O
Proof of Proposition . Assume p; < pg and p1(1—A;) < po(1—XAy) and let f € D{z\f
and [ C T. Then

1 / 2 o 2\p2 A
e TR IePyaac)

! ! p1 _ > —p1

|I|P2*;D1

< e [, WP aae

) (1 1
= ‘]’Pz(l A2)=p1(1=A1) (|]|p1>\1 / |f’(z)’2<1 _ ‘Z|2)pl dA(Z)>
S(1)

and by Proposition , it follows Dyt C D;2.

Assume now that D{v\ll - D;‘j. Then it is necessary that p; < ps. The easiest way
to see this is to use the class HG of functions in Hol(D) whose Taylor series with
center at 0 has Hadamard gaps. According to [103, Theorem 1.2.1] for 0 < p < 1
we have HGNQ, = HGND,, and for 0 < p < ¢ <1 we have HGND, C HGND,.
If we assume that p, < p; then D,, C D,, and using the assumption D;‘ll C D]’)\j
we will have further @, C D{D\f - DI’,\; C D,, € D,,. This would imply that
HGND, = HG N D,, which contradicts part of the above mentioned theorem. In
addition from Proposition [3|it follows easily that p;(1 — A1) < pa(1 — Ag). O

Proof of Theorem . Consider a function f € D;. By Lemma |A| and
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£ 000~ F@), 2 If o 0a — Fla)li,
2 [ [T e faul o

@ =J@P o o0 a1
> [ (L (PP dul o]

for any subarc I C T. If I # T, then we choose a point a € D\ {0} such that ] 1s
the center of I and 27(1 — |a|) the arclength. If I = T we take a = 0. With such a
point a as well as the inequality cost > 1 — 271t for t € (—o0, 00), we get that for
uecl

uel.

1 2T
Pa(U)Z = T
1—lal  [I]

e L) - P
u)— (%
I1f o pa = f()llp, 2 W/I/IWVM |dvl,

which implies that

- OO
(1= PPN o 00 = f@l, 2 s [ [l o],

so finally we get
171y 2 171

For the other inequality we work as follows. To each point a € D\ {0} we
associate the subarc I, with center @ and arclength 27(1 — |a|). For a = 0 we set
I, =T. Also we set

I"=2"1,, n=01,... N-1,

where N is the smallest integer such that 2V|I,| > 27. Then, we put IV = T.
Using the elementary inequality cost < 1 — 2722 for t € [—m, 7|, we know that

for every point u € T,

Pu(u) < — (4.1.6)

~1—al

Furthermore, for u € T\ I"™ we have

1
P, D —
W) S Pallzy
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In the sequel, we may assume |a| > 1/2, otherwise, the result is obviously true.
Therefore, if w € "™\ I", then

1

With the above notations, we break (1 — |a|?)P0=Y| f o v, — f(a)]

parts,

(4.1.7)

QD* into two
p

(1= a0 pa = fla)|By = X1+ Xo,

where

Xu= apa -y [ ) = FO b ) Py )" |du |dol

|u — v|2=P

and

X = np(1— 2P Y / /\%( Pa(w) Pa(0)?"* |du |do].

Consider first X;. By (4.1.6) and (4.1.7) we have that

KL (1 ey / I W) = SO () Py )7 (du [do

(2m)p |lu —v|>7P

+ (1= Jof) “Z /\ T =T (BP0} 1l o

|u — v|2—P

() = F@)?
< L G = JOF g
ST / / u—opr |2l

oy Fw) O
1] ;%(2%‘),,/1”%” el
1 () = F)P?

/Ia 8 |du| |dv|

AR [u — o>
1 f(w) — f(v)]?
v [ [ ) o
1] 20 \o J 1o lu — v

N—-1
) | ) — F0)?
i penys L / ) = JOF 3 g,
;(2”|Ial)p e J1,  |u—vfP

Therefore

X . du)| |d
S + s Z% [ 100 = sl s,
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Using the following identity
1 2 1 2 2
1/ |f(2) = bl|dz| = T/, [f(2) = fil*ldz| + [fr = 0", beC, (4.1.8)

and the characterization of Morrey spaces given in we have the following

=

-1
1 1
|1,[2P(1-3) £ E : 92 /[n+1\[n/ | f(u ’ |dul |dv|

| 1 ,
_ — du||d
‘[ |1*p(17)\) 922n /In+1\]n ’[ ‘ L ‘f( ) (U)| ‘ U‘ | U|

=1
1 2 2
d — dv|.
HPMA;?nWWQ”hm>fmmummfm)m

The first term can be bounded as follows using Lemma [9)

N-1
1 2 1 2
s -t S W<mewmzwwmmw

Finally, considering (4.1.8), Lemma [0} Lemma[l0] and the triangle inequality we get
that the second term can be bounded in the following way

3

23
H H

,_.

|f|p<“>222n|[| £(0) = fr el

In+1\[n

(1-3)
<|I |p Z on In+1|/ fIa| |dv|
_ (1-X) 2
=ILr Zw(nﬂ/ 0) = fuee Pldol + o = )

N-1 1 1

2
5 Z 2(1+p(1-A))n |In+1‘1—p(1—)\) /1n+1 ‘f(w o fI”“‘ |dU|

n=1

n+1

n+1
- »z o D i

N n+1
) n+1
SHf”y,l—p(lfA)(T (E : (14p(1 Z Z op(1— A)'@)

<712,
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Consider now X5,. Using again the same techniques we obtain

% N-1 _ 2

_(%z)p = (1 — |a[>)P—Y Z/J /1n+1\1" % (Pa(u)Pa(v))?"? |du |dv|
n=0 a
N—-1N-1

o 2

oy SN [ R (Rr ) b
m=0 n=0

S 112,

N-1 B 9
oy s [ [ R (R
m=0 a

N—-1N-1

vy S5 [ R (PR ey ]

m=0 n=1

where the second term is bounded by || f H%M and the third one is estimated as
P

o0
n
||f||?3$,* + ZO 217(1——A)"Hf”?3?’* N ||fH2DI§,w
n=
Combining the estimates of X; and X, we get the desired result

1fllpy < [l

4.2 Pointwise multipliers

Let X be a Banach space of analytic functions on . A function g € Hol(D) is

said to be a multiplier of X if the multiplication operator

My(f)(2) = 9(2)f(2), [eX,

is a bounded operator on X. For this it is usually enough to check that M (X) C X
and apply the closed graph theorem. The space of all multipliers of X is denoted
by M(X). Multiplication operators are closely related to integration operators J,
and I,. These are induced by symbols g € Hol(D) as follows

T,(H)(z) = / fw)g(w)dw, zeD,
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/f zeD,

and act on functions f € Hol(D). The operators I, J, have been studied in a

and

number of papers, see for example [I], 3, 44 [52, [66]. Their relation with M, comes

from the integration by parts formula

Jo(1)(z) = My(f)(2) = £(0)9(0) = L,(f)(2). (4.2.1)

This essentially says that if g is a symbol for which two of the operators Iy, J,, M,
are bounded on a space X so is the third. It also says that it is possible for two of
the operators to be unbounded but the third is bounded due to cancelation.

The space of multipliers is known for several of the classical spaces such as
Hardy and Bergman spaces. In particular for H? = D, the space of multipliers is
M(H?) = H®, the algebra of bounded analytic functions. For other Dirichlet spaces
D

p
terms of Dp-Carleson measures. Recall that a positive Borel measure ;1 on the disc

, p € (0,1), the situation is more complicated. The description of M(D,) is in

is a D,-Carleson measure if there is a constant C' = C(p) such that

/D P du(z) <CIfIE,.  feD,

These measures were described initially by Stegenga [96] with the help of Bessel
capacities, and similar characterizations were given by other authors. In another
approach, Arcozzi, Rochberg and Sawyer [9] described these measures by a different
condition, a simplified form of which is given in [48]. Accordingly, a finite measure

(1 is a Dy-Carleson measure if and only if

_ ((S(z) NS@))? 4y - o
web p(S(w)) /S(w) (1= |z]2)2tr dA(z) < oo,

where for w € D the set S(w) on which integration takes place is the Carleson box
Sw)={zeD:1—|z|<1—|w|, |larg(zZw)| < 7(1 — |w]|)}.

It is convenient at this point to use the space W, of functions g € Hol(ID) such

that the measure
dug(2) = 19/ () (1 — |22 dA(2)
is a D,-Carleson measure. This space has been studied in [90] and [101]. The

multipliers of D, were described in [96] as follows.
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Theorem V. Suppose 0 < p <1 and g € Hol(D). Then g € M(D,) if and only if
g € H® and duy(z) = |¢'(z)|*(1 — |2|?)? dA(2) is a D,-Carleson measure. In other
words,

M(D,) = H* NW,.

On the other hand the multipliers of (), are completely described in [75} [105] as

follows.
Theorem W. Suppose 0 < p <1 and g € Hol(D). Then g € M(Q,) if and only if
g e H*>® and
2
(log ﬁ) / 2 2
=y RO PP A < oo (42.2)
I

Thus if we denote by @, 10 the space of functions that satisfy (4.2.2) then the

above theorem says
M<Qp> =H*nN Qp,log’

It is not difficult to check that @),10e C W,. On the other hand it was shown in [9]
that W, C @, and there is a simplified proof of this in [69, Lemma 4]. Thus we
have

Qplog CW, CQp, 0<p<L

In what follows we study the action of the operators I, J, on the spaces D;, and

obtain information on pointwise multipliers. Our first result is the following.

Theorem 39. Let 0 < p, A <1 and g € Hol(D). Then I : DI’,\ — D; 18 bounded if
and only if g € H*.

Concerning the action of J, on D;} we have the following necessary condition.

Theorem 40. Let 0 < p, A < 1 and g € Hol(D). If J, : D) — D, is bounded then
g€ Q.

We now find sufficient conditions on g for J, to be bounded on D;‘.
Theorem 41. Suppose 0 < p < 1.

(i) If 0 < g <p and g € Q, then J, : DYP — DUP s bounded.
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(it) If 0 <X <1 and g € W, then J, : D) — D, is bounded.
The above theorems in combination with (4.2.1)) give the following corollary for
multipliers of D;}.
Corollary 4. Suppose 0 < p, A\ <1 and g € Hol(D). Then
(i) If g € W, N H* then M, : Dy — Dy is bounded.
(11) If g € Qpx N H> then M, : D;‘ — D;‘ is bounded.
(iii) If My : D) — D, is bounded then g € Q, N H™.
We conclude this section with the following remark.
Let 0 < p < 1. We know that W, C @, and this inclusion is strict [I04, Theorem

6.3.4]. At the same time for 0 < ¢ < p we have @, C @), with strict inclusion. For

cach ¢ < p we give an example of a function f such that f € W, but f does not
belong to Q,. Thus W, € Q, for any ¢ < p.

Indeed, with ¢, p as above consider the function
o)
f(z) = Zaszk, zeD
k=1

where a;, = 1/280-9/2 By a theorem of Yamashita [I08, Theorem 1(i)] for such
Hadamard gap series, and since

lim sup |ak|2k<1712ﬂ) =1 < o0,
k—o0

it follows that f satisfies the growth condition

sup f/()|(1 = o)+ < oo
Applying Proposition 4.2 of [12] (after adjusting the parameters involved to our
notation) we find that this function is a multiplier of D, because ¢ < p. Thus the
bounded function f belongs to W,.
On the other hand

o] o)
E 2k(1iq) E |G,j’2 = E 1= o0,
k=0 2k <n; <2k+1 k=0

and therefore by [103, Theorem 1.2.1] for such Hadamard gap series, f ¢ Q.
The complete description of the multiplier space M (D;) and of the symbols ¢
for which J, is bounded on D];\ addreses the open question in [76] and it seems to

be a hard problem.
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4.2.1 Proofs

We will need the following technical lemma from [76, p. 488]. We state only the
part of it that we need.

Lemma B. Letu e D, |v| <1 and s> —1,r, t>0. Then

(1—]z) C
dA < 0< t—s—2<
L= 2o ) < o < Hesm2 e

where C' is an absolute, positive constant.

Using this estimate we obtain a family of test functions in D;‘.

Lemma 11. Let 0 < p,A <1 and c € D. Then the functions

1
felz) = (1 — ez)p(1-2)/2’

z €D,

belong to D) and K = sup [ fellpy < o0
ceD
Proof. Fix ¢ € D. Then for a € D,
(= 1aPPO [ 1P = (PP dA:)

(1—|z]?)P
p(2 A)
= (1—1al*) / 11— CZ|2+p(1 M1 —az|? dA(z).

Now for r =2p, t =2+ p(1 — \), s = p, Lemma |B| gives the desired result. ]

Proof of Theorem[39. Let g € H* then

1 / 2 _ZQp >
wmmmW/MWW1mmm
1 / 2 201 _ [5]2)P 5
Aw—&WWMMIHM)

icr 1P
S gllZllf 1D
for every f € D). So ||Iy]| < C| gl where C'is a constant.

On the other hand, assume that I, is bounded on D;. We will use the test
functions {f.} of Lemma for {|c| > 3}. Then from the Lemma there is a constant
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C' such that 1 < || f¢[[py < C for all ¢, so that 1 1,]1? > %ng(fc)ﬂ%é and,

Hfg(fc>|\3» = sup (11— |al2)p(“>/ [1,(fe) (2)]2(1 = |@a(2) )P dA(2)
> (- dlA/Hﬁ (1~ ge(2) )P dA(2)
= (L —|c[?Pt=Y /Ifé(Z)l 19(2) (1 = |ee(2) )P dA(2)
~ Ic c p(l 2) |9 1—|90c( )| ) .
= |e[(1 = |ef?) / 1o dA(2),

CZ|2+p (1-X)

now by restricting the above integral on a disc with center the point ¢ and radius

- |c‘ and by applying the mean value property of subharmonic functions we get that

Hgll* 2 19 (c)l”

for any {|c| > 3}. It follows that g is a bounded analytic function on D. O
Proof of Theorem . We use the test functions f.(z) = (1 —¢z)P(=Y/2 of Lemma
From the hypothesis there is a constant C' such that

HJg(fc)HDg < CchHD;} < CSUE chHD}, =CK < o0,
ce
for all ¢ € . This means that

sup s [ RIS =P dAG) < K< o0

for all ¢ € D. For each interval I choose ¢ = ¢; = (1 — |I])e?® where € is the center
of I, then |1 — ¢z| < |I] for z € S(I) and we have

1 1 9 9
K2 [, e R0 PP

1 ! 2 _Z2p >
Tﬁémmmu 22 dA(2)

with K’ independent of I. Taking the supremum of the last integral over all I C T
we see that g € Q). O
Proof of Theorem. . Set A =¢q/p < 1 and suppose I C T is an interval. Using
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the growth condition 1' for f € D;‘ we have

1 / 2 _Z2p P
Tmﬁdﬁﬂwu||wm>

1 2/22_2217 2
—WLJWWMNOIHMU

1 1

’SW /S(I) (1 — |22 19 (2)]2(1 = [2*)P dA(z) HfH%%
1

:W/ 19 (2)P(1 = [2) dA(2) | 15y

S(1)
Slglig, £,

and the assertion follows by taking supremum on the left.

(i1). Let f € D). For an interval I C T let w = w; = (1 —|I|)e” where e is the
center of I. Then

T L, VP = Py aAC)

= o, FPI GO = 2 dc)

<{ ., FOPI P~ Py aAC)
oy ) = FEF QRO 7 aac)
=A;+ Br.

For the first integral, using (4.1.1)) and recalling that W, C @, we have

1

maw%mL$WWwamwsmww@
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For the second integral we write

2
By — =
! I[P /S(I)
ey [
f(z) = f(w)

— — lw PN
(1~ [u]) /Sm t——r
< (1 )"V £(0) — F(w)]?

+(1_‘w‘)p(z—A)/D i(f(z)—f(w))

dz \ (1 —wz)r
= (1= [w])P* V] f(0) = f(w)]* + Cu,

2

M ‘1 . wz‘2p’gl<z)‘2(1 _ ’z|2)1’ dA(Z)

(1 —wz)p

f(z) = f(w)
(1 —wz)p

|9/ (2)P(1 = [2*) dA(z)

2

9/ (2)]*(1 = |21*)" dA(2)

2

(1= |2*)" dA(=)

where we have used the hypothesis that du,(z) = |¢'(2)[*(1 — |2|*)? dA(z) is a D,-

Carleson measure. The first term in the last sum is

(1= )P Vf(0) = flw)? < (1= [w)PV]F(0) = f(w)* < 11 £15

by using once more. For the second term we have

Co = (1= uly® | j(%)
ol

e [P )
o=

p| (1 —wz)l+p

(1—[2[*)" dA(z)

+ 2p%|w]*(1 — Jw])?* (1= |2*)" dA(z)

ol ”/\f 21~ |z |>pdA<z>

roufn — oo [ FE=I)
) fw)

1 —wz

(1= Jpu(2)|")" dA(2)

2

SIAIDy + (1= hw)?! /D (1= lpu(2)")" dA(2)

- ||fHD; + Dy
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Observe that

D, =(1- ywy)pﬂA)/D fl2) — f(w)

1—wz

_ (1 . |w|)p(1—>\)/D fogpw(z) —fo ‘zow(())

(1= lpu(2)")" dA(2)

2

[t (2)[*(1 = [2*)" dA(2)

1 — Wpy(2)
—(1- ywy)pu—A)/D fo %(?__wfzo %(O)‘ (1= |22 dA(2).

To find an upper estimate for D,,, we follow the argument of [75], pages 551-552] (see
also [105, page 2080]). The argument consists in applying a reproducing formula
from [90], the Cauchy-Schwarz inequality, Fubini’s theorem and the estimate [1TT],
Lemma 3.10(b)]. We refrain from writing all the details since the argument applies

mutatis mutandis. The final steps of the calculation are as follows

— |z 2\24p
Du S (1= u])0= / (fowu) @I %

< (1wl / (F o) (2) (1 - |22 dA(2)
< (1= w0 / FEP (1~ lou(2)P) dA(2)

< 1 f1l5y-

dA(z)

Collecting all the above estimates gives ||.Jy(f)|lpy < C/ f|lpy which is the desired

conclusion. O
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