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Resumen

Sea X un espacio métrico geodésico y x1, x2, x3 ∈ X. Un triángulo geodésico T =
{x1, x2, x3} es la unión de tres geodésicas [x1x2], [x2x3] y [x3x1] de X. El espacio X es
δ-hiperbólico (en el sentido de Gromov) si todo lado de T está contenido en la δ-vecindad de
la unión de los otros dos lados, para todo triángulo geodésico T de X. Se denota por δ(X) la
constante de hiperbolicidad óptima de X, es decir, δ(X) := inf{δ ≥ 0 : X es δ-hiperbólico }.
El estudio de los grafos hiperbólicos es un tema interesante dado que la hiperbolicidad de un
espacio métrico geodésico es equivalente a la hiperbolicidad de un grafo más sencillo asociado
al espacio.

Uno de los principales objetivos de esta tesis de doctorado es obtener información cuan-
titativa acerca de la constante de hiperbolicidad de varios productos de grafos. Estas de-
sigualdades permiten obtener un resultado cualitativo importante: la caracterización de la
hiperbolicidad de varios productos de grafos en términos de la hiperbolicidad de sus compo-
nentes.

En este trabajo caracterizamos los productos fuertes de grafos G1 ⊠G2 hiperbólicos, en
términos de G1 y G2: el producto fuerte G1⊠G2 es hiperbólico si y sólo si uno de los factores
es hiperbólico y el otro está acotado. También probamos algunas relaciones óptimas entre
δ(G1 ⊠ G2), δ(G1), δ(G2) y los diámetros de G1 y G2 (y encontramos familias de grafos
para los cuales se alcanzan las desigualdades). Obtenemos el valor exacto de la constante de
hiperbolicidad para varios productos fuertes de grafos.

También caracterizamos los productos lexicográficos de grafos G1 ◦ G2 hiperbólicos, en
términos de G1 y G2: el producto lexicográfico G1 ◦ G2 es hiperbólico si y sólo si G1 es
hiperbólico, a menos que G1 sea un grafo trivial; si G1 es trivial, entonces G1 ◦ G2 es
hiperbólico si y sólo si G2 es hiperbólico. En particular, obtenemos las desigualdades δ(G1) ≤
δ(G1 ◦G2) ≤ δ(G1) + 3/2 si G1 es un grafo no trivial, y encontramos familias de grafos para
las cuales se alcanzan estas desigualdades.

Además, caracterizamos las sumas cartesianas de grafos G1 ⊕G2 hiperbólicas: G1 ⊕G2

es siempre hiperbólica, a menos que G1 ó G2 sea el grafo trivial, y en este último caso
G1 ⊕ G2 es hiperbólica si y sólo si G2 ó G1 es hiperbólico, respectivamente. Obtenemos
las desigualdades óptimas 1 ≤ δ(G1 ⊕ G2) ≤ 3/2 para todos los grafos G1, G2 no triviales.
Además, caracterizamos las sumas cartesianas de grafos con δ(G1⊕G2) = 1, con δ(G1⊕G2) =
5/4 y con δ(G1 ⊕ G2) = 3/2. También encontramos el valor exacto de la constante de
hiperbolicidad para las sumas cartesianas de diversas familias de grafos.

Finalmente, probamos que si el producto directo de grafosG1×G2 es hiperbólico, entonces
uno de los factores es hiperbólico y el otro factor está acotado. También probamos que esta
condición necesaria para la hiperbolicidad es, de hecho, una caracterización en muchos casos.
En otros casos, encontramos caracterizaciones que no son tan simples. Además, obtenemos



buenas cotas para la constante de hiperbolicidad del producto directo de varias clases de
grafos importantes.



Review

If X is a geodesic metric space and x1, x2, x3 ∈ X, a geodesic triangle T = {x1, x2, x3}
is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic
(in the Gromov sense) if any side of T is contained in the δ-neighborhood of the union
of the two other sides, for every geodesic triangle T in X. We denote by δ(X) the sharp
hyperbolicity constant of X, i.e., δ(X) := inf{δ ≥ 0 : X is δ-hyperbolic }. The study of
hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space
is equivalent to the hyperbolicity of a graph related to it.

One of the main aims of this PhD Thesis is to obtain quantitative information about the
hyperbolicity constant of several products of graphs. These inequalities allow to obtain other
main results, which characterize in a qualitative way the hyperbolicity of several products
of graphs in terms of the hyperbolicity of their components.

In this work we characterize the strong product of two graphs G1 ⊠G2 which are hyper-
bolic, in terms of G1 and G2: the strong product graph G1 ⊠ G2 is hyperbolic if and only
if one of the factors is hyperbolic and the other one is bounded. We also prove some sharp
relations between δ(G1 ⊠ G2), δ(G1), δ(G2) and the diameters of G1 and G2 (and we find
families of graphs for which the inequalities are attained). Furthermore, we obtain the exact
values of the hyperbolicity constant for many strong product graphs.

Furthermore, we characterize the lexicographic product of two graphs G1 ◦G2 which are
hyperbolic, in terms of G1 and G2: the lexicographic product graph G1 ◦G2 is hyperbolic if
and only if G1 is hyperbolic, unless if G1 is a trivial graph; if G1 is trivial, then G1 ◦ G2 is
hyperbolic if and only if G2 is hyperbolic. In particular, we obtain that δ(G1) ≤ δ(G1◦G2) ≤
δ(G1)+3/2 ifG1 is not a trivial graph, and we find families of graphs for which the inequalities
are attained.

Besides, we characterize the hyperbolic product graphs for the Cartesian sum G1 ⊕ G2:
G1 ⊕G2 is always hyperbolic, unless either G1 or G2 is the trivial graph; if G1 or G2 is the
trivial graph, then G1⊕G2 is hyperbolic if and only if G2 or G1 is hyperbolic, respectively. We
also obtain the sharp inequalities 1 ≤ δ(G1 ⊕G2) ≤ 3/2 for every non-trivial graphs G1, G2.
Besides, we characterize the Cartesian sums with δ(G1 ⊕ G2) = 1, with δ(G1 ⊕ G2) = 5/4
and with δ(G1 ⊕ G2) = 3/2. Furthermore, we obtain the precise value of the hyperbolicity
constant of the Cartesian sum of many graphs.

Finally, we prove that if the direct product G1 × G2 is hyperbolic, then one factor is
hyperbolic and the other one is bounded. Also, we prove that this necessary condition is, in
fact, a characterization in many cases. In other cases, we find characterizations which are
not so simple. Furthermore, we obtain good bounds for the hyperbolicity constant of the
direct product of some important graphs.
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Introduction

Hyperbolic spaces play an important role in geometric group theory and in geometry of
negatively curved spaces (see, e.g., [4, 51, 54]). The concept of Gromov hyperbolicity grasps
the essence of negatively curved spaces like the classical hyperbolic space, simply connected
Riemannian manifolds of negative sectional curvature, and of discrete spaces like trees and
the Cayley graphs of many finitely generated groups. It is remarkable that a simple concept
leads to such a rich general theory (see [4, 51, 54]).

In [116] it was proved the equivalence of the hyperbolicity of many negatively curved
surfaces and the hyperbolicity of a graph related to it; hence, it is useful to know hyperbolicity
criteria for graphs from a geometrical viewpoint. Therefore, the study of mathematical
properties of Gromov hyperbolic spaces and its applications is a topic of recent and increasing
interest in graph theory; see, for instance [2, 3, 11, 12, 13, 19, 29, 34, 48, 68, 69, 70, 71, 72,
75, 84, 85, 92, 93, 94, 95, 103, 104, 105, 116, 117, 119].

The theory of Gromov spaces was used initially for the study of finitely generated groups
(see [54, 55] and the references therein), where it was demonstrated to have a practical
importance. This theory was applied principally to the study of automatic groups (see [90]),
which play an important role in the science of computation. The concept of hyperbolicity
appears also in discrete mathematics, algorithms and networking. For example, it has been
shown empirically in [113] that the internet topology embeds with better accuracy into
a hyperbolic space than into an Euclidean space of comparable dimension (formal proofs
that the distortion is related to the hyperbolicity can be found in [117]); furthermore, it
is evidenced that many real networks are hyperbolic (see, e.g., [2, 3, 42, 78, 86]). A few
algorithmic problems in hyperbolic spaces and hyperbolic graphs have been considered in
recent papers (see [39, 46, 50, 77]). Another important application of these spaces is the
study of the spread of viruses through the internet (see [68, 70]). Furthermore, hyperbolic
spaces are useful in secure transmission of information on the network (see [68, 70]); also to
traffic flow and effective resistance of networks [38, 53, 82]. The hyperbolicity has also been
used extensively in the context of random graphs (see, e.g., [109, 110, 111]).

In recent years several researchers have been interested in showing that metrics used
in geometric function theory are Gromov hyperbolic. For instance, the Gehring-Osgood j-
metric is Gromov hyperbolic; and the Vuorinen j-metric is not Gromov hyperbolic except in
the punctured space (see [59]). The study of Gromov hyperbolicity of the quasihyperbolic
and the Poincaré metrics is the subject of [7, 16, 60, 61, 95, 96, 97, 104, 105]. In particular, in
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[95, 104, 105, 116] it is proved the equivalence of the hyperbolicity of many negatively curved
surfaces and the hyperbolicity of a simple graph; hence, it is useful to know hyperbolicity
criteria for graphs.

For a finite graph with n vertices it is possible to compute δ(G) in time O(n3.69) [47] (this
is improved in [42, 44]). Given a Cayley graph (of a presentation with solvable word problem)
there is an algorithm which allows to decide if it is hyperbolic [91]. However, deciding whether
or not a general infinite graph is hyperbolic is usually very difficult. Therefore, three main
problems on the study of hyperbolic graphs are the following:

I. To characterize the hyperbolicity for important classes of graphs.

II. To obtain inequalities relating the hyperbolicity constant and other parameters of graphs.

III. To study the invariance of the hyperbolicity of graphs under appropriate transforma-
tions.

Many researches have studied the hyperbolicity of several classes of graphs: chordal
graphs [9, 19, 83, 119], median graphs [114], line graphs [33, 34, 41], cubic graphs [92],
complement graphs [12], regular graphs [63], planar graphs [30, 94], periodic graphs [22, 23],
short graphs [99], minor graphs [31], Mycielskian graphs [52], geometric graphs [41, 101],
circulant graphs [62, 100], vertex-symmetric graphs [21], bipartite and intersection graphs
[43], bridged graphs [75], expanders [82], graphs with small hyperbolicity constant [10] and
some products of graphs: Cartesian product [84], corona and join product [32].

Many branches of mathematics employs some notion of a product that enables the com-
bination or decomposition of its elemental structures. In graph theory appear several kinds
of products, each with its own set of applications and theoretical interpretations. The struc-
ture and applicability of these products are full of surprises. For example, large networks
such as the Internet graph, with several hundred million hosts, can be efficiently modeled
by subgraphs of powers of small graphs with respect to the direct product (see [81]). This is
one of many examples of the dichotomy between the structure of products and that of their
subgraphs.

Product of graphs occur naturally in discrete mathematics as tools in combinatorial
constructions. They give rise to important classes of graphs and deep structural problems.
The extensive literature on products that has evolved over the years presents a wealth of
profound and beautiful results. In the beginning the emphasis was on the structure of finite
and infinite products, but later it shifted to recognition algorithms for classes of isometric
subgraphs of product of graphs.

Products are often viewed as a convenient language with which to describe structures,
but they are increasingly being applied in more substantial ways. Computer science is one
of the many fields in which graph products are becoming commonplace. As one specific
example, we mention load balancing for massively parallel computer architectures.
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The most usual operations in graph theory are the unitary and binary. These operations
produce new graphs from one or several graphs. The unitary operations create a new graph
from the original graph. Some examples of unitary operations are: adding or deleting a
vertex or an edge, the contraction of an edge, line graph, graph complement or Mycielskian
graph. The binary operations create a new graph from two initial graphs G1 and G2; the
main examples of binary operations are the several kinds of products of graphs.

The different kinds of products of graphs are an important research topic. Some large
graphs are composed from some existing smaller ones by using several products of graphs, and
many properties of such large graphs are strongly associated with that of the corresponding
smaller ones. Under reasonable and natural restrictions such as associativity, the number of
different products is actually quite limited.

The product of two graphs G1 and G2 is another graph whose vertex set is the Cartesian
product V (G1)× V (G2) of sets. However, each product has different rules for adjacencies.

In this work, we study:

1. The hyperbolicity of the Strong product, Lexicographic product, Cartesian sum and
Direct product graphs (Problem I). They are the more interesting product graphs in
order to study hyperbolicity, since [84] and [32] deal with Cartesian, corona and join
products.

2. Inequalities involving the hyperbolicity constants of the product graphs and the hy-
perbolicity constants of their components (Problems II and III).

The strong product G1 ⊠ G2 of G1 and G2 has V (G1) × V (G2) as vertex set, so that
two distinct vertices (u1, v1) and (u2, v2) of G1 ⊠ G2 are adjacent if either u1 = u2 and
[v1, v2] ∈ E(G2), or [u1, u2] ∈ E(G1) and v1 = v2, or [u1, u2] ∈ E(G1) and [v1, v2] ∈ E(G2).

The lexicographic product G1 ◦G2 of G1 and G2 has V (G1)×V (G2) as vertex set, so that
two distinct vertices (u1, v1) and (u2, v2) of G1 ◦ G2 are adjacent if either [u1, u2] ∈ E(G1),
or u1 = u2 and [v1, v2] ∈ E(G2).

The Cartesian sum G1 ⊕G2 of G1 and G2 has V (G1)× V (G2) as vertex set, so that two
distinct vertices (u1, v1) and (u2, v2) of G1 ⊕ G2 are adjacent if either [u1, u2] ∈ E(G1) or
[v1, v2] ∈ E(G2).

Finally, the direct product G1 × G2 of G1 and G2 has V (G1) × V (G2) as vertex set, so
that two distinct vertices (u1, v1) and (u2, v2) of G1×G2 are adjacent if [u1, u2] ∈ E(G1) and
[v1, v2] ∈ E(G2).

The outline of this PhD Thesis is as follows.

In Chapter 1 we give a brief introduction to hyperbolic spaces and we show some previous
results which will be useful.

In Chapter 2 we study several inequalities involving the distance in the strong product
of graphs and we obtain the exact value of its diameter. Furthermore, we also study the



8

relations between the geodesics of G1 ⊠ G2 and geodesics in G1 and G2; it is not a trivial
issue as Example 2.1.7 will show.

Besides, we prove several lower and upper bounds for the hyperbolicity constant of G1 ⊠
G2, involving δ(G1), δ(G2) and the diameters of G1 and G2. One of the main results of this
work is Theorem 2.2.11, which characterizes the hyperbolic strong product graphs G1 ⊠G2

in terms of G1 and G2: the graph G1 ⊠ G2 is hyperbolic if and only if one of its factors is
hyperbolic and the other one is bounded. We also find families of graphs for which many of
the inequalities of this section are attained. Another main result in this Chapter is Theorem
2.2.7 which provides the precise value of δ(G1 ⊠ G2) for a large class of graphs G1, G2; we
also obtain the exact values of the hyperbolicity constant for many strong product graphs;
this kind of result is not usual at all in the theory of hyperbolic graphs.

In Chapter 3 we characterize the hyperbolic lexicographic product of two graphs G1 ◦G2,
in terms of G1 and G2: if G1 has at least two vertices, then G1 ◦ G2 is hyperbolic if and
only if G1 is hyperbolic; besides, if G1 has a single vertex, then G1 ◦G2 is hyperbolic if and
only if G2 is hyperbolic (see Theorem 3.2.14 and Remark 3.2.15). We also prove the sharp
inequalities δ(G1) ≤ δ(G1 ◦G2) ≤ δ(G1) + 3/2 if G1 is not a trivial graph (the graph with a
single vertex), see Theorems 3.2.1 and 3.2.10; Example 4.2.3 provides a family of graphs for
which the first inequality is attained; besides, Theorems 3.2.16 and 3.2.20 characterize the
graphs for which the second inequality is attained.

Furthermore, we obtain the precise value of the hyperbolicity constant for many lexico-
graphic products (see Examples 3.2.2, 4.2.3 and Theorem 3.2.21). In particular, Theorem
3.2.21 allows to compute, in a simple way, the hyperbolicity constant of the lexicographic
product of any tree and any graph.

In Chapter 4 we characterize the hyperbolic Cartesian sum graphs G1⊕G2 (see Theorem
4.2.2): G1 ⊕ G2 is always hyperbolic unless either G1 or G2 is the trivial graph; if G1 or
G2 is the trivial graph, then G1 ⊕ G2 is hyperbolic if and only if G2 or G1 is hyperbolic,
respectively. Besides, we characterize the Cartesian sums with δ(G1 ⊕ G2) = 1 and with
δ(G1 ⊕ G2) = 3/2 (see Theorems 4.2.6 and 4.2.20, respectively). Also, we have proved
many inequalities involving δ(G1 ⊕ G2), as Lemma 4.2.9 and Corollaries 4.2.10 and 4.2.12.
Furthermore, we obtain simple formulae for the hyperbolicity constant of many Cartesian
sum graphs (see Examples 4.2.4, 4.2.3 and 4.2.5, Theorems 4.2.7, 4.2.13, 4.2.14, 4.2.17 and
4.2.19 and Corollaries 4.2.11 and 4.2.15). We want to remark that it is not usual at all to
obtain explicit formulae for the hyperbolicity constant of large classes of graphs. Finally,
Theorem 4.3.4 provides precise bounds for the hyperbolicity constant of the complement
graph of many Cartesian sums: 3

2
≤ δ(G1 ⊕G2) ≤ 2.

In Chapter 5 we characterize in many cases the hyperbolic direct product of graphs. Here
the situation is more complex than with the Cartesian or the strong product, which is in
part due to the facts that the direct product of two bipartite graphs is already disconnected
and that the formula for the distance in G1 × G2 is more complicated that in the case
of other products of graphs. Theorem 5.1.19 proves that if G1 × G2 is hyperbolic, then
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one factor is hyperbolic and the other one is bounded. Also, we prove that this necessary
condition is, in fact, a characterization in many cases. If G1 is a hyperbolic graph and G2

is a bounded graph, then we prove that G1 ×G2 is hyperbolic when G2 has some odd cycle
(Theorem 5.1.9) or G1 and G2 do not have odd cycles (Theorem 5.1.10). Otherwise, the
characterization is a more difficult task; if G1 has some odd cycle and G2 do not have odd
cycles, Theorems 5.1.20 and 5.1.22 provide sufficient conditions for non-hyperbolicity and
hyperbolicity, respectively; besides, Theorems 5.1.31 and Corollary 5.1.32 characterize the
hyperbolicity of G1 × G2 under some additional conditions. Furthermore, we obtain good
bounds for the hyperbolicity constant of the direct product of some important graphs.

The results in this work appear in [24, 25, 27, 28]; these papers have been published
or submitted to international mathematical journals which appear in the Journal Citation
Reports.

Besides, these results were presented in the following international and national confer-
ences:

• IX Encuentro Andaluz de Matemática Discreta, in October 2015, at Universidad de
Almeŕıa, Spain.

• IX Workshop of Young Researchers in Mathematics, in September 2015, at Universidad
Complutense de Madrid, Spain.

• III Congreso de Jóvenes Investigadores de la Real Sociedad Matemática Española, in
September 2015, at Universidad de Murcia, Spain.

• VIII Workshop of Young Researchers in Mathematics, September 2014, Universidad
Complutense de Madrid, Spain.

• IX Jornadas de Matemática Discreta y Algoŕıtmica, in July 2014, at Universidad de
Tarragona, Spain.

• VIII Encuentro Andaluz de Matemática Discreta, in October 2013, at Universidad de
Sevilla, Spain.

• VII Workshop of Young Researchers in Mathematics, in September 2013, at Universi-
dad Complutense de Madrid, Spain.

The work presented in IX Jornadas de Matemática Discreta y Algoŕıtmica appears in
the Proceedings of the Conference, published in a good international mathematical journal
(see [26]).

One of these results was presented in the GAMA1 Seminar, in March 2016, at Universidad
Carlos III de Madrid, Spain.

1Group of Applied Mathematical Analysis





Chapter 1

Hyperbolic spaces

Let (X, d) be a metric space and let γ : [a, b] −→ X be a continuous function. We say that
γ is a geodesic if L(γ|[t,s]) = d(γ(t), γ(s)) = |t− s| for every s, t ∈ [a, b], where L denotes the
length of a curve. We say that X is a geodesic metric space if for every x, y ∈ X there exists
a geodesic joining x and y; we denote by [xy] any of such geodesics (since we do not require
uniqueness of geodesics, this notation is ambiguous, but it is convenient). It is clear that
every geodesic metric space is path-connected. If the metric space X is a graph, we use the
notation [u, v] for the edge joining the vertices u and v.

In order to consider a graph G as a geodesic metric space, we must identify any edge
[u, v] ∈ E(G) with the interval [0, 1]; therefore, any point in the interior of any edge is a point
of G and, if we consider the edge [u, v] as a graph with just one edge, then it is isometric
to [0, 1]. A connected graph G is naturally equipped with a distance defined on its points,
induced by taking shortest paths in G. Then, we see G as a metric graph.

Throughout this work we just consider non-oriented connected simple (without loops and
multiple edges) graphs with edges of length 1; these properties guarantee that the graphs are
geodesic metric spaces (since we consider that every point in any edge of a graph G is a point
of G, whether or not it is a vertex of G). We want to remark that by [13] the study of the
hyperbolicity of graphs with loops and multiple edges (non-simple graphs) can be reduced
to the study of the hyperbolicity of simple graphs (see Theorems 1.3.8 and 1.3.9).

1.1 Definition of hyperbolic spaces and examples

The concept of hyperbolicity offers a global approach to spaces like the hyperbolic plane,
simply-connected Riemannian manifolds with negative sectional curvature, metric trees and
others classical hyperbolic spaces. Several of their properties were introduced by Mikhael
Gromov in the context of finitely generated groups but its generality reached new horizons.

If X is a geodesic metric space and J = {J1, J2, . . . , Jn} is a polygon, with sides Jj ⊆ X,
we say that J is δ-thin if for every x ∈ Ji we have that d(x,∪j ̸=iJj) ≤ δ. We denote by δ(J)
the sharp thin constant of J , i.e., δ(J) := inf{δ ≥ 0 : J is δ-thin } .

11



CHAPTER 1. HYPERBOLIC SPACES 12

Definition 1.1.1. Given x1, x2, x3 ∈ X. A geodesic triangle T = {x1, x2, x3} is the union
of the three geodesics [x1x2], [x2x3] and [x3x1]. The space X is δ-hyperbolic (or satisfies the
Rips condition with constant δ) if every geodesic triangle in X is δ-thin.

Figure 1.1: δ-thin triangle.

We denote by δ(X) the sharp hyperbolicity constant of X, i.e., δ(X) := sup{δ(T ) :
T is a geodesic triangle in X }. We say that X is hyperbolic if it is δ-hyperbolic for some
δ ≥ 0.

Sometimes we write the geodesic triangle T as T = {[x1x2], [x2x3], [x3x1]}.

Remark 1.1.2. If X is hyperbolic, then δ(X) = inf{δ ≥ 0 : X is δ-hyperbolic }.

One can check that every geodesic polygon in X with n sides is (n − 2)δ(X)-thin; in
particular, any geodesic quadrilateral is 2δ(X)-thin. The above result is obtained by dividing
the polygon into n− 2 triangles.

A geodesic bigon is a geodesic triangle {x1, x2, x3} with x2 = x3. Therefore, every bigon
in a δ-hyperbolic geodesic metric space is δ-thin.

There are several definitions of Gromov hyperbolicity. These different definitions are
equivalent in the sense that if X is δ-hyperbolic with respect to the definition A, then it is
δ′-hyperbolic with respect to the definition B for some δ′ which just depends on δ (see, e.g.,
[17, 51]). We have chosen this definition since it has a deep geometric meaning (see, e.g.,
[51]).

The following are interesting examples of hyperbolic spaces.

Example 1.1.3. Any point of a geodesic triangle in the real line belongs to two sides of the
triangle simultaneously, and therefore R is 0-hyperbolic.

Example 1.1.4. The Euclidean plane R2 is not hyperbolic: it is clear that equilateral trian-
gles can be drawn with arbitrarily large diameter.

The argument in Example 1.1.4 can be generalized to higher dimensions:

a normed vector space E is hyperbolic if and only if dim E = 1.



CHAPTER 1. HYPERBOLIC SPACES 13

R
a b c a=a'=a'' b

c

b' b''

c'

c''

R2

Figure 1.2: R and R2 as examples of hyperbolic spaces.

a

b

c

Figure 1.3: Any metric tree T verifies δ(T ) = 0.

Example 1.1.5. Every metric tree is 0-hyperbolic: in fact, every point of a geodesic triangle
in a tree belongs simultaneously to two sides of the triangle (see Figure 1.3).

Example 1.1.6. Every bounded metric space X is (diamX/2)-hyperbolic: in fact, the
distance from any point of a geodesic triangle to the endpoints of its geodesic is at most
diam(X)/2.

Example 1.1.7. Every simply connected complete Riemannian manifold with sectional cur-
vature verifying K ≤ −c2, for some positive constant c, is hyperbolic.

The following example is an exercise in [102, p.191] (it is a particular case of Example
1.1.7).

Example 1.1.8. The open unit disk in the complex plane with its Poincaré metric is
log(1 +

√
2 )-hyperbolic.

We refer to [17, 51] for more background and further results.

We want to remark that the main examples of hyperbolic graphs are the trees. In fact,
the hyperbolicity constant of a geodesic metric space can be viewed as a measure of how
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“tree-like” the space is, since those spaces X with δ(X) = 0 are precisely the metric trees.
This is an interesting subject since, in many applications, one finds that the borderline
between tractable and intractable cases may be the tree-like degree of the structure to be
dealt with (see, e.g., [36]).

x

y

w

P

x

y

w

P

P

P

P

P

Figure 1.4: First steps in order to compute the hyperbolicity constant of X.

For a general graph or a general geodesic metric space deciding whether or not a space
is hyperbolic is usually very difficult. We have to consider an arbitrary geodesic triangle
T , and calculate the minimum distance from an arbitrary point P of T to the union of the
other two sides of the triangle to which P does not belong to (see Figure 1.4). And then we
have to take the supremum over all the possible choices for P and then over all the possible
choices for T (see Figures 1.4 and 1.5).

Figure 1.5: Calculating the supremum over all geodesic triangles.

Without disregarding the difficulty of solving this minimax problem, notice that in general
the main obstacle is that we do not know the location of geodesics in the space. Therefore, it
is interesting to obtain inequalities involving the hyperbolicity constant and other parameters
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of graphs. Another natural problem is to study the invariance of the hyperbolicity of graphs
under appropriate transformations.

Since to obtain a characterization of hyperbolic graphs is a very ambitious goal, it seems
reasonable to study this problem for particular classes of graphs (see Chapters 2, 3, 4 and 5).
We are interested in to characterize the hyperbolicity of several graph products. In fact, we
obtain this characterization for strong and lexicographic products and the Cartesian sum; for
direct product of graphs, we provide a necessary condition, and we prove that this condition
is also sufficient in many cases.

1.2 Equivalent definitions of hyperbolicity

Gromov product definition

Definition 1.2.1. Given a metric space X, we define the Gromov product of x, y ∈ X with
base point w ∈ X by

(x|y)w :=
1

2

(
d(x,w) + d(y, w)− d(x, y)

)
. (1.1)

We say that X is δ-hyperbolic product if there is a constant δ ≥ 0 such that

(x|z)w ≥ min
{
(x|y)w, (y|z)w

}
− δ (1.2)

for every x, y, z, w ∈ X (see, e.g., [51]).

It is well known that (1.2) is equivalent to our definition of Gromov hyperbolicity for
geodesic metric spaces (Definition 1.1.1). Furthermore, we have the following quantitative
result about this equivalence.

Theorem 1.2.2. [51, Proposition 2.21, p.41] Let us consider a geodesic metric space X.
(1) If X is δ-hyperbolic, then it is 4δ-hyperbolic product.
(2) If X is δ-hyperbolic product, then it is 3δ-hyperbolic.

Fine definition

First, we recall the definition of fine triangles.

Definition 1.2.3. Given a geodesic triangle T = {x, y, z} in a geodesic metric space X, let
TE be a Euclidean triangle with sides of the same length than T . Since there is no possible
confusion, we will use the same notation for the corresponding points in T and TE. The
maximum inscribed circle in TE meets the side [xy] (respectively [yz], [zx]) in a point z′

(respectively x′, y′) such that d(x, z′) = d(x, y′), d(y, x′) = d(y, z′) and d(z, x′) = d(z, y′).
We call the points x′, y′, z′, the internal points of {x, y, z}. There is a unique isometry fxyz
of {x, y, z} onto a tripod (a star graph with one vertex w of degree 3, and three vertices
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x′′, y′′, z′′ of degree one, such that d(x′′, w) = d(x, z′) = d(x, y′), d(y′′, w) = d(y, x′) = d(y, z′)
and d(z′′, w) = d(z, x′) = d(z, y′)), see Figure 1.6. The triangle {x, y, z} is δ-fine if fxyz(p) =
fxyz(q) implies that d(p, q) ≤ δ. The space X is δ-fine if every geodesic triangle in X is δ-fine.

TE

x y

z

x′y′

z′

z′′

x′′ y′′

w
fxyz

Figure 1.6: Isometry fxyz of the triangle TE = {x, y, z} onto a tripod.

We also allow degenerated tripods, i.e., path graphs P1, P2 with one or two vertices,
respectively. These situations correspond with triangles with several vertices repeated; in
these cases the inscribed circle in TE is a point.

It is known that this definition of fine is also equivalent to our definition of Gromov
hyperbolicity. Furthermore, we have the following quantitative result.

Theorem 1.2.4. [51, Proposition 2.21, p.41] Let us consider a geodesic metric space X.
(1) If X is δ-hyperbolic, then it is 4δ-fine.
(2) If X is δ-fine, then it is δ-hyperbolic.

Insize definition

Definition 1.2.5. Given a geodesic metric space X, let T = {x, y, z} be a geodesic triangle
in X and let x′, y′, z′ be the internal points on T in Definition 1.2.3. Let us define the insize
of the geodesic triangle T as

insize(T ) := diam{x′, y′, z′}. (1.3)

The space X is δ-insize if every geodesic triangle in X has insize at most δ.

This definition of insize is also equivalent to our definition of Gromov hyperbolicity.
Besides, we have the following quantitative result.

Theorem 1.2.6. [51, Proposition 2.21, p.41] Let us consider a geodesic metric space X.
(1) If X is δ-hyperbolic, then it is 4δ-insize.
(2) If X is δ-insize, then it is 2δ-hyperbolic.
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Minsize definition

Definition 1.2.7. Given a geodesic metric space X, let T = {x, y, z} be a geodesic triangle
in X and let x0 ∈ [yz], y0 ∈ [zx], z0 ∈ [xy]. We define the minsize of the geodesic triangle
T to be

minsize(T ) := min
x0,y0,z0∈T

diam{x0, y0, z0}. (1.4)

The space X is δ-minsize if every geodesic triangle in X has minsize at most δ.

It is known that this definition of minsize is also equivalent to Definition in a quantitative
way.

Theorem 1.2.8. [51, Proposition 2.21, p.41] Let us consider a geodesic metric space X.
(1) If X is δ-hyperbolic, then it is 4δ-minsize.
(2) If X is δ-minsize, then it is 8δ-hyperbolic.

1.3 Background on hyperbolic graphs

Let us return to our framework: graphs as geodesic metric spaces. In this section we present
some previous results about hyperbolic graphs. These results are used throughout the thesis
or are benchmark results on the subject.

Definition 1.3.1. The diameter of the vertices of the graph G, denoted by diamV (G), is
defined as

diamV (G) := sup{dG(u, v) : u, v ∈ V (G)},

and the diameter of the graph G, denoted by diamG, is defined as

diamG := sup{dG(x, y) : x, y ∈ G}.

Definition 1.3.2. We say that a subgraph Γ of G is isometric if dΓ(x, y) = dG(x, y) for
every x, y ∈ Γ.

We will need the following results (see [103, Lemma 5] and [105, Lemma 2.1]).

Lemma 1.3.3. If Γ is an isometric subgraph of G, then δ(Γ) ≤ δ(G).

Lemma 1.3.4. Let us consider a geodesic metric space X. If every geodesic triangle in X
that is a simple closed curve is δ-thin, then X is δ-hyperbolic.

This lemma has the following direct consequence. As usual, by cycle we mean a simple
closed curve, i.e., a path with different vertices in a graph, except for the last one, which is
equal to the first vertex.
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Corollary 1.3.5. In any graph G,

δ(G) = sup{δ(T ) : T is a geodesic triangle that is a cycle}.

Let (X, dX) and (Y, dY ) be two metric spaces. A map f : X −→ Y is said to be an
(α, β)-quasi-isometric embedding, with constants α ≥ 1, β ≥ 0 if, for every x, y ∈ X:

α−1dX(x, y)− β ≤ dY (f(x), f(y)) ≤ αdX(x, y) + β.

The function f is ε-full if for each y ∈ Y there exists x ∈ X with dY (f(x), y) ≤ ε.
A map f : X −→ Y is said to be a quasi-isometry, if there exist constants α ≥ 1, β, ε ≥ 0

such that f is an ε-full (α, β)-quasi-isometric embedding.
Two metric spaces X and Y are quasi-isometric if there exists a quasi-isometry f : X −→

Y . One can check that to be quasi-isometric is an equivalence relation. An (α, β)-quasi-
geodesic in X is an (α, β)-quasi-isometric embedding between an interval of R and X.

A fundamental property of hyperbolic spaces is the following (see, e.g., [51, p.88]):

Theorem 1.3.6 (Invariance of hyperbolicity). Let f : X −→ Y be an (α, β)-quasi-isometric
embedding between the geodesic metric spaces X and Y . If Y is hyperbolic, then X is
hyperbolic.

Besides, if f is ε-full for some ε ≥ 0 (a quasi-isometry), then X is hyperbolic if and only
if Y is hyperbolic.

Furthermore, if X (respectively, Y ) is δ-hyperbolic, then Y (respectively, X) is δ′-hyperbolic,
where δ′ is a constant which just depends on δ, α, β and ε (respectively, δ, α and β).

The following result (see [103, Theorem 8]) will be useful.

Lemma 1.3.7. In any graph G the inequality δ(G) ≤ (diamG)/2 holds, and it is sharp.

If G and H are isomorphic, we write G ≃ H. It is clear that if G ≃ H, then δ(G) = δ(H).

The following results appear in [13, Theorems 8 and 10]. They allow to reduce the study
of the hyperbolicity of non-simple graphs to the study of the hyperbolicity of simple graphs.
Theorems 8 and 10 in [13] are, in fact, stronger, but these versions below are good enough
for this work.

Given a non-simple graph G, we define A(G) as the graph G without its loops, and B(G)
as the graph G without its multiple edges, obtained by replacing each multiple edge by a
single edge.

Theorem 1.3.8. If G is a graph with some loop, then G is hyperbolic if and only if A(G)
is hyperbolic. Besides,

δ(G) = max

{
δ(A(G)) ,

1

4

}
.
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Theorem 1.3.9. If G is a graph with some multiple edge, then G is hyperbolic if and only
if B(G) is hyperbolic. Besides,

δ(G) = max

{
δ(B(G)),

1

2

}
= max

{
δ(A(B(G))),

1

2

}
.

In particular, if A(B(G)) is not a tree, then δ(G) = δ(B(G)) = δ(A(B(G))).

Therefore, in what follows, by graph we mean simple graph.

We will also need the following result (see [103, Theorem 11]).

Theorem 1.3.10. The following graphs have the following hyperbolicity constants:

• The path graphs verify δ(Pn) = 0 for every n ≥ 1.

• The cycle graphs verify δ(Cn) = n/4 for every n ≥ 3.

• The complete graphs verify δ(K1) = δ(K2) = 0, δ(K3) = 3/4, δ(Kn) = 1 for every
n ≥ 4.

• The complete bipartite graphs verify δ(K1,1) = δ(K1,2) = δ(K2,1) = 0, δ(Km,n) = 1 for
every m,n ≥ 2.

• The Petersen graph P verifies δ(P ) = 3/2.

• The wheel graph with n vertices Wn verifies δ(W4) = δ(W5) = 1, δ(Wn) = 3/2 for
every 7 ≤ n ≤ 10, and δ(Wn) = 5/4 for n = 6 and for every n ≥ 11.

We will use the following results which allow to reduce the study of the hyperbolicity of
graphs to a countable set of geodesic triangles.

If [v1, v2] ∈ E(G), then we say that the point x ∈ [v1, v2] with dG(x, v1) = dG(x, v2) = 1/2
is the midpoint of [v1, v2]. Given a graph G, we define J(G) as the set of points of the
graph G which are either vertices or midpoints of the edges. Consider the set T1 of geodesic
triangles T in G that are cycles and such that the three vertices of the triangle T belong to
J(G), and denote by δ1(G) the infimum of the constants λ such that every triangle in T1 is
λ-thin.

The following three results, which appear in [11].

Theorem 1.3.11. [11, Theorem 2.5] For every graph G we have δ1(G) = δ(G).

The next result will narrow the posible values for the hyperbolicity constant δ.

Theorem 1.3.12. [11, Theorem 2.6] For every hyperbolic graph G, δ(G) is a multiple of
1/4.
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Theorem 1.3.13. [11, Theorem 2.7] For any hyperbolic graph G, there exists a geodesic
triangle T ∈ T1 such that δ(T ) = δ(G).

Finally, we define some families of graphs which will be useful. Denote by Cn the cycle
graph with n ≥ 3 vertices and by V (Cn) := {v(n)1 , . . . , v

(n)
n } the set of their vertices such

that [v
(n)
n , v

(n)
1 ] ∈ E(Cn) and [v

(n)
i , v

(n)
i+1] ∈ E(Cn) for 1 ≤ i ≤ n − 1. Let C(1)

6 be the set of

graphs obtained from C6 by adding a (proper or not) subset of the set of edges {[v(6)2 , v
(6)
6 ],

[v
(6)
4 , v

(6)
6 ]}. Let us define the set of graphs

F6 := {graphs containing, as induced subgraph, an isomorphic graph

to some element of C(1)
6 }.

C(1)
6 C(1)

7

Figure 1.7: Generators of C(1)
6 and C(1)

7 .

Let C(1)
7 be the set of graphs obtained from C7 by adding a (proper or not) subset of the

set of edges {[v(7)2 , v
(7)
6 ], [v

(7)
2 , v

(7)
7 ], [v

(7)
4 , v

(7)
6 ], [v

(7)
4 , v

(7)
7 ]}. Define

F7 := {graphs containing, as induced subgraph, an isomorphic graph

to some element of C(1)
7 }.

Let C(1)
8 be the set of graphs obtained from C8 by adding a (proper or not) subset of the set

{[v(8)2 , v
(8)
6 ], [v

(8)
2 , v

(8)
8 ], [v

(8)
4 , v

(8)
6 ], [v

(8)
4 , v

(8)
8 ]}. Also, let C(2)

8 be the set of graphs obtained from

C8 by adding a (proper or not) subset of {[v(8)2 , v
(8)
8 ], [v

(8)
4 , v

(8)
6 ], [v

(8)
4 , v

(8)
7 ], [v

(8)
4 , v

(8)
8 ]}. Define

F8 := {graphs containing, as induced subgraph, an isomorphic graph

to some element of C(1)
8 ∪ C(2)

8 }.

Let C(1)
9 be the set of graphs obtained from C9 by adding a (proper or not) subset of the set

of edges {[v(9)2 , v
(9)
6 ], [v

(9)
2 , v

(9)
9 ], [v

(9)
4 , v

(9)
6 ], [v

(9)
4 , v

(9)
9 ]}. Define

F9 := {graphs containing, as induced subgraph, an isomorphic graph
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to some element of C(1)
9 }.

Finally, we define the set F by

F := F6 ∪ F7 ∪ F8 ∪ F9.

Note that F6, F7, F8 and F9 are not disjoint sets of graphs.

C(1)
8 C(2)

8 C(1)
9

Figure 1.8: Generators of C(1)
8 , C(2)

8 and C(1)
9 .





Chapter 2

Gromov hyperbolicity in strong
product graphs

The strong product graph operation has been extensively investigated in relation to a wide
range of subjects [1, 20, 73, 115]. A fundamental principle for network design is extenda-
bility. That is to say, the possibility of building larger versions of a network preserving
certain desirable properties. For designing large-scale interconnection networks, the strong
product is a useful method to obtain large graphs from smaller ones whose invariants can be
easily calculated [20, 73, 115].

2.1 The distance in strong product graphs

In order to estimate the hyperbolicity constant of the strong product of two graphs G1 and
G2, we must obtain lower and upper bound on the distances between any two arbitrary
points in G1 ⊠ G2. The lemmas of this section provide these estimations. We will use the
strong product definition given by Sabidussi in [106].

Definition 2.1.1. Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) two graphs. The
strong product G1 ⊠G2 of G1 and G2 has V (G1)× V (G2) as vertex set, so that two distinct
vertices (u1, v1) and (u2, v2) of G1 ⊠G2 are adjacent if either u1 = u2 and [v1, v2] ∈ E(G2),
or [u1, u2] ∈ E(G1) and v1 = v2, or [u1, u2] ∈ E(G1) and [v1, v2] ∈ E(G2).

Note that the strong product of two graphs is commutative.

Next, we will bound the distances between any two different pair of points in the strong
product graph. For this aim we must distinguish some cases depending on the situation of
the considered points. Let p ∈ G1 and q ∈ G2 be two points of G1 and G2 respectively. The
pair (p, q) is an inner point in G1 ⊠G2, if p ∈ G1 \ V (G1) and q ∈ V (G2) or p ∈ V (G1) and
q ∈ G2 \ V (G2) or p ∈ G1 \ V (G1) and q ∈ G2 \ V (G2) (i.e., (p, q) ∈ G1 ⊠G2 \ V (G1 ⊠G2)).
Notice that the first and second cases of the inner points in G1 ⊠ G2 are contained in the

23
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Cartesian product graph G12G2 ⊂ G1⊠G2; so the first and second cases are the inner points
of the Cartesian edges properly. In order to represent the inner points of the non Cartesian
edges in G1 ⊠ G2 we will consider the following assumptions. Let [A1, A2] ∈ E(G1) and
[B1, B2] ∈ E(G2) be edges in G1 and G2, respectively. Let p ∈ [A1, A2] and q ∈ [B1, B2] be
inner points of theses fixed edges; we have (p, q) ∈ G1 ⊠G2 \G12G2 if L([pA1]) = L([qB1])
or L([pA1]) = L([qB2]).

Notice that there are different points on G1 ⊠ G2 with the same representation: the
midpoints of [(A1, B1), (A2, B2)] and [(A1, B2), (A2, B1)]. Then, this notation is ambiguous,
but it is convenient.

The following lemmas provide bounds on the distance between any two pair of points in
the strong product graph (p1, q1), (p2, q2) ∈ G1 ⊠G2.

The first one is a well known property about distances between vertices in the strong
product of graphs proved in [64].

Lemma 2.1.2 (Lemma 5.1 in [64]). Let G1, G2 be any graphs. If p1, p2 ∈ V (G1) and
q1, q2 ∈ V (G2), then

dG1⊠G2((p1, q1), (p2, q2)) = max{dG1(p1, p2), dG2(q1, q2)}.

Next, a lower bound on the distance between any two points in the strong product graph.

Proposition 2.1.3. Let G1, G2 be any graphs. For every (p1, q1), (p2, q2) ∈ G1⊠G2 we have

dG1⊠G2((p1, q1), (p2, q2)) ≥ max{dG1(p1, p2), dG2(q1, q2)}. (2.1)

Proof. By symmetry, it suffices to prove dG1⊠G2((p1, q1), (p2, q2)) ≥ dG1(p1, p2). Seeking for
a contradiction, assume that dG1⊠G2((p1, q1), (p2, q2)) < dG1(p1, p2).

Hence, there exist a geodesic Γ joining (p1, q1) and (p2, q2) in G1 ⊠ G2 with L(Γ) <
dG1(p1, p2). Denote by (A1, B1), . . . , (Ak, Bk) the vertices of G1 ⊠ G2 in Γ; without loss of
generality we can assume that Γ meets (A1, B1), . . . , (Ak, Bk) in this order. Then, we have

Γ := [(p1, q1)(A1, B1)]
∪{

k−1∪
j=1

[(Aj, Bj), (Aj+1, Bj+1)]

}∪
[(Ak, Bk)(p2, q2)].

By Definition 2.1.1, we obtain that

γ := [p1A1]
∪{

k−1∪
j=1

[AjAj+1]

}∪
[Akp2]

is a path joining p1 and p2 such that L(γ) ≤ L(Γ) < dG1(p1, p2). This is the contradiction
we were looking for.
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The following result provides an upper bound for the distance between a vertex and an
inner point, as well as between two inner points in G1 ⊠G2.

Proposition 2.1.4. Let G1, G2 be any graphs.

(i) If (u, v) ∈ V (G1 ⊠G2) and (p, q) ∈ G1 ⊠G2 \ V (G1 ⊠G2), then

dG1⊠G2((u, v), (p, q)) ≤ max{dG1(u, p), dG2(v, q)}+ 1. (2.2)

(ii) If (p1, q1), (p2, q2) ∈ G1 ⊠G2 \ V (G1 ⊠G2), then

dG1⊠G2((p1, q1), (p2, q2)) ≤ max{dG1(p1, p2), dG2(q1, q2)}+ 2. (2.3)

Proof. In order to prove (i), let us consider [(u1, v1), (u2, v2)] ∈ E(G1⊠G2) such that (p, q) ∈
[(u1, v1), (u2, v2)]. Let γ be a geodesic in G1 ⊠ G2 joining (u, v) and (p, q). Without loss of
generality we can assume that (u1, v1) ∈ γ. Define ε := dG1⊠G2((u1, v1), (p, q)). By Lemma
5.1.8, we have

dG1⊠G2((u, v), (p, q)) = max{dG1(u, u1), dG2(v, v1)}+ ε

≤ max{dG1(u, p) + dG1(p, u1), dG2(v, q) + dG2(q, v1)}+ ε

≤ max{dG1(u, p), dG2(v, q)}+ 2ε.

If ε ≤ 1/2, then we have (2.2). If ε > 1/2, then we have max{dG1(u, u2), dG2(v, v2)} =
max{dG1(u, u1), dG2(v, v1)}+ 1; thus, dG1⊠G2

(
(u, v), (p, q)

)
= max{dG1(u, p), dG2(v, q)}.

In order to proof (ii), notice that if (p1, q1), (p2, q2) belong to the same edge of G1 ⊠G2,
then we have the result since dG1⊠G2((p1, q1), (p2, q2)) < 1. Assume now that (p1, q1), (p2, q2)
belong to different edges of G1 ⊠ G2. Let us consider (u1, v1), (u2, v2), (u3, v3), (u4, v4) ∈
V (G1 ⊠ G2) such that (p1, q1) ∈ [(u1, v1), (u2, v2)] and (p2, q2) ∈ [(u3, v3), (u4, v4)]. Let
γ∗ be a geodesic in G1 ⊠ G2 joining (p1, q1) and (p2, q2). Without loss of generality we
can assume that (u2, v2), (u3, v3) ∈ γ∗. Define ε1 := dG1⊠G2((u2, v2), (p1, q1)) and ε2 :=
dG1⊠G2((u3, v3), (p2, q2)). Then, we have

dG1⊠G2((p1, q1), (p2, q2)) = ε1 +max{dG1(u2, u3), dG2(v2, v3)}+ ε2

≤ 2ε1 +max{dG1(p1, p2), dG2(q1, q2)}+ 2ε2.

Notice that if ε1, ε2 ≤ 1/2, then (2.3) holds directly. If ε1 > 1/2 (the case ε2 > 1/2
is analogous), then max{dG1(u1, u3), dG2(v1, v3)} = max{dG1(u2, u3), dG2(v2, v3)} + 1; thus,
dG1⊠G2

(
(p1, q1), (u3, v3)

)
= max{dG1(p1, u3), dG2(q1, v3)}. Hence, we have

dG1⊠G2

(
(p1, q1), (p2, q2)

)
= max{dG1(p1, u3), dG2(q1, v3)}+ ε2

≤ max{dG1(p1, p2) + dG1(p2, u3), dG2(q1, q2) + dG2(q2, v3)}+ ε2

≤ max{dG1(p1, p2), dG2(q1, q2)}+ 2ε2.

This finishes the proof.
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The previous lemmas let us announce the following general result on the distances in the
strong product of two graphs.

Theorem 2.1.5. For all graphs G1, G2 we have:

(a) dG1⊠G2((p1, q1), (p2, q2)) = max{dG1(p1, p2), dG2(q1, q2)}, for every (p1, q1), (p2, q2) ∈
V (G1 ⊠G2),

(b) max{dG1(p1, p2), dG2(q1, q2)} ≤ dG1⊠G2((p1, q1), (p2, q2)) ≤ max{dG1(p1, p2), dG2(q1, q2)}
+1, for every (p1, q1) ∈ V (G1 ⊠G2) and (p2, q2) ∈ G1 ⊠G2,

(c) max{dG1(p1, p2), dG2(q1, q2)} ≤ dG1⊠G2((p1, q1), (p2, q2)) ≤ max{dG1(p1, p2), dG2(q1, q2)}
+2, for every (p1, q1), (p2, q2) ∈ G1 ⊠G2.

Let us consider the projection Pk : G1 ⊠G2 −→ Gk for k ∈ {1, 2}.

Corollary 2.1.6. Let {i, j} be a permutation of {1, 2}. Then, for every x, y in G1 ⊠G2,

dGi
(Pi(x), Pi(y)) ≤ dG1⊠G2(x, y) ≤ dGi

(Pi(x), Pi(y)) + diamGj + 2. (2.4)

These results provide information about the geodesics in G1 ⊠G2. Notice that, if γ is a
geodesic joining x and y in G1⊠G2, then it is possible that Pj(γ) does not contain a geodesic
joining Pj(x) and Pj(y) in Gj, as the following example shows.

Example 2.1.7. Consider a cycle graph G1 with vertices {v1, . . . , vn} such that vi ∼ vi+1 for
every i ∈ {1, . . . , n− 1} and a path graph G2 with vertices {w1, . . . , wn} such that wi ∼ wi+1

for every i ∈ {1, . . . , n − 1}. By Lemma 5.1.8, we have that γ := ∪n−1
i=1 [(vi, wi), (vi+1, wi+1)]

is a geodesic joining (v1, w1) and (vn, wn) in G1 ⊠ G2, but P1(γ) = ∪n−1
i=1 [vi, vi+1] does not

contain the geodesic joining v1 and vn in G1 (the edge [v1, vn]).

In this work by trivial graph we mean a graph having just a single vertex, and we denote
it by E1.

The following result allows to compute the diameter of the strong product of two graphs.

Theorem 2.1.8. Let G1, G2 be any graphs. Then we have

diamG1⊠G2 =


max{diamG1, diamG2}, if G1 or G2 is an isomorphic graph to E1,

max{diamV (G1), diamV (G2)}+ 1, otherwise.
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Proof. Since for any graph G, E1 ⊠ G is isomorphic to G we have the first equality. By
Lemma 5.1.8, we have diamV (G1 ⊠G2) = max{diamV (G1), diamV (G2)}; hence,

max{diamV (G1), diamV (G2)} ≤ diamG1 ⊠G2 ≤ max{diamV (G1), diamV (G2)}+ 1.

Without loss of generality we can assume that diamV (G1) ≤ diamV (G2). If diamV (G2)
= ∞, then the inequality holds. Hence, we can assume that G1 and G2 are bounded. Let
B1, B2 be vertices of G2 such that dG2(B1, B2) = diamV (G2), and let A1, A2 be two adjacent
vertices of G1. LetM1 (respectively, M2) be the midpoint of [(A1, B1), (A2, B1)] (respectively,
[(A1, B2), (A2, B2)]). One can check that dG1⊠G2(M1,M2) = diamV (G2) + 1.

This finish the proof.

Note that, in particular, diamG1 ⊠ G2 = diamV (G1 ⊠ G2) + 1 if G1 and G2 are not
isomorphic to E1.

We can deduce several results from Theorem 2.1.8. The first one says that max{diamG1,
diamG2} is a good approximation of the diameter of G1 ⊠G2.

Corollary 2.1.9. For all graphs G1, G2 we have

max{diamG1, diamG2} ≤ diamG1 ⊠G2 ≤ max{diamG1, diamG2}+ 1.

Proof. If v is a vertex of G1 (respectively, G2), then, by Proposition 2.1.3, we have that
{v} ⊠ G2 (respectively, G1 ⊠ {v}) is an isometric subgraph of G1 ⊠ G2. Hence, we obtain
the first inequality. The second one is a consequence of Theorem 2.1.8 and the inequality
diamV (G) ≤ diamG.

Furthermore, we characterize the graphs with diamG1 ⊠G2 = max{diamG1, diamG2}.

Corollary 2.1.10. The equality diamG1 ⊠G2 = max{diamG1, diamG2} holds if and only
if G1 or G2 is isomorphic to E1, or diamG = diamV (G) + 1 for G ∈ {G1, G2} with
diamG = max{diamG1, diamG2}.

2.2 Bounds for the hyperbolicity constant

Some bounds for the hyperbolicity constant of the strong product of two graphs are studied in
this section. These bounds allow to prove Theorem 2.2.11, which characterizes the hyperbolic
strong product graphs.

Thanks to the Lemma 1.3.7 and Theorem 2.1.8 we obtain the following consequence.

Corollary 2.2.1. For all graphs G1, G2, we have

δ(G1 ⊠G2) ≤
max{diamV (G1), diamV (G2)}+ 1

2
,

and the inequality is sharp.
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Theorems 2.3.6, 2.3.8 and 2.3.9 are families of examples for which the equality in the
previous corollary is attained.

Taking into account that E1 ⊠ G is an isomorphic graph to G, we have the following
result.

Corollary 2.2.2. For every graph G we have

δ(G⊠ E1) = δ(E1 ⊠G) = δ(G).

All the previous results allow us to present the following theorem which provides some
lower bounds for δ(G1 ⊠G2).

Theorem 2.2.3. For all graphs G1, G2 we have:

(a) δ(G1 ⊠G2) ≥ max{δ(G1), δ(G2)},

(b) δ(G1 ⊠G2) ≥ 1
2
min{diamV (G1), diamV (G2)},

(c) δ(G1 ⊠G2) ≥ 1
2

(
diamV (G1) + 1

)
, if 0 < diamV (G1) < diamV (G2),

(d) δ(G1 ⊠G2) ≥ 1
4
min{diamV (G1) + 2δ(G2), diamV (G2) + 2δ(G1)}.

Proof. Part (a) is immediate due to G1 ⊠ {v} and {u} ⊠ G2 are isometric subgraphs of
G1 ⊠ G2 for every (u, v) ∈ V (G1 ⊠ G2). Then Lemma 1.3.3 gives that δ(G1 ⊠ G2) ≥
δ(G1⊠{v}) = δ(G1) and δ(G1⊠G2) ≥ δ({u}⊠G2) = δ(G2). Hence, we obtain δ(G1⊠G2) ≥
max{δ(G1), δ(G2)}.

Let D := min{diamV (G1), diamV (G2)}.
Let us prove (b). If D = 0, then (b) holds; so, we just consider D > 0. If D < ∞, let us

consider a geodesic square K := {γ1, γ2, γ3, γ4} in G12G2 ⊂ G1⊠G2 with sides of length D;
then T := {γ1, γ2, γ} is a geodesic triangle in G1⊠G2, where γ is a diagonal geodesic joining
the endpoints of γ1∪γ2. It is clear that the midpoint p of γ satisfies dG1⊠G2(p, γ1∪γ2) = D/2;
therefore δ(T ) ≥ D/2 and, consequently, δ(G1 ⊠ G2) ≥ D/2. If D = ∞, we can repeat the
same argument for any integer N instead of D, and we obtain δ(G1 ⊠G2) ≥ N/2, for every
N : hence, δ(G1 ⊠G2) = ∞ = D/2.

In order to prove (c), note that D < ∞. Let us consider a geodesic rectangle R :=
{σ1, σ2, σ3, σ4} in G12G2 ⊂ G1 ⊠ G2 with L(σ1) = L(σ3) = diamV (G1) and L(σ2) =
L(σ4) = diamV (G1)+1. Denote by γ a geodesic in G1⊠G2 joining the endpoints of σ1∪σ2

which contains the edge in σ4 incident to σ1 ∩ σ4; we may choose γ such that it contains a
diagonal of a geodesic square in G1 ⊠ G2. Then B := {σ1, σ2, γ} is a geodesic triangle in
G1 ⊠G2. If p is the midpoint of γ, then

dG1⊠G2(p, σ1 ∪ σ2) =
diamV (G1) + 1

2
.
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Consequently, δ(G1 ⊠G2) ≥ δ(B) ≥ (diamV (G1) + 1)/2.

Finally, (d). Let E := max{δ(G1), δ(G2)}. Then from parts (a) and (b), we have

δ(G1 ⊠G2) ≥ max

{
D

2
, E

}
≥ 1

2

(
D

2
+ E

)
=

1

4
min{diamV (G1) + 2E, diamV (G2) + 2E}

≥ 1

4
min{diamV (G1) + 2δ(G2), diamV (G2) + 2δ(G1)}.

Theorems 2.3.8 and 2.3.9 provide a family of examples for which the equality in Theorem
2.2.3 (a) is attained.

Corollary 2.2.1 and Theorem 2.2.3 provide lower and upper bounds for δ(G1 ⊠ G2) just
in terms of distances in G1 and G2.

Corollary 2.2.4. For all graphs G1, G2, we have

1

2
min{diamV (G1), diamV (G2)} ≤ δ(G1 ⊠G2) ≤

1

2

(
max{diamV (G1), diamV (G2)}+ 1

)
.

From Theorem 2.2.3 we have obtained several interesting consequences. The following
one is a qualitative result about the hyperbolicity of G1 ⊠G2.

Theorem 2.2.5. If G1 and G2 are infinite graphs, then G1 ⊠G2 is not hyperbolic.

Theorem 2.2.6. Let G1, G2 be graphs with at least two vertices. Let m and M be the
minimum and the maximum between diamV (G1) and diamV (G2), respectively. Then we
have

δ(G1 ⊠G2) ≥ min

{
m+

1

2
,
M

2

}
. (2.5)

Proof. First of all, we prove

δ(G1 ⊠G2) ≥ min

{
m,

M

2

}
. (2.6)

In order to prove this inequality, assume first that 2m ≤ M . If m < ∞, then let us
consider a geodesic rectangle R := γ1 ∪ γ2 ∪ γ3 ∪ γ4 in G12G2 ⊂ G1 ⊠ G2 with L(γ1) =
L(γ3) = 2m and L(γ2) = L(γ4) = m, and consider a geodesic γ joining the endpoints of
γ1 and containing the midpoint of γ3, then B := {γ1, γ} is a geodesic bigon in G1 ⊠ G2.
If p is the midpoint of γ3; then dG1⊠G2(p, γ1) = m; therefore δ(B) ≥ m, and consequently
δ(G1 ⊠ G2) ≥ m. If m = ∞, then we can repeat the same argument for any integer N
instead of m, and we obtain δ(G1 ⊠G2) ≥ N , for every N ; hence, δ(G1 ⊠G2) = ∞ = m.
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If 2m > M , then M < ∞ and we can repeat the previous argument with ⌊M/2⌋ instead
of m, and we obtain the result when M is even. If M is odd, let us consider a geodesic
rectangle R := γ1∪γ2∪γ3∪γ4 in G12G2 ⊂ G1⊠G2 with L(γ1) = L(γ3) = 2⌊M/2⌋+1 = M
and L(γ2) = L(γ4) = ⌊M/2⌋; let p1, p2 be points on γ3 such that dG1⊠G2(p1, γ4) = ⌊M/2⌋ and
dG1⊠G2(p2, γ2) = ⌊M/2⌋; consider a geodesic γ joining the endpoints of γ1 and containing
p1 and p2; then B := {γ1, γ} is a geodesic bigon in G1 ⊠ G2. Denote by p the midpoint of
[p1p2] ⊂ γ3; so, dG1⊠G2(p, γ1) = M/2; therefore, δ(G1 ⊠G2) ≥ δ(B) ≥ M/2.

Since we have proved (2.6), in order to obtain (2.5), we can assume that 0 < 2m < M ;
then we have m < ∞. If we replace ⌊M/2⌋ by m in the previous argument, we obtain
δ(G1 ⊠G2) ≥ m+ 1/2.

Corollary 2.3.7 and Theorems 2.3.8 and 2.3.9 show that the inequality in Theorem 2.2.6
is sharp.

Theorem 2.2.7. Let G1, G2 be any graphs. Let m and M be the minimum and the maximum
between diamV (G1) and diamV (G2), respectively. If 2m ≥ M , then

M

2
≤ δ(G1 ⊠G2) ≤

M + 1

2
. (2.7)

Furthermore, if 2m > M > 0, then

δ(G1 ⊠G2) =
M + 1

2
. (2.8)

Proof. If M = 0, then δ(G1 ⊠ G2) = 0 and (2.7) holds. If M > 0, then, by Corollary 2.2.1
and Theorem 2.2.6, the inequalities in (2.7) hold directly.

In order to prove (2.8), without loss of generality we can assume that diamV (G1) = m
and diamV (G2) = M . Assume first that M is an even number. Since m > M/2, let us con-
sider A0, A1, . . . , AM/2+1 ∈ V (G1) and B0, B1, . . . , BM ∈ V (G2) with γ1 := A0A1 . . . AM/2+1

is a geodesic in G1 and γ2 := B0B1 . . . BM is a geodesic in G2. Denote by X (respectively,
Y ) the midpoint of [(A0, B0), (A1, B0)] (respectively, [(A0, BM), (A1, BM)]). Let us consider

Γ∗ := [X(A0, B0)]
∪{

M∪
i=1

[(A0, Bi−1), (A0, Bi)]

}∪
[(A0, BM)Y ]

and

Γ′ :=[X(A1, B0)]
∪

M/2∪
i=1

[(Ai, Bi−1), (Ai+1, Bi)]

∪
∪

M∪
j=M/2+1

[(AM+2−j, Bj−1), (AM+1−j, Bj)]

∪
[(A1, BM)Y ].
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Then B := {Γ∗,Γ′} is a geodesic bigon in G1 ⊠ G2. If p is the midpoint of Γ′, then
dG1⊠G2(p,Γ

∗) = (M + 1)/2; therefore, δ(G1 ⊠ G2) ≥ δ(B) ≥ (M + 1)/2. Then, Corol-
lary 2.2.1 gives the equality.

Assume now that M is an odd number. Since m ≥ (M + 1)/2, let us consider
A0, A1, . . . , A(M+1)/2 ∈ V (G1) and B0, B1, . . . , BM ∈ V (G2) with γ1 := A0A1 . . . A(M+1)/2 is
a geodesic in G1 and γ2 := B0B1 . . . BM is a geodesic in G2. Denote by X (respectively, Y )
the midpoint of [(A0, B0), (A1, B0)] (respectively, [(A0, BM), (A1, BM)]). Let us consider

Γ∗ := [X(A0, B0)]
∪{

M∪
i=1

[(A0, Bi−1), (A0, Bi)]

}∪
[(A0, BM)Y ]

and

Γ′ :=[X(A1, B0)]
∪

(M−1)/2∪
i=1

[(Ai, Bi−1), (Ai+1, Bi)]

∪
∪

[(A(M+1)/2, B(M−1)/2), (A(M+1)/2, B(M+1)/2)]
∪

∪
M∪

j=(M+1)/2

[(AM+1−j, Bj−1), (AM−j, Bj)]

∪
[(A1, BM)Y ].

Then B := {Γ∗,Γ′} is a geodesic bigon in G1 ⊠ G2. If p is the midpoint of Γ′, then
dG1⊠G2(p,Γ

∗) = (M + 1)/2; therefore, δ(G1 ⊠ G2) ≥ δ(B) ≥ (M + 1)/2. Finally, Corol-
lary 2.2.1 gives the equality.

Theorems 2.3.8 and 2.3.9 show that the first inequality in Theorem 2.2.7 is attained.

Let X be a metric space, Y a non-empty subset of X and ε a positive number. We call
ε-neighborhood of Y in X, denoted by Vε(Y ) to the set {x ∈ X : dX(x, Y ) ≤ ε}.

The next result will be useful in order to prove the upper bound for δ(G1 ⊠ G2) in
Theorem 2.2.9 below.

Theorem 2.2.8 (Theorem 2.9 in [99]). Let X be a δ-hyperbolic geodesic metric space, u, v ∈
X, b a non-negative constant, h a curve joining u and v with L(h) ≤ d(u, v)+b, and g = [uv].
Then,

h ⊆ V8δ+b/2(g), g ⊆ V16δ+b(h).

Theorem 2.2.9. Let G1, G2 be any graphs. Then, we have

δ(G1 ⊠G2) ≤
5

2
diamG1 + 25δ(G2) + 5. (2.9)
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Proof. It suffices to prove (2.9) if G1 is bounded and G2 is hyperbolic, since otherwise the
inequality δ(G1 ⊠G2) ≤ ∞ holds. Let us consider any fixed geodesic triangle T = {x, y, z}
in G1 ⊠ G2 and α ∈ T . In order to bound δ(T ), without loss of generality we can assume
that α ∈ [xy]. Consider the projection P2 : G1 ⊠ G2 −→ G2 and any geodesic γ := [uv] in
G1 ⊠G2. By Corollary 2.1.6, we obtain

L
(
P2(γ)

)
≤ L(γ) = dG1⊠G2(u, v) ≤ dG2

(
P2(v), P2(v)

)
+ b, with b = diamG1 + 2.

Then, by Theorem 2.2.8, there is α′ ∈ [P2(x)P2(y)] such that

dG2(P2(α), α
′) ≤ 8δ(G2) +

b

2
. (2.10)

Since G2 is hyperbolic, there is β′ ∈ [P2(y)P2(z)] ∪ [P2(z)P2(x)] such that

dG2(α
′, β′) ≤ δ(G2). (2.11)

By Theorem 2.2.8, there is β′′ ∈ P2([yz] ∪ [zx]) such that

dG2(β
′, β′′) ≤ 16δ(G2) + b. (2.12)

Consequently, by (2.10), (2.11) and (2.12) we obtain

dG2(P2(α), P2([yz] ∪ [zx])) ≤ dG2(P2(α), β
′′) ≤ 25δ(G2) +

3b

2
. (2.13)

Finally, by Corollary 2.1.6 and (2.13) we obtain

dG1⊠G2(α, [yz] ∪ [zx]) ≤ dG2(P2(α), P2([yz] ∪ [zx])) + b ≤ 25δ(G2) +
5b

2
.

This finishes the proof.

Theorems 2.2.3 and 2.2.9 provide lower and upper bounds of δ(G1 ⊠ G2) in terms of
linear combinations of hyperbolicity constants and diameters of its generator graphs, as the
following result shows.

Corollary 2.2.10. For all graphs G1, G2, we have

1

4
min{2δ(G1) + diamV (G2), 2δ(G2) + diamV (G1)} ≤ δ(G1 ⊠G2)

≤ 5

2
min {diamG1 + 10δ(G2), diamG2 + 10δ(G1)}+ 5.

Corollary 2.2.10 allows to obtain the main result of this work: the characterization of the
hyperbolic graphs G1 ⊠G2.
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Theorem 2.2.11. For all graphs G1, G2 we have that G1 ⊠ G2 is hyperbolic if and only if
G1 is hyperbolic and G2 is bounded or G2 is hyperbolic and G1 is bounded.

Many parameters γ of graphs satisfy the inequality γ(G1⊠G2) ≥ γ(G1)+ γ(G2). There-
fore, one could think that the inequality δ(G1 ⊠ G2) ≥ δ(G1) + δ(G2) holds for all graphs
G1, G2. However, this is false, as the following example shows:

Example 2.2.12. δ(P ⊠ C4) < δ(P ) + δ(C4), where P is the Petersen graph.

We have that diamV (P ) = 2, diamV (C4) = 2. Besides, Theorem 1.3.10 gives that
δ(P ) = 3/2 and δ(C4) = 1. By Theorem 2.2.7, we obtain δ(P ⊠ C4) = 3/2 < 3/2 + 1 =
δ(P ) + δ(C4).

The inequality δ(G1 ⊠G2) ≤ δ(G1) + δ(G2) is also false, since δ(P2 ⊠P2) = δ(K4) = 1 >
2δ(P2) = 0.

2.3 Computation of the hyperbolicity constant for some

product graphs

This last section present the value of the hyperbolicity constant for many product of graphs.

Remark 2.3.1. By Theorems 1.3.12 and 1.3.13, in order to compute the hyperbolicity con-
stant of a graph G it suffices to consider dG(p, [xz] ∪ [yz]) where T = {x, y, z} is a geodesic
triangle that is a cycle with x, y, z ∈ J(G) and p ∈ [xy] satisfies dG(p, V (G)) ∈ {0, 1/4, 1/2}.

The following results characterize the hyperbolicity constant of the strong product of
trees and certain graphs. These results are interesting by themselves and, furthermore, they
will be useful in order to prove the last theorems of this Chapter.

Theorem 2.3.2. Let T be any tree and G any graph with 0 < diamV (G) < diamT/2.
Then, we have

δ(G⊠ T ) = diamV (G) +
1

2
.

Proof. On the one hand, Theorem 2.2.6 gives δ(G ⊠ T ) ≥ diamV (G) + 1/2. On the other
hand, by Theorem 1.3.13 it suffices to consider geodesic triangles△ = {x, y, z} inG⊠T which
are cycles with x, y, z ∈ J(G ⊠ T ). Let (v, w) be a vertex in [xy]. If dG⊠T ((v, w), {x, y}) ≤
diamV (G), then dG⊠T ((v, w), [yz] ∪ [zx]) ≤ diamV (G). Assume that dG⊠T ((v, w), {x, y}) >
diamV (G). Let Vx (respectively, Vy) be the closest vertex to x (respectively, y) in [xy].
Note that dG⊠T (Vx, Vy) = dG⊠T (Vx, (v, w)) + dG⊠T ((v, w), Vy) ≥ 2 diamV (G). Consider
the projection PT on T . By Lemma 5.1.8 we have dG⊠T (Vx, Vy) = dT (PT (Vx), PT (Vy)).
Due to dT (PT (Vx), PT (Vy)) ≤ dT (PT (Vx), w) + dT (w,PT (Vy)), we have dG⊠T (Vx, (v, w)) =
dT (PT (Vx), w) and dG⊠T ((v, w), Vy) = dT (w,PT (Vy)). Then, w ∈ [PT (x)PT (y)] = PT ([xy]).
Since T is a tree, w ∈ PT

(
[yz]∪[zx]

)
. Then, ([yz]∪[zx])∩(G⊠{w}) ̸= ∅ and dG⊠T ((v, w), [yz]∪
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[zx]) ≤ diamV (G). So, we have dG⊠T ((v, w), [yz]∪ [zx]) ≤ diamV (G) for every vertex (v, w)
in [xy]. Since x, y ∈ J(G ⊠ T ), dG⊠T (p, [yz] ∪ [zx]) ≤ diamV (G) + 1/2 for every p ∈ [xy].
Hence, δ(△) ≤ diamV (G) + 1/2, and we obtain δ(G⊠ T ) ≤ diamV (G) + 1/2.

Theorem 2.3.3. Let T be any tree and G any graph with 0 < diamV (G) = diamT/2.
Then, we have

δ(G⊠ T ) = diamV (G) +
1

4
.

Proof. By Theorem 2.2.7, we have that diamV (G) ≤ δ(G⊠ T ) ≤ diamV (G) + 1/2.
Now we show a geodesic bigon B in G ⊠ T with δ(B) = diamV (G) + 1/4. Define

by n := diamV (G) and consider v1, . . . , vn+1 ∈ V (G) with vi ∼ vi+1 for i = 1, . . . , n
and dG(v1, vn+1) = n. Also, consider w1, . . . , w2n+1 ∈ V (T ) with wi ∼ wi+1 for i =
1, . . . , 2n and dT (w1, w2n+1) = diamT = 2n. Denote by a (respectively, b) the midpoint
of [(v1, w1), (v2, w1)] (respectively, [(v1, w2n+1), (v2, w2n+1)]). Let us consider

γ∗ := [a(v1, w1)]
∪{

2n∪
i=1

[(v1, wi), (v1, wi+1)]

}∪
[(v1, w2n+1)b]

and

γ′ :=[a(v2, w1)]
∪{

n−1∪
i=1

[(vi+1, wi), (vi+2, wi+1)]

}∪
[(vn+1, wn), (vn+1, wn+1)]

∪
∪

[(vn+1, wn+1), (vn+1, wn+2)]
∪{

n−1∪
j=1

[(vn+2−j, wn+1+j), (vn+1−j, wn+2+j)]

}∪
∪

[(v2, w2n+1)b].

Consider the geodesic bigon B := {γ∗, γ′} in G⊠ T . Let p be the midpoint of γ′ and let p0
be a point in γ′ with dG⊠T (p0, p) = 1/4; then dG⊠T (p0, γ

∗) = n+1/4 and δ(G⊠T ) ≥ δ(B) ≥
n+ 1/4.

Hence, by Theorem 1.3.12 we have δ(G ⊠ T ) ∈ {n + 1/4 , n + 1/2}. Seeking for a
contradiction assume that δ(G ⊠ T ) = n + 1/2. Then there are a geodesic triangle △ =
{x, y, z} in G⊠T and p ∈ [xy] with dG⊠T (p, [yz]∪ [zx]) = n+1/2. By Theorem 1.3.13 we can
assume that△ is a cycle with x, y, z ∈ J(G⊠T ). By Theorem 2.1.8, diam(G⊠T ) = 2n+1 and
we conclude that L([xy]) = 2n+1 and p is the midpoint of [xy]. Since diamV (G⊠T ) = 2n,
we have that x, y are midpoints of edges in G ⊠ T , and so, p is a vertex of G ⊠ T . We
can write [xy]∩ V (G⊠ T ) = {(a1, b1), (a2, b2), . . . , (a2n+1, b2n+1)} with a1, . . . , a2n+1 ∈ V (G),
(ai, bi) ∼ (ai+1, bi+1) for i = 1, . . . , 2n and dT (b1, b2n+1) = 2n. Thus, p = (an+1, bn+1) and
p ∈ V (G ⊠ {bn+1}). Since T is a tree we have that ([yz] ∪ [zx]) ∩ (G ⊠ {bn+1}) ̸= ∅; in
particular, dG⊠T (p, [yz] ∪ [zx]) ≤ diamV (G). This is the contradiction we were looking for,
and then δ(G⊠ T ) = diamV (G) + 1/4.
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The following lemma will be useful.

Lemma 2.3.4. Let Cm be a cycle graph and G any graph with diamV (G) < diamV (Cm).
Let γ = [xy] be a geodesic in G⊠Cm such that x, y ∈ J(G⊠Cm). Then, L(PCm(γ)) ≤ m/2
where PCm is the projection on Cm.

Proof. If diamV (G) = 0, then the result is direct. Assume now that diamV (G) > 0.
If L(γ) ≤ m/2, then we have the result since L(PCm(γ)) ≤ L(γ). Assume that L(γ) >

m/2. Seeking for a contradiction, assume that L(PCm(γ)) > m/2.
Assume that m is even (the case m odd is similar). Since x, y ∈ J(G ⊠ Cm) and

L(PCm(γ)) > m/2, there are x′, y′ ∈ γ ∩ J(G ⊠ Cm) such that dCm(PCm(x
′), PCm(y

′)) =
(m + 1)/2. Without loss of generality we can assume that x′ ∈ V (G ⊠ Cm) and y′ /∈
V (G ⊠ Cm). Let A,A1, A2 ∈ V (G) and B,B1, B2 ∈ V (Cm) such that x′ = (A,B) and
y′ ∈ [(A1, B1), (A2, B2)]. Since dCm(PCm(x

′), PCm(y
′)) = (m+1)/2, without loss of generality

we can assume that dCm(B,B1) + 1 = dCm(B,B2) = m/2. Since diamV (Cm) > diamV (G),
by Lemma 5.1.8 we have dG⊠Cm((A,B), (A1, B1)) = m/2−1; thus, dG⊠Cm(x

′, y′) ≤ (m−1)/2.
This is the contradiction we were looking for.

The following theorem provides the exact value of the hyperbolicity constant of the strong
product of a cycle Cm and any graph G with diamV (G) ≤ diamV (Cm)/2. This result is
interesting by itself and, furthermore, it will be useful in order to prove the last theorems of
this Chapter.

Theorem 2.3.5. Let Cm be a cycle graph and G any graph with diamV (G) ≤ diamV (Cm)/2.
Then, we have

δ(G⊠ Cm) =

{
⌊m/2⌋/2 + 1/4, if diamV (G) = diamV (Cm)/2,
m/4, if diamV (G) < diamV (Cm)/2.

(2.14)

Proof. If diamV (G) = 0, then the equality is trivial. Assume now that diamV (G) > 0. Let
V (Cm) = {w1, . . . , wm} where wi ∼ wi+1 for i = 1, . . . ,m− 1. Let PCm be the projection on
Cm.

First, we prove that δ(G ⊠ Cm) < (⌊m/2⌋ + 1)/2. Seeking for a contradiction, assume
that there are a geodesic triangle T = {x, y, z} in G ⊠ Cm and a point p ∈ γ := [xy] with
dG⊠Cm(p, [yz] ∪ [zx]) = (⌊m/2⌋ + 1)/2 = diam(G ⊠ Cm)/2. Then L(γ) = diam(G ⊠ Cm)
and dG⊠Cm(p, [yz] ∪ [zx]) = diam(G ⊠ Cm)/2, and we conclude that p is the midpoint of
γ. By Theorem 1.3.13, we can assume that T is a cycle with x, y, z ∈ J(G ⊠ Cm). Since
diamV (G⊠Cm) = diam(G⊠Cm)− 1, by Theorem 2.1.8 we have that x, y are midpoints of
edges in G⊠Cm. Let Vx (respectively, Vy) be the closest vertex to x (respectively, y) in γ. Let
V ′
x (respectively, V

′
y) be the closest vertex to x (respectively, y) in [xz] (respectively, [yz]). By

Lemma 5.1.8, we have dG⊠Cm(Vx, Vy) = dCm(PCm(Vx), PCm(Vy)) = ⌊m/2⌋. Therefore, since
diamV (G) ≤ diamV (Cm)/2 we have dCm(PCm(Vx), PCm(p)) = dCm(PCm(p), PCm(Vy)) =
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⌊m/2⌋/2. By Lemma 2.3.4 we have L(PCm(γ)) ≤ m/2, since 2
(
⌊m/2⌋/2 + 1/2

)
> m/2 we

have either PCm(Vx) = PCm(x) = PCm(V
′
x) or PCm(Vy) = PCm(y) = PCm(V

′
y). So, we have

dG⊠Cm(p, [xz] ∪ [yz]) ≤ dG⊠Cm(p, {V ′
x, V

′
y}) ≤ ⌊m/2⌋/2 ≤ m/4.

This is the contradiction we were looking for, and we have δ(G⊠Cm) < (⌊m/2⌋+1)/2. So,
by Theorem 1.3.12 we have δ(G⊠ Cm) ≤ ⌊m/2⌋/2 + 1/4.

Assume now that ⌊m/2⌋ = 2diamV (G). If m is odd (i.e., m = 4k + 1), then Theorem
2.2.3 (a) gives δ(G⊠Cm) ≥ m/4 = ⌊m/2⌋/2+1/4. So, (2.14) holds. Assume that m in even
(i.e., m = 4k). Now we show a geodesic bigon B in G⊠ Cm with δ(B) = ⌊m/2⌋/2 + 1/4 =
k + 1/4. Note that k = diamV (G) and consider v1, . . . , vk+1 ∈ V (G) with vi ∼ vi+1 for i =
1, . . . , k and dG(v1, vk+1) = k. Denote by a (respectively, b) the midpoint of [(v1, w1), (v2, w1)]
(respectively, [(v1, w2k+1), (v2, w2k+1)]). Let us consider

γ∗ := [a(v1, w1)]
∪{

2k∪
i=1

[(v1, wi), (v1, wi+1)]

}∪
[(v1, w2k+1)b]

and

γ′ :=[a(v2, w1)]
∪{

k−1∪
i=1

[(vi+1, wi), (vi+2, wi+1)]

}∪
[(vk+1, wk), (vk+1, wk+1)]

∪
∪

[(vk+1, wk+1), (vk+1, wk+2)]
∪{

k−1∪
j=1

[(vk+2−j, wk+1+j), (vk+1−j, wk+2+j)]

}∪
∪

[(v2, w2k+1)b].

Then B := {γ∗, γ′} is a geodesic bigon in G⊠ Cm with δ(B) = k + 1/4 = ⌊m/2⌋/2 + 1/4.

Finally, assume that ⌊m/2⌋ > 2 diamV (G). By Theorem 2.2.3 (a) it suffices to prove
δ(G⊠ Cm) ≤ m/4. If m is odd, then ⌊m/2⌋/2 + 1/4 = m/4 and (2.14) holds.

Assume that m is even, then diamV (G) ≤ m/4 − 1/2. Fix any geodesic triangle
T = {x, y, z} in G ⊠ Cm and p ∈ [xy]. By Remark 2.3.1, we can assume that T is a cycle,
x, y, z ∈ J(G ⊠ Cm) and p satisfies dG(p, V (G)) ∈ {0, 1/4, 1/2}. If dG⊠Cm(p, {x, y}) ≤ m/4,
then dG⊠Cm(p, [yz] ∪ [zx]) ≤ m/4. Assume that dG⊠Cm(p, {x, y}) > m/4; since x, y ∈
J(G ⊠ Cm) and dG(p, V (G)) ∈ {0, 1/4, 1/2}, we have dG⊠Cm(p, {x, y}) ≥ m/4 + 1/4. We
have L([xy]) > m/2. Let Vx (respectively, Vy) be the closest vertex to x (respectively, y) in
[xy]; then dG⊠Cm(p, {Vx, Vy}) ≥ m/4 − 1/4. Let V ′

x (respectively, V ′
y) be the closest vertex

to x (respectively, y) in [xz] (respectively, [yz]). Since m is even and x, y ∈ J(G ⊠ Cm)
we have dG⊠Cm(Vx, Vy) ≥ m/2 and we conclude dG⊠Cm(Vx, Vy) = m/2. By Lemma 5.1.8
we have dG⊠Cm(Vx, Vy) = dCm(PCm(Vx), PCm(Vy)) = m/2; by Lemma 2.3.4 we conclude
L
(
PCm([xy])

)
= m/2. Since m/2 = ⌊m/2⌋ > diamV (G), we have PCm(Vx) = PCm(x) =
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PCm(V
′
x) and PCm(Vy) = PCm(y) = PCm(V

′
y). Since dG⊠Cm(p, {Vx, Vy}) ≤ dG⊠Cm(Vx, Vy)/2 =

m/4, without loss of generality we can assume that dG⊠Cm(p, {Vx, Vy}) = dG⊠Cm(p, Vx) ≤
m/4. Let Vp be the closest vertex to p in [xp]. Since dG⊠Cm(p, Vx) ≥ m/4 − 1/4 >
m/4 − 1/2 ≥ diamV (G), we have diamV (G) ≥ dG⊠Cm(Vp, Vx) = dCm(PCm(Vp), PCm(Vx)) =
dCm(PCm(Vp), PCm(V

′
x)) and we conclude dG⊠Cm(Vp, Vx) = dG⊠Cm(Vp, V

′
x) and dG⊠Cm(p, [xz]∪

[yz]) ≤ dG⊠Cm(p, V
′
x) ≤ dG⊠Cm(p, Vx) ≤ m/4. Then δ(G⊠ Cm) ≤ m/4.

As a consequence of Theorems 2.2.7, 2.3.2, 2.3.3 and 2.3.5 we obtain the precise values
of the hyperbolicity constants of the following families of graphs.

Theorem 2.3.6. Let T1, T2 be two trees with diamT1 ≤ diamT2. Then

δ(T1 ⊠ T2) =


0, if diamT1 = 0,
diamT1 + 1/2, if 0 < diamT1 < (diamT2)/2,
diamT1 + 1/4, if 0 < diamT1 = (diamT2)/2,
(diamT2 + 1)/2, if diamT1 > (diamT2)/2.

Corollary 2.3.7. Let Pn, Pm be two path graphs with 2 ≤ n ≤ m. Then

δ(Pn ⊠ Pm) =


m/2, if m− 1 < 2(n− 1),
n− 3/4, if m− 1 = 2(n− 1),
n− 1/2, if m− 1 > 2(n− 1).

Theorem 2.3.8. Let Cn, Cm be two cycle graphs with 3 ≤ n ≤ m. Then

δ(Cn ⊠ Cm) =


⌊m/2⌋/2 + 1/2, if ⌊m/2⌋ < 2⌊n/2⌋,
⌊m/2⌋/2 + 1/4, if ⌊m/2⌋ = 2⌊n/2⌋,
m/4, if ⌊m/2⌋ > 2⌊n/2⌋.

Theorem 2.3.9. For every m ≥ 2, n ≥ 3,

δ(Cn ⊠ Pm) =



⌊n/2⌋+ 1/2, if ⌊n/2⌋ < (m− 1)/2,
⌊n/2⌋+ 1/4, if ⌊n/2⌋ = (m− 1)/2,
m/2, if (m− 1)/2 < ⌊n/2⌋ ≤ (m− 1),(
⌊n/2⌋+ 1

)
/2, if m− 1 < ⌊n/2⌋ < 2(m− 1),

⌊n/2⌋/2 + 1/4, if ⌊n/2⌋ = 2(m− 1),
n/4, if ⌊n/2⌋ > 2(m− 1).





Chapter 3

Gromov hyperbolicity in lexicographic
product graphs

The lexicographic product of graphs has been extensively investigated in relation to a wide
range of subjects (see, e.g., [76, 98, 107, 120, 121] and the references therein).

3.1 Distances in lexicographic products

In order to estimate the hyperbolicity constant of the lexicographic product of two graphs
G1 and G2, we must obtain bounds on the distances between any two arbitrary points in
G1 ◦G2. Besides, we study the geodesics in G1 ◦G2, relating them with the geodesics in G1.
The lemmas of this section provide these results.

We will use the lexicographic product definition given in [64].

Definition 3.1.1. Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) be two graphs. The
lexicographic product G1 ◦ G2 of G1 and G2 has V (G1) × V (G2) as vertex set, so that two
distinct vertices (u1, v1) and (u2, v2) of G1 ◦ G2 are adjacent if either [u1, u2] ∈ E(G1), or
u1 = u2 and [v1, v2] ∈ E(G2).

Note that the lexicographic product of two graphs is not always commutative (see Figure
3.1). We use the notation (x, y) for the points of the graph G1 ◦ G2 with x ∈ V (G1) or
y ∈ V (G2). Otherwise, this notation can be ambiguous. We consider that every edge of
G1 ◦G2 has length 1.

Remark 3.1.2. The Cartesian and the strong product of two graphs are subgraphs of the
lexicographic product of two graphs, i.e., G12G2 ⊆ G1 ⊠G2 ⊆ G1 ◦G2.

Remark 3.1.3. Let G be any graph. Then G ◦ E1 ≃ G and E1 ◦G ≃ G.

39
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P3 ◦ P4 P4 ◦ P3

Figure 3.1: Non commutative lexicographic product of two graphs (P3 ◦ P4 ̸≃ P4 ◦ P3).

In what follows we denote by π the projection π : G1 ◦ G2 → G1. The following result
allows to compute the distance between any two vertices of G1 ◦G2.

Lemma 3.1.4. Let G1 be a non-trivial graph and G2 any graph and (u, v), (u′, v′) two
vertices in G1 ◦G2. Then

dG1◦G2((u, v), (u
′, v′)) =

{
min{2, dG2(v, v

′)}, if u = u′,
dG1(u, u

′), if u ̸= u′.

Proof. Assume first that u = u′, thus (u, v), (u, v′) ∈ V
(
{u} ◦ G2

)
. If dG2(v, v

′) ≤ 2 then
dG1◦G2

(
(u, v), (u, v′)

)
= dG2(v, v

′) since a path in G1 ◦ G2 joining (u, v) and (u, v′) which is
not contained in {u} ◦ G2 has a vertex out of {u} ◦ G2, and so, its length is at least 2. If
dG2(v, v

′) > 2 then

dG1◦G2((u, v), (u, v
′)) = dG1◦G2((u, v), {w} ◦G2) + dG1◦G2({w} ◦G2, (u, v

′)) = 2,

where [u,w] ∈ E(G1).
Assume now that u ̸= u′. If γ := [uu′] is a geodesic in G1 joining the points u and u′ with

L(γ) = k, then there exist vertices A1, . . . , Ak−1 in γ \ {u, u′}. Without loss of generality we
can assume that γ meets A1, . . . , Ak−1 in this order. If we fix v0 ∈ V (G2), then

dG1◦G2((u, v), (u
′, v′)) ≤ dG1◦G2((u, v), (A1, v0)) + . . .+ dG1◦G2((Ak−1, v0), (u

′, v′)) = k.

If dG1◦G2((u, v), (u
′, v′)) < k, then there exists a geodesic Γ in G1 ◦G2 joining (u, v) and

(u′, v′) with L(Γ) = r < k. Denote by B1, . . . , Br−1 the vertices in Γ \ {(u, v), (u′, v′)}.
Without loss of generality we can assume that Γ meets B1, . . . , Br−1 in this order. Then we
have

Γ := [(u, v), B1]
∪{

r−2∪
j=1

[Bj, Bj+1]

}∪
[Br−1, (u

′, v′)].

By Definition 3.1.1,

γ1 := [u, π(B1)]
∪{

r−2∪
j=1

[π(Bj), π(Bj+1)]

}∪
[π(Br−1), u

′]
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is a path joining u and u′ in G1 such that L(γ1) ≤ L(Γ) < L(γ). This is a contradiction,
thus

dG1◦G2((u, v), (u
′, v′)) = dG1(u, u

′).

Lemma 3.1.5. Let G1 be a non-trivial graph and G2 any graph. Then G1◦G2 ⊆ V3/2(G1 ◦ {v})
for every v ∈ V (G2).

Proof. Let p be any point of G1 ◦G2. If p ∈ V (G1 ◦G2), then consider any u0 ∈ V (G1) such
that [π(p), u0] ∈ E(G1). Definition 3.1.1 gives dG1◦G2(p,G1 ◦{v}) ≤ dG1◦G2(p, (u0, v)) = 1 for
every v ∈ V (G2) since G1 is non-trivial. Assume that p /∈ V (G1 ◦G2). Let A ∈ V (G1 ◦G2)
with dG1◦G2(p,A) ≤ 1/2. Hence, we have

dG1◦G2(p,G1 ◦ {v}) ≤ dG1◦G2(p,A) + dG1◦G2(A,G1 ◦ {v}) ≤ 3/2.

Lemma 3.1.6. Let y1, y2 be any points in G2 with dG2(y1, y2) ≤ 5/2 and x0 a fixed vertex in
G1. Then γ := {x0} × [y1y2] is a geodesic in G1 ◦G2 joining the points (x0, y1) and (x0, y2).

Proof. If G1 is the trivial graph, then G1 ◦ G2 ≃ G2 and we have the result. Assume that
G1 is a non-trivial graph. Seeking for a contradiction assume that γ is not a geodesic in
G1 ◦ G2. Therefore, there is a geodesic Γ in G1 ◦ G2 joining (x0, y1) and (x0, y2) which is
not contained in {x0} ◦ G2. Hence, Γ has a vertex V outside of {x0} ◦ G2; thus, we have
2 ≤ L(Γ) < L(γ) ≤ 5/2. We have

Γ = [(x0, y1)(x0, B1)] ∪ [(x0, B1), V ] ∪ [V, (x0, B2)] ∪ [(x0, B2)(x0, y2)],

where Bi is a closest vertex to yi in G2, for i = 1, 2. Since γ ∪ Γ contains a cycle C with
(x0, B1), (x0, B2) ∈ C and L(γ) + L(Γ) < 5 we have L(C) ≤ 4 and dG2(B1, B2) ≤ 2, and so,
we obtain

dG2(y1, y2)≤ dG2(y1, B1) + dG2(B1, B2) + dG2(B2, y2)

≤ dG2(y1, B1) + 2 + dG2(B2, y2) = L(Γ) < L(γ) = dG2(y1, y2).

This is the contradiction we were looking for, and so, γ is a geodesic in G1 ◦G2.

Corollary 3.1.7. Let G1 be a non-trivial graph and G2 any graph, y1, y2 any points in G2

with dG2(y1, y2) > 3 and x0 a fixed vertex in G1. Then {x0} × [y1y2] is not a geodesic in
G1 ◦G2.

Proof. Let Bi be the closest vertex to yi in G2, for i = 1, 2. Since G1 is a non-trivial graph
there is a vertex u0 ∈ V (G1) such that [x0, u0] ∈ E(G1). For any fixed v0 ∈ V (G2) we have

Γ := [(x0, y1)(x0, B1)] ∪ [(x0, B1), (u0, v0)] ∪ [(u0, v0), (x0, B2)] ∪ [(x0, B2)(x0, y2)]

is a path in G1 ◦ G2 joining (x0, y1) and (x0, y2). Besides, since dG2(y1, B1) ≤ 1/2 and
dG2(y2, B2) ≤ 1/2 we have L(Γ) ≤ 3 < dG2(y1, y2) = L({x0} × [y1y2]).
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Remark 3.1.8. Let y1, y2 be two midpoints in any graph G2 with dG2(y1, y2) = 3 and x0 a
fixed vertex in any graph G1. Then {x0}× [y1y2] is a geodesic in G1 ◦G2 joining (x0, y1) and
(x0, y2).

Lemma 3.1.9. Let G1 be a non-trivial graph and G2 be any graph. If γ is a geodesic in
G1 ◦G2 joining x and y with L(γ) > 3, then π(γ) contains at least three vertices in G1.

Furthermore, if σ is a path in G1 ◦G2 joining x and y, then π(σ) contains at least three
vertices in G1.

Proof. Since L(γ) > 3 then γ contains at least three vertices in G1 ◦ G2. Let V1 and V2 be
the closest vertices to x and y in γ, respectively. Seeking for a contradiction assume that
π(γ) contains either one or two vertices in G1. Since G1 is a non-trivial graph and π(γ)
contains at most two vertices, Lemma 3.1.4 gives that dG1◦G2(V1, V2) = 2 and π(V1) = π(V2).
Furthermore, since L(γ) > 3 we have either dG1◦G2(x, V1) > 1/2 or dG1◦G2(y, V2) > 1/2.
Without loss of generality we can assume that dG1◦G2(x, V1) > 1/2. Let W be the vertex in
G1 ◦G2 with x in the edge [V1,W ]. Then dG1◦G2(x,W ) < 1/2 < dG1◦G2(x, V1). Consider now
a path γ1 := [xW ] ∪ [WV2] ∪ [V2y] joining x and y in G1 ◦ G2. Hence, L(γ1) < L(γ) since
dG1◦G2(W,V2) ≤ 2. This is the contradiction we were looking for, and then π(γ) contains
at least three vertices in G1. Finally, since L(σ) ≥ L(γ) and π(γ) contains at least three
vertices, the proof is straightforward.

Lemma 3.1.10. Let G1 be a non-trivial graph and G2 be any graph. Consider a geodesic
γ in G1 ◦ G2 joining x and y. If L(γ) > 3, then π(γ) is a geodesic in G1 joining π(x) and
π(y). Besides, if L(γ) = 3 then π(γ) contains a geodesic in G1 joining π(x) and π(y).

Proof. Assume first that L(γ) > 3. By Lemma 3.1.9, π(γ) contains at least three vertices
in G1. Denote by V1, . . . , Vr the vertices of G1 ◦ G2 in γ with r ≥ 3, and v1, . . . , vr their
projections in G1 (there are at least three different vertices). Without loss of generality we
can assume that γ meet V1, . . . , Vr in this order. Let V ′

1 , V
′
r be two vertices in G1 ◦G2 such

that x ∈ [V ′
1 , V1] and y ∈ [V ′

r , Vr], and denote by v′1, v
′
r their projections in G1, respectively.

Since dG1◦G2(V1, Vr) ≥ 2 and dG1◦G2(x, y) ≥ 3, Lemma 3.1.4 gives dG1

(
{v1, v′1}, {vr, v′r}

)
≥ 2.

Seeking for a contradiction assume that there is a geodesic Γ in G1 joining π(x) and π(y)
with length less than L(π(γ)). Let us consider v∗i := {vi, v′i} ∩ Γ and V ∗

i ∈ {Vi, V
′
i } with

π(V ∗
i ) = v∗i for i ∈ {1, r}. Now, we have three cases.

1. π(x) ̸= v1 and π(y) ̸= vr. Then π(x) ∈ [v′1, v1] and π(y) ∈ [v′r, vr]. Let γ1 := [xV ∗
1 ] ∪

[V ∗
1 V

∗
r ] ∪ [V ∗

r y] ⊂ G1 ◦G2. Since dG1(v
∗
1, v

∗
r) ≥ 2, Lemma 3.1.4 gives dG1◦G2(V

∗
1 , V

∗
r ) =

dG1(v
∗
1, v

∗
r), and so L(γ1) = L(Γ) < L(π(γ)) ≤ L(γ). This is the contradiction we were

looking for, and so, π(γ) is a geodesic in G1 joining π(x) and π(y).

2. π(x) = v1 and π(y) ̸= vr or π(x) ̸= v1 and π(y) = vr. By symmetry, we can as-
sume π(x) = v1 and π(y) ̸= vr. Then π(y) ∈ [v′r, vr] and dG1◦G2(x, V1) ≤ 1/2. Let
γ1 := [xV1] ∪ [V1V

∗
r ] ∪ [V ∗

r y] ⊂ G1 ◦ G2. Since dG1(v1, v
∗
r) ≥ 2, Lemma 3.1.4 gives
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dG1◦G2(V1, V
∗
r ) = dG1(v1, v

∗
r), and so L(γ1) = L(Γ) + L([xV1]) < L(π(γ)) + L([xV1]) ≤

L(γ). This is the contradiction we were looking for, and so, π(γ) is a geodesic in G1

joining π(x) and π(y).

3. π(x) = v1 and π(y) = vr. Then π(γ) = π([V1Vr]). Since dG1(v1, vr) ≥ 2, Lemma 3.1.4
gives dG1◦G2(V1, Vr) = dG1(v1, vr). Then L

(
π(γ)

)
= dG1(v1, vr), and π(γ) is a geodesic

in G1 joining π(x) and π(y).

Assume now that L(γ) = 3. Then π(γ) contains either one, two, three or four vertices in
G1.

If π(γ) contains a single vertex in G1, then γ is contained in {v}◦G2 for some v ∈ V (G1).
Thus, π(γ) = v is a geodesic in G1 joining π(x) with π(y).

If π(γ) contains exactly two vertices in G1, then x, y are midpoints of edges and π(x) =
π(y).

If π(γ) contains three or four vertices in G1, then π(γ) contains a geodesic in G1 joining
π(x) and π(y), and the argument used in the proof of the case L(γ) > 3 gives that π(γ) is a
geodesic.

Remark 3.1.11. Let γ be a geodesic in G1◦G2 joining x and y. If L(γ) = 3 and π(γ) is not a
geodesic in G1 joining π(x) and π(y), then x, y are midpoints of edges, π(x) = π(y) ∈ V (G1)
and diam(π(γ)) = 1.

Corollary 3.1.12. Let γ be a geodesic in G1 ◦G2 joining x and y. If π(γ) is not a geodesic
in G1 joining π(x) and π(y), then diam

(
π(γ)

)
< 3.

Notice that, if γ is a geodesic in G1◦G2 joining the points x and y, then it is possible that
π(γ) does not contain a geodesic in G1 joining the points π(x) and π(y), as the following
example shows.

Example 3.1.13. Consider G1 as the cycle graph C3 with vertices {v1, v2, v3} and G2 as
the path graph P3 with vertices {w1, w2, w3} and E(G2) = {[w1, w2], [w2, w3]}. Let x and
y be the midpoints of edges [(v1, w1), (v2, w1)] and [(v1, w3), (v3, w3)], respectively. We have
that γ := [x(v2, w1)] ∪ [(v2, w1), (v3, w3)] ∪ [(v3, w3)y] is a geodesic in G1 ◦ G2 joining x and
y, but π(γ) = [π(x)v2] ∪ [v2, v3] ∪ [v3π(y)] does not contain the geodesic in G1 joining π(x)
and π(y) (note that this geodesic is [π(x)v1] ∪ [v1π(y)]).

3.2 Hiperbolicity in lexicographic products

Some bounds for the hyperbolicity constant of the lexicographic product of two graphs are
studied in this section. These bounds allow to prove Theorem 3.2.14, which characterizes
the hyperbolic lexicographic products of two graphs.

The next theorem shows an important qualitative result: if G1 is not hyperbolic then
G1 ◦G2 is not hyperbolic.
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Theorem 3.2.1. Let G1 and G2 two graphs, then δ(G1) ≤ δ(G1 ◦G2).

Proof. Since G1 ◦ {y} is an isometric subgraph of G1 ◦G2 for every y ∈ V (G2), Lemma 1.3.3
gives the result.

Example 4.2.3 shows that the equality in Theorem 3.2.1 is attained: δ(Cn) = δ(Cn ◦ P2)
for n ≥ 5.

Note that the strong product graph G ⊠ P2 is isomorphic to G ◦ P2 for any graph G.
We recall that δ(Pn) = 0 since the path graph Pn is a tree; besides, it is well known that
the hyperbolicity constant of the cycle graph Cn is n/4, see Theorem 1.3.10. The following
results which appear in [24] give the hyperbolicity constant of some lexicographic product
graphs.

Example 3.2.2. Let Pn be the path graph with n ≥ 2. Then

δ(Pn ◦ P2) =


1, if n = 2,
5/4, if n = 3,
3/2, if n ≥ 4.

Example 3.2.3. Let Cn be the cycle graph with n ≥ 3. Then

δ(Cn ◦ P2) =


1, if n = 3,
5/4, if n = 4,
n/4, if n ≥ 5.

Example 3.2.4. Let Km, Kn be the complete graphs with m,n vertices, respectively, and
m,n ≥ 2. Then Km ◦Kn is isomorphic to Kmn and δ(Km ◦Kn) = 1.

Proposition 3.2.5. Let G1 be a non-trivial graph and G2 any graph. Consider isometric
subgraphs Γ1,Γ2 of G1, G2, respectively, with Γ1 non-trivial. Then Γ1 ◦ Γ2 is an isometric
subgraph to G1 ◦G2.

Note that taking Γ1 as a trivial graph, Γ1 ◦ Γ2 is not an isometric subgraph to G1 ◦G2 if
diamV (Γ2) ≥ 3.

Proof. Since Γ1 ◦ Γ2 is a subgraph of G1 ◦ G2, we have dΓ1◦Γ2(x, y) ≥ dG1◦G2(x, y) for every
x, y ∈ Γ1 ◦ Γ2. Let x, y be any points of Γ1 ◦ Γ2. If x, y ∈ V (Γ1 ◦ Γ2) then by Lemma 3.1.4
we have dG1◦G2(x, y) = dΓ1◦Γ2(x, y) and we obtain the result. Without loss of generality
we can assume that x, y /∈ V (Γ1 ◦ Γ2). Let A1, A2, B1, B2 ∈ V (Γ1 ◦ Γ2) with x ∈ [A1, A2],
y ∈ [B1, B2]. Consider a geodesic γ in G1◦G2 joining x and y with γ := [xAi]∪ [AiBj]∪ [Bjy]
for some i, j ∈ {1, 2}. Then

dΓ1◦Γ2(x, y) ≤ dΓ1◦Γ2(x,Ai) + dΓ1◦Γ2(Ai, Bj) + dΓ1◦Γ2(Bj, y) = dG1◦G2(x, y).

Thus, dG1◦G2(x, y) = dΓ1◦Γ2(x, y).
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Theorem 3.2.6. Let G1 be a non-trivial graph and G2 any graph. Then

δ(G1 ◦G2) = max{δ(Γ1 ◦ Γ2) : Γi is isometric to Gi for i = 1, 2 and Γ1 non-trivial}.

Proof. By Lemma 1.3.3 and Proposition 3.2.5 we have δ(G1 ◦G2) ≥ δ(Γ1 ◦Γ2) for any Γ1,Γ2.
Besides, since any graph is an isometric subgraph of itself we obtain the equality by taking
Γ1 = G1 and Γ2 = G2.

Theorem 3.2.7. If G1 and G2 are non-trivial graphs, then δ(G1 ◦G2) ≥ 1.

Proof. Since Gi is a non-trivial graph there is a subgraph P i
2 in Gi isomorphic to an edge, for

i = 1, 2. Hence, by Example 3.2.2 and Theorem 3.2.6 we have δ(G1◦G2) ≥ δ(P 1
2 ◦P 2

2 ) = 1.

Theorem 3.2.8. Let G2 be any non-trivial graph and G1 any graph. If diamV (G1) = 2,
then δ(G1 ◦G2) ≥ 5/4. If diamV (G1) ≥ 3, then δ(G1 ◦G2) ≥ 3/2.

Proof. Assume that diamV (G1) = 2. Since G2 is a non-trivial graph there is a subgraph
P2 in G2 isomorphic to an edge. Besides, since diamV (G1) = 2 then there is an isometric
subgraph in G1 isomorphic to a path P3 with 3 vertices. Example 3.2.2 and Theorem 3.2.6
give 5/4 = δ(P3 ◦ P2) ≤ δ(G1 ◦G2).

If diamV (G1) ≥ 3, then a similar argument replacing P3 by P4 gives δ(G1◦G2) ≥ 3/2.

Theorem 3.2.9. If G1 is any non-trivial graph and G2 is any graph with diamG2 > 2, then
δ(G1 ◦G2) ≥ 5/4.

Proof. Since diamG2 ≥ 5/2 we have that there exist a midpoint x ∈ J(G2) \ V (G2) and
a vertex y ∈ V (G2) such that dG2(x, y) = 5/2. Hence, by Lemma 4.1.11 we have that
γ1 := {v0} × [xy] is a geodesic in G1 ◦ G2 joining the points (v0, x) and (v0, y) for some
v0 ∈ V (G1). Without loss of generality we can assume that (v0, x) ∈ [A1, A2] such that
A1 ∈ γ1. Denote it by γ2 := [(v0, x)A2] ∪ [A2W ] ∪ [W (v0, y)] where W ∈ V ({v1} ◦ G2) with
[v0, v1] ∈ E(G1). Therefore, L(γ2) = 5/2 and γ2 is a geodesic in G1 ◦ G2 joining the points
(v0, x) and (v0, y). Now we have a geodesic bigon B := {γ1, γ2} in G1 ◦ G2. If p is the
midpoint of γ1, then dG1◦G2(p, γ2) = 5/4 and we conclude that δ(G1 ◦G2) ≥ δ(B) = 5/4.

Theorem 3.2.10. Let G1 be any non-trivial graph and G2 any graph. Then we have δ(G1 ◦
G2) ≤ δ(G1) + 3/2.

Proof. If G1 is not hyperbolic, then δ(G1) = ∞, and so, Theorem 3.2.1 gives the result (with
equality). Assume now that G1 is hyperbolic. By Theorem 1.3.13 it suffices to consider
geodesic triangles T = {x, y, z} in G1 ◦ G2 that are cycles with x, y, z ∈ J(G1 ◦ G2). Let
γ1 := [xy], γ2 := [yz] and γ3 := [zx]. It suffices to prove that dG1◦G2(p, γ2∪γ3) ≤ δ(G1)+3/2
for every p ∈ γ1. If dG1◦G2(p, {x, y}) ≤ 3/2, then dG1◦G2(p, γ2∪γ3) ≤ dG1◦G2(p, {x, y}) ≤ 3/2.

Assume that dG1◦G2(p, {x, y}) > 3/2; then L(γ1) > 3. Let Vp := (v, w) be a closest vertex
to p in γ1. Consider the canonical projection π : G1 ◦ G2 −→ G1 ◦ {w}. By Lemma 3.1.10,
π(γ1) is a geodesic in G1 ◦ {w} joining the points π(x) and π(y).
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If π(γ2) and π(γ3) are geodesics in G1 ◦ {w}, then there is a point α ∈ π(γ2)∪π(γ3) such
that dG1◦{w}(Vp, α) ≤ δ(G1). Assume that α ∈ V

(
π(γ2)∪π(γ3)

)
. Since L(γ1) > 3 and γ2∪γ3

joins x and y, by Lemma 3.1.9, π(γ2) ∪ π(γ3) contains at least three vertices; hence, there
exists a vertex (vα, w) ∈ V (π(γ2) ∪ π(γ3)) such that [α, (vα, w)] ∈ E(G1 ◦ {w}). Let Vα be a
vertex in

(
{vα} ◦G2

)
∩
(
γ2 ∪ γ3

)
. Thus, [α, Vα] ∈ E(G1 ◦G2) and

dG1◦G2(p, γ2 ∪ γ3) ≤ dG1◦G2(p, Vp) + dG1◦{w}(Vp, α) + dG1◦G2(α, Vα) ≤ δ(G1) + 3/2.

If α /∈ V (π(γ2) ∪ π(γ3)), then α ∈ {π(x), π(y)} and α is a midpoint in G1 ◦ {w}. Without
loss of generality we can assume that α = π(x) and, consequently, x is a midpoint in G1 ◦G2.
Let Vx be the closest vertex to x in γ2∪γ3 and vx the closest vertex to π(x) in π(γ1). Hence,
[Vx, vx] ∈ E(G1 ◦G2), dG1◦{w}(Vp, vx) ≤ δ(G1)− 1/2 and

dG1◦G2(p, γ2 ∪ γ3) ≤ dG1◦G2(p, Vp) + dG1◦{w}(Vp, vx) + dG1◦G2(vx, Vx) ≤ δ(G1) + 1.

If π(γ2) and π(γ3) are not geodesics in G1 ◦ {w}, then there is a point α ∈ [π(x)π(z)] ∪
[π(z)π(y)] such that dG1◦{w}(Vp, α) ≤ δ(G1). Notice that, if α is not a vertex in G1◦{w} then
we repeat the previous argument and obtain the result. Assume now that α ∈ V ([π(x)π(z)]∪
[π(z)π(y)]); by symmetry, we can assume that α ∈ V ([π(x)π(z)]). If α ∈ π(γ2) ∪ π(γ3),
then the previous argument gives dG1◦G2(p, γ2 ∪ γ3) ≤ δ(G1) + 3/2. Assume now that
α /∈ π(γ2) ∪ π(γ3). Seeking for a contradiction assume that there is not a vertex (vα, w) ∈
V (π(γ2)∪π(γ3)) such that [α, (vα, w)] ∈ E(G1◦{w}). Then dG1◦{w}(α, V (π(γ2)∪π(γ3))) ≥ 2;
hence, dG1◦{w}(α, π(x)) ≥ 3/2 and dG1◦{w}(α, π(z)) ≥ 3/2. However, by Corollary 3.1.12 we
have dG1◦{w}(π(x), π(z)) = dG1◦{w}(π(x), α) + dG1◦{w}(α, π(z)) < 3, which is a contradiction.
Therefore, there exists a vertex (vα, w) ∈ V (π(γ2) ∪ π(γ3)) such that [α, (vα, w)] ∈ E(G1 ◦
{w}). Let Vα be a vertex in

(
{vα} ◦G2

)
∩
(
γ2 ∪ γ3

)
. Then [α, Vα] ∈ E(G1 ◦G2) and

dG1◦G2(p, γ2 ∪ γ3) ≤ dG1◦G2(p, Vp) + dG1◦{w}(Vp, α) + dG1◦G2(α, Vα) ≤ δ(G1) + 3/2.

In both cases, π(γ2) is a geodesic in G1 ◦{w} but π(γ3) is not a geodesic in G1 ◦{w}, and
π(γ3) is a geodesic in G1 ◦ {w} but π(γ2) is not a geodesic in G1 ◦ {w}, a similar argument
gives the inequality.

Remark 3.2.11. Let G1 be any hyperbolic graph which is not a tree and let G2 be any graph.
The argument in the proof of Theorem 3.2.10 gives that if δ(G1◦G2) = δ(G1)+3/2 then there
is a geodesic triangle T = {x, y, z} with x, y, z ∈ J(G1◦G2) and a midpoint p ∈ [xy] such that
dG1◦G2(p, [xz] ∪ [zy]) = δ(G1) + 3/2. Besides, dG1◦{w}(Vp, [π(x)π(z)] ∪ [π(z)π(y)]) = δ(G1)
and the distance is attained in a vertex α ∈ [π(x)π(z)] ∪ [π(z)π(y)].

Example 3.2.2 and Theorem 3.2.20 show that the equality in Theorem 3.2.10 is attained.
We obtain the following consequence of Theorem 3.2.1 and Theorem 3.2.10.

Theorem 3.2.12. Let G1 be any non-trivial graph and G2 any graph. Then

δ(G1) ≤ δ(G1 ◦G2) ≤ δ(G1) + 3/2.
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Theorems 3.2.8 and 3.2.10 have the following consequence.

Corollary 3.2.13. If G1 is any infinite tree and G2 is any non-trivial graph, then δ(G1 ◦
G2) = 3/2.

Theorem 3.2.14. Let G1 be any non-trivial graph and G2 any graph. The lexicographic
product G1 ◦G2 is hyperbolic if and only if G1 is hyperbolic.

Remark 3.2.15. For any graph G and the trivial graph E1, the lexicographic product graph
E1 ◦G is hyperbolic if and only if G is hyperbolic, since δ(E1 ◦G) = δ(G). This trivial result
completes the characterization of hyperbolic lexicographic products.

The following results allow to characterize the graphs for which the bound in Theorem
3.2.10 is attained.

Theorem 3.2.16. Let G1 be any hyperbolic graph and let G2 be any graph. If δ(G1 ◦G2) =
δ(G1) + 3/2, then G1 is a tree, G2 is a non-trivial graph and δ(G1 ◦G2) = 3/2.

Proof. Seeking for a contradiction assume that G1 is not a tree (i.e., δ(G1) > 0). By
hypothesis G1 ◦ G2 is hyperbolic, thus, Theorem 1.3.13 and Remark 3.2.11 give that there
is a geodesic triangle T = {x, y, z} in G1 ◦G2 that is a cycle with x, y, z ∈ J(G1 ◦G2) and a
midpoint p ∈ [xy] such that dG1◦G2(p, [xz]∪ [zy]) = δ(G1)+3/2. Let Vp := (v, w) be a closest
vertex to p in [xy]∩V (G1◦G2) as in the proof of Theorem 3.2.10, i.e., dG1◦{w}(Vp, [π(x)π(z)]∪
[π(z)π(y)]) = δ(G1) with π the canonical projection on G1 ◦ {w}; besides, this equality is
attained in a vertex α ∈ [π(x)π(z)]∪ [π(z)π(y)]. Note that δ(G1) is an integer number since
it is the distance between two vertices. Since δ(G1) > 0, we have δ(G1) ≥ 1. Let V ′

p be
the vertex in T ∩ V (G1 ◦ G2) such that [Vp, V

′
p ] is the edge in G1 ◦ G2 with p ∈ [Vp, V

′
p ].

Since dG1◦G2(p, {x, y}) ≥ dG1◦G2(p, [xz]∪ [zy]) = δ(G1)+ 3/2, there exist a, b ∈ [xy]∩V (G1 ◦
G2) with dG1◦G2(a, p) = dG1◦G2(b, p) = 3/2 and dG1◦G2(a, b) = 3. If π(Vp) = π(V ′

p), then
dG1◦{w}(π(a), π(b)) = 2. This contradicts Lemma 3.1.4, and so, we have π(Vp) ̸= π(V ′

p) and
π(Vp) ̸= π(p) ̸= π(V ′

p). If dG1◦{w}(π(p), [π(x)π(z)] ∪ [π(z)π(y)]) = dG1◦{w}(Vp, [π(x)π(z)] ∪
[π(z)π(y)]) = δ(G1) ≥ 1, then since π(Vp) ̸= π(p) we obtain that dG1◦{w}(ξ, [π(x)π(z)] ∪
[π(z)π(y)]) = δ(G1) + 1/4 where ξ is the midpoint of [π(p)Vp]. But this is a contradiction
since dG1◦{w}(ξ, [π(x)π(z)] ∪ [π(z)π(y)]) ≤ δ(G1). Then we have dG1◦{w}(π(p), [π(x)π(z)] ∪
[π(z)π(y)]) < dG1◦{w}(Vp, [π(x)π(z)] ∪ [π(z)π(y)]) = δ(G1); hence, dG1◦{w}(π(p), [π(x)π(z)] ∪
[π(z)π(y)]) = δ(G1)− 1/2 and dG1◦{w}(π(V

′
p), [π(x)π(z)] ∪ [π(z)π(y)]) = δ(G1)− 1. We can

repeat the same argument in the proof of Theorem 3.2.10 for V ′
p instead of Vp, and we obtain

dG1◦G2(p, [xz] ∪ [zy]) ≤ δ(G1) + 1/2. This is the contradiction we were looking for and G1 is
a tree.

Hence, δ(G1 ◦ G2) = 3/2. If G2 is a trivial graph, then 3/2 = δ(G1 ◦ G2) = δ(G1) = 0,
which is a contradiction. Therefore, G2 is a non-trivial graph.

Theorem 3.2.20 below is a converse of Theorem 3.2.16; furthermore, it provides the exact
value of the hyperbolicity constant of the lexicographic product of many trees and graphs.
We need some lemmas.



CHAPTER 3. GROMOVHYPERBOLICITY IN LEXICOGRAPHIC PRODUCTGRAPHS48

Lemma 3.2.17. Let G1 be any tree with 1 ≤ diamG1 ≤ 2 and G2 any graph. Then
δ(G1 ◦ G2) = 3/2 if and only if there is a geodesic triangle T = {x, y, z} in G1 ◦ G2 that is
a cycle contained in {v0} ◦G2 for some v0 ∈ V (G1) with x, y, z ∈ J({v0} ◦G2) and a vertex
p ∈ [xy] such that dG1◦G2(p, [xz] ∪ [zy]) = dG1◦G2(p, x) = dG1◦G2(p, y) = 3/2.

Proof. Assume first that δ(G1◦G2) = 3/2. By Theorem 1.3.13 there exists a geodesic triangle
T = {x, y, z} in G1◦G2 that is a cycle with x, y, z ∈ J(G1◦G2) and a point p ∈ [xy] such that
δ(T ) = dG1◦G2(p, [yz] ∪ [zx]) = 3/2. Thus, dG1◦G2(p, {x, y}) ≥ dG1◦G2(p, [xz] ∪ [zy]) = 3/2
and L([xy]) ≥ 3.

Assume that diamG1 = 2 (the case diamG1 = 1 is similar and simpler). We show now
that diamG1 ◦ G2 = 3. Note that diamG1 ◦ G2 ≥ L([xy]) ≥ 3. Let A,B ∈ V (G1 ◦ G2).
If π(A) = π(B), then by Lemma 3.1.4 we have dG1◦G2(A,B) ≤ 2. If π(A) ̸= π(B),
then by Lemma 3.1.4 we have dG1◦G2(A,B) ≤ 2 since that diamG1 = 2. Therefore,
diamV (G1 ◦ G2) = 2 and diamG1 ◦ G2 ≤ 3. Consequently, diamG1 ◦ G2 = 3, L([xy]) = 3
and dG1◦G2(p, x) = dG1◦G2(p, y) = 3/2. Notice that x, y are midpoints of G1 ◦ G2 and p a
vertex of G1 ◦G2.

Assume now that x ∈ {v0}◦G2 for some v0 ∈ V (G1) and y /∈ {v0}◦G2, where x ∈ [A1, A2]
and y ∈ [B1, B2] with A1, B1 ∈ [xy]; then dG1◦G2(A1, B1) = 2 since that L([xy]) = 3.
Note that A1 ∈ {v0} × V (G2) and B1 ∈ {w0} × V (G2) with dG1(v0, w0) = 2. We have
that [xy] ∩ ([yz] ∪ [zx]) = {x, y} since T is a cycle. Hence, A2, B2 ∈ V ([yz] ∪ [zx]) and
dG1◦G2(p, [yz]∪ [zx]) = dG1◦G2(p, {A2, B2}) = 1 since p is a vertex, and this is a contradiction.
If y ∈ {v0} ◦ G2 for some v0 ∈ V (G1) and x /∈ {v0} ◦ G2, then the same argument gives a
contradiction. If x, y /∈ ∪v0∈V (G1){v0} ◦G2, then one can check that dG1◦G2(x, y) ≤ 2, which
is a contradiction. Hence, we conclude that x, y ∈ {v0} ◦ G2 for some v0 ∈ V (G1). We also
have p ∈ {v0} ◦G2 and we conclude that [xy] is contained in {v0} ◦G2. If [yz] ∪ [zx] is not
contained in {v0} ◦G2, then there is a vertex W ∈ [yz] ∪ [zx] such that W ∈ {w0} ◦G2 and
dG1(v0, w0) = 1. Hence, dG1◦G2(p,W ) = 1, which is a contradiction. Then T is contained in
{v0} ◦G2.

It is easy to check that if there exists such a geodesic triangle T , then δ(G1 ◦ G2) ≥
δ(T ) ≥ 3/2. Theorem 3.2.10 allows to conclude δ(G1 ◦G2) = 3/2.

For any non-empty set S ⊂ V (G), the induced subgraph of S will be denoted by ⟨S⟩.

Lemma 3.2.18. Let G be any graph. Then G ∈ F if and only if there is a geodesic triangle
T = {x, y, z} in G that is a cycle with x, y, z ∈ J(G), L([xy]), L([yz]), L([zx]) ≤ 3 and
δ(T ) = 3/2 = dG(p, [yz] ∪ [zx]) where p ∈ [xy] ∩ V (G).

Proof. Assume first that there is a geodesic triangle T = {x, y, z} in G that is a cycle with
x, y, z ∈ J(G), L([xy]), L([yz]), L([zx]) ≤ 3 and δ(T ) = 3/2 = dG(p, [yz] ∪ [zx]) for some
p ∈ [xy]. Since dG(p, {x, y}) ≥ dG(p, [yz] ∪ [zx]) = 3/2, we have L([xy]) = 3 and p is the
midpoint of [xy]. Since L([yz]) ≤ 3, L([zx]) ≤ 3 and L([yz]) + L([zx]) ≥ L([xy]), we have
6 ≤ L(T ) ≤ 9.
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Assume now that L(T ) = 6. Denote by {v1, . . . , v6} the vertices in T such that T =∪6
i=1[vi, vi+1] with v7 := v1. Without loss of generality we can assume that x ∈ [v1, v2], y ∈

[v4, v5] and p = v3. Since dG(x, y) = 3, we have that ⟨{v1, . . . , v6}⟩ contains neither [v1, v4],
[v1, v5], [v2, v4] nor [v2, v5]; besides, since dG(p, [yz] ∪ [zx]) > 1 we have that ⟨{v1, . . . , v6}⟩
contains neither [v3, v1], [v3, v5] nor [v3, v6]. Note that [v2, v6], [v4, v6] may be contained in
⟨{v1, . . . , v6}⟩. Therefore, G ∈ F6.

Assume that L(T ) = 7 and G /∈ F6. Denote by {v1, . . . , v7} the vertices in T such
that T =

∪7
i=1[vi, vi+1] with v8 := v1. Without loss of generality we can assume that

x ∈ [v1, v2], y ∈ [v4, v5] and p = v3. Since dG(x, y) = 3, we have that ⟨{v1, . . . , v7}⟩ contains
neither [v1, v4], [v1, v5], [v2, v4] nor [v2, v5]; besides, since dG(p, [yz] ∪ [zx]) > 1 we have that
⟨{v1, . . . , v7}⟩ contains neither [v3, v1], [v3, v5], [v3, v6] nor [v3, v7]. Since G /∈ F6, [v1, v6] and
[v5, v7] are not contained in ⟨{v1, . . . , v7}⟩. Note that [v2, v6], [v2, v7], [v4, v6], [v4, v7] may be
contained in ⟨{v1, . . . , v7}⟩. Hence, G ∈ F7.

Assume that L(T ) = 8 and G /∈ F6 ∪ F7. Denote by {v1, . . . , v8} the vertices in T
such that T =

∪8
i=1[vi, vi+1] with v9 := v1. Without loss of generality we can assume that

x ∈ [v1, v2], y ∈ [v4, v5] and p = v3. Since dG(x, y) = 3, we have that ⟨{v1, . . . , v8}⟩ contains
neither [v1, v4], [v1, v5], [v2, v4] nor [v2, v5]; besides, since dG(p, [yz] ∪ [zx]) > 1 we have that
⟨{v1, . . . , v8}⟩ contains neither [v3, v1], [v3, v5], [v3, v6], [v3, v7] nor [v3, v8]. Since G /∈ F6∪F7,
[v1, v6], [v1, v7], [v5, v7], [v5, v8] and [v6, v8] are not contained in ⟨{v1, . . . , v8}⟩. Since T is a
geodesic triangle we have that z ∈ {v6,7, v7, v7,8} with v6,7 and v7,8 the midpoints of [v6, v7]
and [v7, v8], respectively. If z = v7 then ⟨{v1, . . . , v8}⟩ contains neither [v2, v7] nor [v4, v7].
Note that [v2, v6], [v2, v8], [v4, v6], [v4, v8] may be contained in ⟨{v1, . . . , v8}⟩. If z = v6,7 then
⟨{v1, . . . , v8}⟩ contains neither [v2, v6] nor [v2, v7]. Note that [v2, v8], [v4, v6], [v4, v7], [v4, v8]
may be contained in ⟨{v1, . . . , v8}⟩. By symmetry, we obtain an equivalent result for z = v7,8.
Therefore, G ∈ F8.

Assume that L(T ) = 9 and G /∈ F6 ∪ F7 ∪ F8. Denote by {v1, . . . , v9} the vertices in T
such that T =

∪9
i=1[vi, vi+1] with v10 := v1. Without loss of generality we can assume that

x ∈ [v1, v2], y ∈ [v4, v5] and p = v3. Since dG(x, y) = 3, we have that ⟨{v1, . . . , v9}⟩ contains
neither [v1, v4], [v1, v5], [v2, v4] nor [v2, v5]; besides, since dG(p, [yz] ∪ [zx]) > 1 we have that
⟨{v1, . . . , v9}⟩ contains neither [v3, v1], [v3, v5], [v3, v6], [v3, v7], [v3, v8] nor [v3, v9]. Since T is
a geodesic triangle we have that z is the midpoint of [v7, v8]. Since dG(y, z) = dG(z, x) = 3,
we have that ⟨{v1, . . . , v9}⟩ contains neither [v1, v7], [v1, v8], [v2, v7], [v2, v8], [v4, v7], [v4, v8],
[v5, v7] nor [v5, v8]. Since G /∈ F6 ∪ F7 ∪ F8, [v1, v6], [v5, v9], [v6, v8], [v6, v9] and [v7, v9] are
not contained in ⟨{v1, . . . , v9}⟩. Note that [v2, v6], [v2, v9], [v4, v6], [v4, v9] may be contained
in ⟨{v1, . . . , v9}⟩. Hence, G ∈ F9.

Therefore, in any case G ∈ F .
The previous argument also shows that if G ∈ F , then there is a geodesic triangle with

the required properties.

Corollary 3.2.19. Let G be any graph. Then G ∈ F if and only if there is a geodesic
triangle T = {x, y, z} in G with x, y, z ∈ J(G), L([xy]), L([yz]), L([zx]) ≤ 3 and δ(T ) =
3/2 = dG(p, [yz] ∪ [zx]) for some p ∈ [xy] ∩ V (G).
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Proof. Assume that there is a geodesic triangle T = {x, y, z} in G with x, y, z ∈ J(G),
L([xy]), L([yz]), L([zx]) ≤ 3 and δ(T ) = 3/2 = dG(p, [yz] ∪ [zx]) for some p ∈ [xy] ∩ V (G).
Since L([xy]) ≤ 3 and dG(p, [yz]∪ [zx]) = 3/2, we deduce that L([xy]) = 3 and [xy]∩ ([yz]∪
[zx]) = {x, y}. Let Γ be the set of curves joining x and y, and contained in [yz] ∪ [zx]. If
γ ∈ Γ satisfies L(γ) ≤ L(g) for every g ∈ Γ, then [xy] ∪ γ is a cycle and γ ∩ [yz] ∩ [zx] is a
single point. If z′ := γ ∩ [yz] ∩ [zx], then γ = [yz′] ∪ [z′x], z′ ∈ J(G), L([yz′]) ≤ L([yz]) ≤ 3,
L([z′x]) ≤ L([zx]) ≤ 3, T ′ = {x, y, z′} is a cycle and δ(T ′) = 3/2 = dG(p, [yz

′] ∪ [z′x]). Since
we have constructed a geodesic triangle T ′ that is a cycle from T verifying the properties of
T , Lemma 3.2.18 gives the result.

Theorem 3.2.16 and the following result characterize the graphs for which the bound in
Theorem 3.2.10 is attained.

Theorem 3.2.20. Let G1 be any tree and G2 any non-trivial graph.

(1) If diamG1 ≥ 3, then δ(G1 ◦G2) = 3/2.

(2) If 1 ≤ diamG1 ≤ 2, then δ(G1 ◦G2) = 3/2 if and only if G2 ∈ F .

(3) If G1 is trivial, then δ(G1 ◦G2) = 3/2 if and only if δ(G2) = 3/2.

Proof. If diamG1 ≥ 3, then Theorems 3.2.8 and 3.2.10 give the result since that δ(G1) = 0.
In order to prove (2), by Lemma 3.2.17, we have that δ(G1 ◦ G2) = 3/2 if and only if

there is a geodesic triangle T = {x, y, z} in G1 ◦G2 that is a cycle contained in {v} ◦G2 for
some v ∈ V (G1) with x, y, z ∈ J({v} ◦ G2) and a vertex p ∈ [xy] such that dG1◦G2(p, [xz] ∪
[zy]) = dG1◦G2(p, x) = dG1◦G2(p, y) = 3/2. By Lemma 3.1.4, diamV (G1 ◦ G2) = 2, hence,
L([yz]), L([zx]) ≤ 3 and x, y are midpoints with L([xy]) = 3. Hence, by Lemma 3.2.18 we
have that δ(G1 ◦G2) = 3/2 if and only if {v} ◦G2 ∈ F and so, Remark 3.1.3 gives that this
is equivalent to G2 ∈ F .

Finally, if G1 is trivial, then Remark 3.1.3 gives the result.

The following result allows to compute, in a simple way, the hyperbolicity constant of
the lexicographic product of any tree and any graph.

Theorem 3.2.21. Let G1 be any tree and G2 any graph. Then

δ(G1 ◦G2) =



δ(G2), if G1 ≃ E1,
0, if G2 ≃ E1,
1, if diamG1 = 1 and 1 ≤ diamG2 ≤ 2,
5/4, if diamG1 = 1 and diamG2 > 2 and G2 /∈ F ,
5/4, if diamG1 = 2 and diamG2 ≥ 1 and G2 /∈ F ,
3/2, if 1 ≤ diamG1 ≤ 2 and G2 ∈ F ,
3/2, if diamG1 ≥ 3 and diamG2 ≥ 1.
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Proof. If G1 ≃ E1 or G2 ≃ E1, then we have the result by Remark 3.1.3.
If diamG1 = 1 and 1 ≤ diamG2 ≤ 2, then Theorems 1.3.12, 3.2.7, 3.2.10 and 3.2.20

give δ(G1 ◦ G2) ∈ {1, 5/4} since G2 /∈ F . Seeking for a contradiction we can assume that
δ(G1 ◦ G2) = 5/4. Then by Theorem 1.3.13 there is a geodesic triangle T = {x, y, z} in
G1 ◦ G2 that is a cycle with x, y, z ∈ J(G1 ◦ G2) and a point p ∈ [xy] such that δ(T ) =
dG1◦G2(p, [yz]∪ [zx]) = 5/4. Thus, dG1◦G2(p, {x, y}) ≥ dG1◦G2(p, [xz]∪ [zy]) = 5/4, L([xy]) ≥
5/2 and x, y ∈ {v} ◦G2 for some v ∈ V (G1) since diamG1 = 1. This is a contradiction since
diamG2 ≤ 2 and we conclude that δ(G1 ◦G2) = 1.

If diamG1 = 1 and diamG2 > 2 or diamG1 = 2 and diamG2 ≥ 1, then Theorems 1.3.12,
3.2.8, 3.2.9 and 3.2.10 give δ(G1 ◦G2) ∈ {5/4, 3/2}. Finally, since G2 /∈ F , Theorem 3.2.20
gives δ(G1 ◦G2) ̸= 3/2 and we have δ(G1 ◦G2) = 5/4.

If 1 ≤ diamG1 ≤ 2 and G2 ∈ F or diamG1 ≥ 3 and diamG2 ≥ 1, then we have the
result by Theorem 3.2.20.

Corollary 3.2.22. Let G1, G2 be any trees. Then

δ(G1 ◦G2) =


0, if G1 ≃ E1 or G2 ≃ E1,
1, if diamG1 = 1 and 1 ≤ diamG2 ≤ 2,
5/4, if diamG1 = 1 and diamG2 ≥ 3,
5/4, if diamG1 = 2 and diamG2 ≥ 1,
3/2, if diamG1 ≥ 3 and diamG2 ≥ 1.

Corollary 3.2.23. Let Pn, Pm be two path graphs. Then

δ(Pn ◦ Pm) =


0, if n = 1 or m = 1,
1, if n = 2 and m = 2, 3,
5/4, if n = 2 and m ≥ 4 or n = 3 and m ≥ 2,
3/2, if n ≥ 4 and m ≥ 2.





Chapter 4

Gromov hyperbolicity in the
Cartesian sum of graphs

The Cartesian sum of graphs has been extensively investigated in relation to a wide range
of subjects (see, e.g., [40, 80, 89, 108, 112] and the references therein). This notion of graph
product was introduced by Ore [89]. The Cartesian sum is also known as the disjunctive
product [108].

4.1 Distance in the Cartesian sum graphs

In order to estimate the hyperbolicity constant of the Cartesian sum of two graphs G1⊕G2,
we will need bounds for the distance between two arbitrary points. We will use the definition
given in [45].

Definition 4.1.1. Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) be two graphs.
The Cartesian sum G1 ⊕ G2 of G1 and G2 has V (G1) × V (G2) as vertex set, so that two
distinct vertices (u1, v1) and (u2, v2) of G1 ⊕ G2 are adjacent if either [u1, u2] ∈ E(G1) or
[v1, v2] ∈ E(G2).

From the definition, it follows that the Cartesian sum of two graphs is commutative, i.e.,
G1 ⊕G2 ≃ G2 ⊕G1.

Hence, the conclusion of any result in this Chapter with some “non-symmetric” hypoth-
esis also holds if we replace G1 by G2 and G2 by G1 (see, e.g., Lemmas 4.1.10, 4.1.11 and
4.1.12).

We use the notation (x, y) for the points of the graph G1⊕G2 if x ∈ V (G1) or y ∈ V (G2).
Otherwise, this notation can be ambiguous.

Remark 4.1.2. The Cartesian, strong and lexicographic products of two graphs are subgraphs
of the Cartesian sum product of two graphs, i.e., G12G2 ⊆ G1 ⊠G2 ⊆ G1 ◦G2 ⊆ G1 ⊕G2.

Remark 4.1.3. For any graph G we have E1 ⊕G ≃ G⊕ E1 ≃ G.

53
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Remark 4.1.4. Let G be any graph and Kn the complete graph with n vertices. Then
G⊕Kn ≃ Kn ⊕G ≃ Kn ◦G. Note that Kn ⊕Km ≃ Knm.

The following result allows to compute the distance between any two points in G1 ⊕G2.
Furthermore, this result provides information about the geodesics in the Cartesian sum.

Proposition 4.1.5. For every non-trivial graphs G1, G2 we have:

(a) Let x1, x2 ∈ V (G1 ⊕G2) where x1 = (u1, v1) and x2 = (u2, v2). Then

dG1⊕G2(x1, x2) =


0, if x1 = x2,
1, if [u1, u2] ∈ E(G1) or [v1, v2] ∈ E(G2),
2, if [u1, u2] /∈ E(G1) and [v1, v2] /∈ E(G2).

(b) Let x1 ∈ V (G1 ⊕ G2), x2 /∈ V (G1 ⊕ G2) where x1 = (u1, v1), x2 ∈ [(A1, B1), (A2, B2)]
with

dG1⊕G2((A1, B1), x2) ≤ 1/2. Then

dG1⊕G2(x1, x2) ≤
{

3/2, if [u1, A1] ∈ E(G1) or [v1, B1] ∈ E(G2),
5/2, if [u1, A1] /∈ E(G1) and [v1, B1] /∈ E(G2).

(c) dG1⊕G2(x1, x2) ≤ 3 for every x1, x2 ∈ G1 ⊕G2.

Proof. In order to prove (a), if [u1, u2] ∈ E(G1) or [v1, v2] ∈ E(G2), then Definition 4.1.1
gives dG1⊕G2(x1, x2) = 1. If [u1, u2] /∈ E(G1) and [v1, v2] /∈ E(G2) then there exist u3 ∈
V (G1) \ {u1, u2}, v3 ∈ V (G2) \ {v1, v2} with [u1, u3] ∈ E(G1) and [v2, v3] ∈ E(G2); thus
x3 := (u3, v3) ∈ V (G1 ⊕ G2) and dG1⊕G2(x1, x2) ≤ dG1⊕G2(x1, x3) + dG1⊕G2(x3, x2) = 2 by
Definition 4.1.1; but dG1⊕G2(x1, x2) ≥ 2 since that [u1, u2] /∈ E(G1) and [v1, v2] /∈ E(G2).
Hence, dG1⊕G2(x1, x2) = 2.

In order to prove (b), assume first that [u1, A1] ∈ E(G1) or [v1, B1] ∈ E(G2). Then
dG1⊕G2(x1, x2) ≤ dG1⊕G2(x1, (A1, B1)) + dG1⊕G2((A1, B1), x2) ≤ 3/2 by Definition 4.1.1. As-
sume now that [u1, A1] /∈ E(G1) and [v1, B1] /∈ E(G2). Then,

dG1⊕G2(x1, x2) ≤ dG1⊕G2(x1, (A1, B1))+dG1⊕G2((A1, B1), x2) ≤ 2+dG1⊕G2((A1, B1), x2) ≤ 5/2.

In order to prove (c), let us consider X1, X2 ∈ V (G1⊕G2) such that dG1⊕G2(x1, X1) ≤ 1/2
and dG1⊕G2(x2, X2) ≤ 1/2. Then,

dG1⊕G2(x1, x2) ≤ dG1⊕G2(x1, X1) + dG1⊕G2(X1, X2) + dG1⊕G2(X2, x2) ≤ 3

since dG1⊕G2(X1, X2) ≤ 2 by item (a).

Proposition 4.1.5 gives the following result.
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Proposition 4.1.6. Let G1, G2 be two non-trivial graphs and let Γ1,Γ2 be isometric sub-
graphs of G1 and G2, respectively. If Γ1 and Γ2 are non-trivial graphs, then Γ1 ⊕ Γ2 is an
isometric subgraph of G1 ⊕G2.

Note that taking Γ1 as a trivial graph, Γ1 ⊕ Γ2 ≃ Γ2 is not an isometric subgraph of
G1 ⊕G2 if diamV (Γ2) ≥ 3.

Proof. Since Γ1 ⊕Γ2 is a subgraph of G1 ⊕G2, we have dΓ1⊕Γ2(x, y) ≥ dG1◦G2(x, y) for every
x, y ∈ Γ1⊕Γ2. Let x, y be any points of Γ1⊕Γ2. If x, y ∈ V (Γ1⊕Γ2) then Proposition 4.1.5
gives dG1⊕G2(x, y) = dΓ1⊕Γ2(x, y) and we obtain the result. Otherwise, let A1, A2, B1, B2 ∈
V (Γ1 ⊕ Γ2) with x ∈ [A1, A2], y ∈ [B1, B2] (it is possible to have x or y in V (Γ1 ⊕ Γ2)).
Consider a geodesic γ in G1 ⊕G2 joining x and y with γ := [xAi] ∪ [AiBj] ∪ [Bjy] for some
i, j ∈ {1, 2}. Then

dΓ1⊕Γ2(x, y) ≤ dΓ1⊕Γ2(x,Ai) + dΓ1⊕Γ2(Ai, Bj) + dΓ1⊕Γ2(Bj, y) = dG1⊕G2(x, y).

Thus, dG1⊕G2(x, y) = dΓ1⊕Γ2(x, y).

The following result allows to compute the diameter of the set of vertices in the Cartesian
sum of two graphs.

Proposition 4.1.7. For every non-trivial graphs G1, G2 we have 1 ≤ diamV (G1⊕G2) ≤ 2.
Furthermore, diamV (G1 ⊕G2) = 1 if and only if G1 and G2 are complete graphs.

Proof. Since G1⊕G2 is a non-trivial graph, diamV (G1⊕G2) ≥ 1. Besides, if u, v ∈ V (G1⊕
G2), then by Proposition 4.1.5 we have that dG1⊕G2(u, v) ≤ 2 and diamV (G1 ⊕G2) ≤ 2.

Finally, one can check that G1 ⊕ G2 is a complete graph if and only if G1 and G2 are
complete graphs.

Since diamV (G) ≤ diamG ≤ diamV (G)+1 for every graph G, the previous proposition
has the following consequence.

Corollary 4.1.8. For every non-trivial graphs G1, G2 we have 1 ≤ diamG1 ⊕G2 ≤ 3.

Proposition 4.1.5 gives the following result. Given a graph G, we say that x ∈ G is a
midpoint (of an edge) if dG(x, V (G)) = 1/2.

Corollary 4.1.9. Let G1, G2 be any non-trivial graphs. If dG1⊕G2(x, y) = 3, then x, y are
midpoints in G1 ⊕G2.

Lemma 4.1.10. Let G1, G2 be any non-trivial graphs. Then G1 ⊕G2 ⊆ V3/2(G1 ⊕ {v}) for
every v ∈ V (G2).
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Proof. Let p be any point of G1⊕G2 and v ∈ V (G2). If p ∈ V (G1⊕G2), then Definition 4.1.1
gives that there exists a vertex u0 ∈ V (G1 ⊕ {v}) such that [p, u0] ∈ E(G1 ⊕G2) since G1 is
non-trivial. Assume that p /∈ V (G1 ⊕ G2). Let A ∈ V (G1 ⊕ G2) with dG1⊕G2(p,A) ≤ 1/2.
Hence, we have

dG1⊕G2(p,G1 ⊕ {v}) ≤ dG1⊕G2(p,A) + dG1⊕G2(A,G1 ⊕ {v}) ≤ 3/2.

Lemma 4.1.11. Let G1, G2 be any graphs. Let y1, y2 be any points in G2 with dG2(y1, y2) ≤
5/2 and x0 any fixed vertex in G1. Then γ := {x0} × [y1y2] is a geodesic in G1 ⊕G2 joining
the points (x0, y1) and (x0, y2).

Proof. If G1 is the trivial graph, then G1 ⊕ G2 ≃ G2 and we have the result. Assume that
G1 is a non-trivial graph. Seeking for a contradiction assume that γ is not a geodesic in
G1 ⊕ G2. Therefore, there is a geodesic Γ in G1 ⊕ G2 joining (x0, y1) and (x0, y2) which is
not contained in {x0} ⊕ G2. Hence, Γ has a vertex A outside of {x0} ⊕ G2; thus, we have
2 ≤ L(Γ) < L(γ) ≤ 5/2. We have

Γ = [(x0, y1)(x0, B1)] ∪ [(x0, B1), A] ∪ [A, (x0, B2)] ∪ [(x0, B2)(x0, y2)],

where Bi is a closest vertex to yi in G2, for i = 1, 2. Since γ ∪ Γ contains a cycle C with
(x0, B1), (x0, B2) ∈ C and L(γ) + L(Γ) < 5 we have L(C) ≤ 4 and dG2(B1, B2) ≤ 2. Then
we obtain

dG2(y1, y2)≤ dG2(y1, B1) + dG2(B1, B2) + dG2(B2, y2)

≤ dG2(y1, B1) + 2 + dG2(B2, y2) = L(Γ) < L(γ) = dG2(y1, y2).

This is the contradiction we were looking for, and so, γ is a geodesic in G1 ⊕G2.

Lemma 4.1.12. Let G1, G2 be any graphs. Let y1, y2 be two midpoints in G2 with
dG2(y1, y2) = 3 and x0 any fixed vertex in G1. Then {x0} × [y1y2] is a geodesic in G1 ⊕ G2

joining (x0, y1) and (x0, y2).

Proof. Seeking for a contradiction assume that {x0} × [y1y2] is not a geodesic in G1 ⊕ G2.
Let Γ be a geodesic in G1⊕G2 joining (x0, y1) and (x0, y2)(i.e., L(Γ) < L({x0}× [y1y2]) = 3).
Then, Γ is not contained in {x0}⊕G2 and there exists v ∈ V (Γ) such that v /∈ V ({x0}⊕G2).
Hence, Γ = [(x0, y1)v] ∪ [v(x0, y2)] and we conclude L(Γ) ≥ 3. This is the contradiction we
were looking for.

4.2 Hyperbolicity constant in the Cartesian sum graphs

In this section we obtain some bounds for the hyperbolicity constant of the Cartesian sum
of graphs. These bounds allow to prove that the Cartesian sum is always hyperbolic with a
small hyperbolicity constant, except if G1 or G2 is the trivial graph.



CHAPTER 4. GROMOV HYPERBOLICITY IN THE CARTESIAN SUM OF GRAPHS57

Theorem 4.2.1. For every non-trivial graphs G1, G2, we have

δ(G1 ⊕G2) = max{δ(Γ1 ⊕ Γ2) : Γi is an isometric subgraph of Gi and Γi

is non-trivial for i = 1, 2}.

Proof. By Proposition 4.1.6 and Lemma 1.3.3 we have δ(G1 ⊕ G2) ≥ δ(Γ1 ⊕ Γ2) for any
isometric subgraph Γi of Gi with Γi non-trivial for i = 1, 2. Besides, since any graph is an
isometric subgraph of itself we obtain the equality by taking Γ1 = G1 and Γ2 = G2.

The following result characterizes the hyperbolic Cartesian sums.

Theorem 4.2.2. Let G1 and G2 be any graphs.

(1) If G1 is a trivial graph, then the Cartesian sum G1 ⊕G2 is hyperbolic if and only if
G2 is hyperbolic. Furthermore,

δ(G1 ⊕G2) = δ(G2).

(2) If G2 is a trivial graph, then the Cartesian sum G1 ⊕G2 is hyperbolic if and only if
G1 is hyperbolic. Furthermore,

δ(G1 ⊕G2) = δ(G1).

(3) For every non-trivial graphs G1, G2 the Cartesian sum G1 ⊕G2 is hyperbolic with

1 ≤ δ(G1 ⊕G2) ≤ 3/2.

Furthermore, the hyperbolicity constant δ(G1 ⊕G2) belongs to {1, 5/4, 3/2}.

Proof. Since E1 ⊕ G ≃ G ⊕ E1 ≃ G for any graph G, the Cartesian sum of E1 ⊕ G and
G⊕ E1 are hyperbolic if and only if G is hyperbolic.

Assume now that G1 and G2 are non-trivial graphs. Thus, there is a subgraph P i
2 in Gi

isomorphic to an edge, for i = 1, 2. Hence, by Theorem 4.2.1 and Example 4.2.4 we have
δ(G1⊕G2) ≥ δ(P 1

2 ⊕P 2
2 ) = 1. Corollary 4.1.8 gives diamG1⊕G2 ≤ diamV (G1⊕G2)+1 ≤ 3

and by Lemma 1.3.7 we have that δ(G1 ⊕ G2) ≤ 3/2. The other statement is consequence
of Theorem 1.3.12.

Theorems 4.2.6 and 4.2.7 show that the inequalities in Theorem 4.2.2 are attained for
many graphs.

The following results give the hyperbolicity constant of some Cartesian sum of graphs.
The first and second examples are direct consequences of Remark 4.1.4, [27, Theorem 3.24
and Corollary 3.25].
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Example 4.2.3. Let Cn be the cycle graph with n ≥ 3. Then

δ(Cn ⊕ P2) =


1, if n = 3, 4
5/4, if n = 5 or n ≥ 10,
3/2, if n = 6, 7, 8, 9.

Example 4.2.4. Let G be any tree. Then

δ(G⊕ P2) =


0, if G ≃ E1,
1, if 1 ≤ diamG ≤ 2,
5/4, if diamG ≥ 3.

Example 4.2.5. Let Km, Kn be the complete graphs with m,n vertices, respectively, and
mn ≥ 4. Then Km ⊕Kn is isomorphic to Kmn and δ(Km ⊕Kn) = 1.

In what follows we denote by πi the projection πi : V (G1 ⊕G2) → V (Gi) for i ∈ {1, 2}.

Theorem 4.2.6. Let G1, G2 be any graphs. Then δ(G1 ⊕ G2) = 1 if and only if we have
either:

(1) G1 is trivial and δ(G2) = 1,

(2) G2 is trivial and δ(G1) = 1,

(3) 1 ≤ diamG1 ≤ 2 and 1 ≤ diamG2 ≤ 2.

Proof. If G1 (respectively, G2) is trivial, then G1 ⊕ G2 ≃ G2 (respectively, G1 ⊕ G2 ≃ G1)
and δ(G1 ⊕G2) = 1 if and only if (1) holds (respectively, (2) holds).

Assume now that G1 and G2 are non-trivial graphs. Thus, diamG1 ≥ 1 and diamG2 ≥ 1.
Seeking for a contradiction assume that δ(G1⊕G2) = 1 and diamG1 > 2 or diamG2 > 2. By
symmetry we can assume that diamG1 > 2. Since diamG1 ≥ 5/2, there exist x0, x1 ∈ J(G1)
such that dG1(x0, x1) = 5/2. Fix y0 ∈ V (G2). Lemma 4.1.11 gives that γ1 := [x0x1] × {y0}
is a geodesic in G1 ⊕ G2 joining the points (x0, y0) and (x1, y0). Now we show a geodesic
bigon B in G1 ⊕G2 with δ(B) = 5/4. Without loss of generality we can assume that there
exist A1, A2 ∈ V (G1 ⊕ {y0}) such that (x0, y0), A1 ∈ V (γ1) and (x1, y0) is the midpoint of
[A1, A2]. Since G2 is non-trivial, there exists y1 ∈ V (G2) such that dG2(y0, y1) = 1. Fix
A3 ∈ V (G1 ⊕ {y1}) and define B := {γ1, γ2} with

γ2 := [(x0, y0), A3] ∪ [A3, A2] ∪ [A2(x1, y0)].

If p is the midpoint of γ1, then δ(B) = dG1⊕G2

(
p, γ2

)
= 5/4 and we have 1 = δ(G1 ⊕G2) ≥

δ(B) = 5/4, which is a contradiction. Therefore, (3) holds.
Finally, assume that (3) holds. We are going to prove that diamG1 ⊕ G2 = 2. Seeking

for a contradiction assume that there exist u ∈ V (G1 ⊕ G2), [v, w] ∈ E(G1 ⊕ G2) with
dG1⊕G2(u, [v, w]) = 2. We have three cases.
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First case: π1(v) = π1(w). Then [π2(v), π2(w)] ∈ E(G2) and Proposition 4.1.5 gives
dG2(π2(u), [π2(v), π2(w)]) = 2 since dG1⊕G2(u, [v, w]) = 2, which is a contradiction since that
diamG2 ≤ 2.

Second case: dG1(π1(v), π1(w)) = 1. Proposition 4.1.5 gives dG1(π1(u), [π1(v), π1(w)]) = 2
since
dG1⊕G2(u, [v, w]) = 2, which contradicts diamG1 ≤ 2.

Third case: dG1(π1(v), π1(w)) = 2. Thus, dG2(π2(v), π2(w)) = 1 and Proposition 4.1.5
gives
dG2(π2(u), [π2(v), π2(v)]) = 2 since dG1⊕G2(u, [v, w]) = 2, which is not possible since that
diamG2 ≤ 2.

Thus, we conclude that diamG1 ⊕ G2 = 2 and Lemma 1.3.7 and Theorem 4.2.2 give
δ(G1 ⊕G2) = 1.

Note that if 1 ≤ diamG ≤ 2, then G is isomorphic to a complete graph K2 or K3, or it
verifies diamG = 2.

Theorem 4.2.7. Let G1, G2 be any graphs. If diamV (Gi) ≥ 3 for i ∈ {1, 2}, then δ(G1 ⊕
G2) = 3/2.

Proof. Since diamV (Gi) ≥ 3, there is an isometric subgraph in Gi isomorphic to a path
graph P i

4 with 4 vertices for i ∈ {1, 2}; denote by {vi1, vi2, vi3, vi4} the vertices of P i
4 with

[vij, v
i
j+1] ∈ E(P i

4) for i ∈ {1, 2} and 1 ≤ j ≤ 3. Now we show a geodesic bigon B in P 1
4 ⊕P 2

4

with δ(B) = 3/2. Let x and y be the midpoints of [(v11, v
2
1), (v

1
2, v

2
1)] and [(v14, v

2
3), (v

1
4, v

2
4)],

respectively. Hence, Proposition 4.1.5 gives dP 1
4⊕P 2

4
(x, y) = 3. Define B := {γ1, γ2} with

γ1 := [x(v12, v
2
1)] ∪ [(v12, v

2
1), (v

1
1, v

2
4)] ∪ [(v11, v

2
4), (v

1
4, v

2
3)] ∪ [(v14, v

2
3)y]

and
γ2 := [x(v11, v

2
1)] ∪ [(v11, v

2
1), (v

1
3, v

2
2)] ∪ [(v13, v

2
2), (v

1
4, v

2
4)] ∪ [(v14, v

2
4)y].

If p is the midpoint of γ1, then dP 1
4⊕P 2

4

(
p, γ2

)
= 3/2 and we have δ(P 1

4 ⊕ P 2
4 ) ≥ δ(B) = 3/2.

Thus, Theorems 4.2.1 and 4.2.2 give 3/2 ≤ δ(P 1
4 ⊕P 2

4 ) ≤ δ(G1⊕G2) ≤ 3/2 and we conclude
that δ(G1 ⊕G2) = 3/2.

We have the following direct consequence.

Corollary 4.2.8. For every infinite graphs G1, G2 we have δ(G1 ⊕G2) = 3/2.

Lemma 4.2.9. Let G1, G2 be any graphs. If diamV (G1) ≤ 2, then δ(G1 ⊕G2) ≥ δ(G1).

Proof. By Theorem 1.3.13 there exist a geodesic triangle T = {x, y, z} in G1 that is a
cycle with x, y, z ∈ J(G1) and p ∈ [xy] with dG1(p, [xz] ∪ [zy]) = δ(T ) = δ(G1). Since
diamV (G1) ≤ 2 we have that diamG1 ≤ 3 and Lemma 1.3.7 gives δ(G1) ≤ 3/2. Hence,
each one of the lengths L([xy]), L([yz]), L([zx]) is either 3 or at most 5/2. By Lemmas 4.1.11
and 4.1.12 we have that T × {v} is a geodesic triangle in G1 ⊕G2 for any fixed v ∈ V (G2).
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Since L([xy]) ≤ 3, if s ∈ [xz] ∪ [zy] and t ∈ [xy] with dG1(t, s) = dG1(t, [xz] ∪ [zy]), then
dG1(t, s) ≤ 3/2. Hence, Lemma 4.1.11 gives

dG1(t, s) = dG1⊕G2((t, v), (s, v)) = dG1⊕G2((t, v), ([xz] ∪ [zy]× {v})).

A similar result holds for [xz] and [yz]. Therefore, δ(G1 ⊕ G2) ≥ δ(T × {v}) = δ(T ) =
δ(G1).

Corollary 4.2.10. Let G1, G2 be any graphs. If diamV (Gi) ≤ 2 for i = 1, 2, then

δ(G1 ⊕G2) ≥ max{δ(G1), δ(G2)}.

Corollary 4.2.11. Let G1, G2 be any graphs. If diamV (G1) = 2 and δ(G1) = 3/2, then
δ(G1 ⊕G2) = 3/2.

Corollary 4.2.12. Let G1, G2 be any graphs. If δ(G1) > 1, then δ(G1 ⊕G2) > 1.

Proof. Since δ(G1) > 1 we have that diamV (G1) ≥ 2. If diamV (G1) = 2, then Lemma 4.2.9
gives the result. If diamV (G1) ≥ 3, then Theorem 4.2.6 gives the result.

If A is a subset of the graph G, we denote by V (A) the set of vertices of G in A, i.e.,
V (A) = V (G) ∩ A.

Theorem 4.2.13. Let G1, G2 be any graphs with diamV (G2) = 2.

(1) If diamV (G1) = 1, then δ(G1 ⊕G2) = 3/2 if and only if δ(G2) = 3/2.

(2) If diamV (G1) = 2 and we have δ(G1) = 3/2 or δ(G2) = 3/2, then δ(G1⊕G2) = 3/2.

Proof. If diamV (G1) = 2 and besides δ(G1) = 3/2 or δ(G2) = 3/2, then Corollary 4.2.11
gives δ(G1 ⊕G2) = 3/2 since diamV (G2) = 2.

If diamV (G1) = 1 and δ(G2) = 3/2, then Corollary 4.2.11 gives δ(G1 ⊕G2) = 3/2.
Assume now that diamV (G1) = 1 and δ(G1⊕G2) = 3/2. Lemma 1.3.7 gives δ(G2) ≤ 3/2

since diamV (G2) = 2. We show now that δ(G2) ≥ 3/2. By Theorem 1.3.13 there exist a
geodesic triangle T = {x, y, z} in G1 ⊕ G2 that is a cycle with x, y, z ∈ J(G1 ⊕ G2) and
A3 ∈ [xy] with dG1⊕G2(A3, [xz]∪[zy]) = δ(T ) = δ(G1⊕G2) = 3/2. Since dG1⊕G2(A3, {x, y}) ≥
dG1⊕G2(A3, [xz] ∪ [zy]) = 3/2 we have that L([xy]) = 3. Corollary 4.1.9 gives x, y ∈ J(G1 ⊕
G2)\V (G1⊕G2) and A3 ∈ V (G1⊕G2) with dG1⊕G2(A3, x) = dG1⊕G2(A3, y) = 3/2. Without
loss of generality we can assume that x ∈ [A1, A2] and y ∈ [A4, A5] with A2, A4 ∈ [xy]. Since
L([xy]) = 3 and dG1⊕G2(A3, [xz] ∪ [zy]) = 3/2 we have

dG1⊕G2({A1, A2}, {A4, A5}) = 2

and
dG1⊕G2(A3, V ([xz] ∪ [zy])) = 2.
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Since A3 ∈ V (G1⊕G2), we have A3 ∈ V ({v}⊕G2) with v ∈ V (G1). Since diamV (G1) =
1, we have dG1⊕G2(A3, A) = 1 for every vertex A /∈ V ({v} ⊕ G2). Thus, V ([xz] ∪ [zy]) ⊂
V ({v} ⊕ G2) since dG1⊕G2(A3, V ([xz] ∪ [zy])) = 2. If A2 /∈ V ({v} ⊕ G2) (respectively,
A4 /∈ V ({v} ⊕ G2) ), then dG1⊕G2(A2, A5) = 1 (respectively, dG1⊕G2(A4, A1) = 1) by
Proposition 4.1.5 and this is a contradiction since dG1⊕G2({A1, A2}, {A4, A5}) = 2. Thus,
A2, A4 ∈ V ({v}⊕G2). Finally, V (T ) ⊂ V ({v}⊕G2) and consequently T ⊂ {v}⊕G2. Since
dG1⊕G2(x, y) = 3, we have diamG1 ⊕ G2 = 3 and diamV (G1 ⊕ G2) = 2 and, consequently,
T is a geodesic triangle in {v} ⊕G2. Hence, 3/2 = δ(T ) ≤ δ({v} ⊕G2) = δ(G2) and we can
conclude that δ(G2) = 3/2.

One can think that the converse of (2) in Theorem 4.2.13 holds. However, this is not
true since δ(C5 ⊕ C5) = 3/2 (see Theorem 4.2.17) and δ(C5) = 5/4.

Theorem 4.2.14. Let G1, G2 be any trees. Then

δ(G1 ⊕G2) =


0, if G1 ≃ E1 or G2 ≃ E1,
1, if 1 ≤ diamG1 ≤ 2 and 1 ≤ diamG2 ≤ 2,
5/4, if 1 ≤ diamG1 ≤ 2 and diamG2 ≥ 3,
3/2, if diamG1 ≥ 3 and diamG2 ≥ 3.

Proof. If G1 ≃ E1 or G2 ≃ E1, then Remark 4.1.3 gives the result since δ(G) = 0 for every
tree G.

If 1 ≤ diamG1 ≤ 2 and 1 ≤ diamG2 ≤ 2, then Theorem 4.2.6 gives δ(G1 ⊕G2) = 1.
If diamG1 = 1 and diamG2 ≥ 3, then Example 4.2.4 gives the result.
If diamG1 = 2 and diamG2 ≥ 3, then Theorems 1.3.12, 4.2.2 and 4.2.6 give δ(G1 ⊕

G2) ∈ {5/4, 3/2}. Seeking for a contradiction assume that δ(G1 ⊕ G2) = 3/2. By Theorem
1.3.13 there exist a geodesic triangle T = {x, y, z} in G1 ⊕ G2 that is a cycle with x, y, z ∈
J(G1 ⊕G2) and p ∈ [xy] with dG1⊕G2(p, [xz]∪ [zy]) = δ(T ) = 3/2. Since dG1⊕G2(p, {x, y}) ≥
dG1⊕G2(p, [xz] ∪ [zy]) = 3/2 we have that L([xy]) = 3. Corollary 4.1.9 gives x, y ∈ J(G1 ⊕
G2) \ V (G1 ⊕ G2) and p ∈ V (G1 ⊕ G2) with dG1⊕G2(p, x) = dG1⊕G2(p, y) = 3/2. Without
loss of generality we can assume that x ∈ [A1, A2] and y ∈ [A3, A4] with A1, A3 ∈ [xy].
Since L([xy]) = 3 we have that dG1⊕G2({A1, A2}, {A3, A4}) = 2. Let W be the point in
V ([xz] ∪ [zy]) \ {A2, A4} such that dG1⊕G2(A2,W ) = 1. Since dG1⊕G2(p, [xz] ∪ [zy]) = 3/2
we have dG1⊕G2(p, V ([xz] ∪ [zy])) = 2 and, in particular, dG1⊕G2(p, {A2, A4,W}) = 2. Since
G1 is a tree with diamG1 = 2, there exists a unique v ∈ V (G1) with dG1(v, w) = 1 for
every w ∈ V (G1) \ {v}; note that dG1⊕G2((v, u1), (w, u2)) = 1 for every w ∈ V (G1) \ {v} and
u1, u2 ∈ V (G2). Hence, if Ai ∈ {v}⊕G2 for some i ∈ {1, 2, 3, 4}, then Ai ∈ {v}⊕G2 for every
i ∈ {1, 2, 3, 4}. Assume first that p ∈ {v}⊕G2. Therefore, V ([xz]∪ [zy]) \ {v}⊕G2 = ∅ and
Ai ∈ {v}⊕G2 for every i ∈ {1, 2, 3, 4}. Thus, T ⊆ {v}⊕G2, and this is a contradiction since
δ(G2) = 0 and dG1⊕G2(p, [xz] ∪ [zy]) = 3/2. Assume that p ∈ {w} ⊕G2, where w ∈ V (G1) \
{v}. Since dG1⊕G2(p,A1) = dG1⊕G2(p,A3) = 1 and dG1⊕G2(p, {A2, A4,W}) = 2 we have
dG2(π2(p), π2(A1)) = dG2(π2(p), π2(A3)) = 1 and dG2(π2(p), π2(A2)) = dG2(π2(p), π2(A4)) =
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dG2(π2(p), π2(W )) = 2, this is a contradiction since dG2(π2(A2), π2(W )) = 1. Finally, we
have δ(G1 ⊕G2) ̸= 3/2 and we conclude that δ(G1 ⊕G2) = 5/4.

If diamG1 ≥ 3 and diamG2 ≥ 3, then Theorem 4.2.7 gives the result.

Corollary 4.2.15. Let Pn, Pm be two path graphs. Then

δ(Pn ⊕ Pm) =


0, if n = 1 or m = 1,
1, if n = 2, 3 and m = 2, 3,
5/4, if n = 2, 3 and m ≥ 4,
3/2, if n ≥ 4 and m ≥ 4.

Proposition 4.2.16. Let G be any graph with diamV (G) = 2. Then δ(G) ≤ 3/2, and
δ(G) = 3/2 if and only if G ∈ F .

Proof. By Lemma 1.3.7 and diamG ≤ diamV (G) + 1 = 3, we have δ(G) ≤ 3/2.
If G ∈ F , then Lemma 3.2.18 gives δ(G) ≥ 3/2, and we conclude δ(G) = 3/2.
Finally, assume that δ(G) = 3/2. By Theorem 1.3.13 there exist a geodesic triangle

T = {x, y, z} in G that is a cycle with x, y, z ∈ J(G) and p ∈ [xy] with dG(p, [xz] ∪ [zy]) =
δ(T ) = 3/2. Since dG(p, {x, y}) ≥ dG(p, [xz] ∪ [zy]) = 3/2 and diamG ≤ 3 we have that
dG(p, {x, y}) = 3/2, L([xy]) = 3, L([yz]), L([zx]) ≤ 3. Thus, x, y ∈ J(G) \ V (G) and p ∈
[xy] ∩ V (G). By Lemma 3.2.18 we conclude that G ∈ F .

Theorem 4.2.17. Let Cn, Cm be two cycle graphs. Then

δ(Cn ⊕ Cm) =


1, if n = 3, 4 and m = 3, 4,
5/4, if n = 3, 4 and m = 5 or m ≥ 10,
3/2, if n = 3, 4 and m = 6, 7, 8, 9,
3/2, if n ≥ 5 and m ≥ 5.

Proof. If n = 3, 4 and m = 3, 4, then Theorem 4.2.6 gives δ(Cn ⊕ Cm) = 1.
If n = 3, 4 and m = 5 or m ≥ 10, then Theorems 4.2.2 and 4.2.6 give δ(Cn ⊕ Cm) ∈

{5/4, 3/2}. Seeking for a contradiction assume that δ(Cn ⊕ Cm) = 3/2. By Theorem
1.3.13 there exist a geodesic triangle T = {x, y, z} in Cn ⊕ Cm that is a cycle with x, y, z ∈
J(Cn⊕Cm) and p ∈ [xy] with dCn⊕Cm(p, [xz]∪ [zy]) = δ(T ) = 3/2. Since dCn⊕Cm(p, {x, y}) ≥
dCn⊕Cm(p, [xz] ∪ [zy]) = 3/2 we have that L([xy]) = 3 and by Corollary 4.1.9 we have that
x, y are midpoints in Cn ⊕ Cm and p ∈ [xy] ∩ V (Cn ⊕ Cm). We have x ∈ [A1, A2], y ∈
[A3, A4] with A2, A3 ∈ [xy]. Since dCn⊕Cm(x, y) = 3 and dCn⊕Cm(p, [xz] ∪ [zy]) = 3/2
we have dCn⊕Cm({A1, A2}, {A3, A4}) = 2 and dCn⊕Cm(p, V ([xz] ∪ [zy])) = 2. Let v ∈
V (Cn) be the vertex with p ∈ V ({v} ⊕ Cm). If n = 4, then Proposition 4.1.5 gives
V ([xz] ∪ [zy]) ⊂ V ({v} ⊕ Cm) ∪ V ({w} ⊕ Cm) with w ∈ V (C4) such that dC4(v, w) =
2. Since dCn⊕Cm(A2, A4) = 2 and dCn⊕Cm(A1, A3) = 2, we obtain A2, A3 ∈ V ({v} ⊕
Cm) ∪ V ({w} ⊕ Cm). Hence, we conclude V (T ) ⊂ V ({v} ⊕ Cm) ∪ V ({w} ⊕ Cm). If
n = 3, then a similar argument gives V (T ) ⊂ V ({v} ⊕ Cm). Consequently, if n =
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3, 4 and A,B ∈ V (T ) with [A,B] ∈ E(T ), then Proposition 4.1.5 gives [π2(A), π2(B)] ∈
E(Cm). By Proposition 4.1.5 we have dCm({π2(A1), π2(A2)}, {π2(A3), π2(A4)}) = 2 since
dCn⊕Cm({A1, A2}, {A3, A4}) = 2. Let W ∈ V ([xz] ∪ [zy]), Proposition 4.1.5 gives π2(W ) /∈
{π2(A2), π2(A3)} since dCn⊕Cm(p, V ([xz] ∪ [zy])) = 2. Therefore, π2(W ) ̸= π2(p) by conti-
nuity. Hence, there exist a geodesic triangle T1 = {π2(x), π2(y), π2(z)} ⊆ π2(T ) in Cm with
π2(x), π2(y), π2(z) ∈ J(Cm), π2(p) ∈ [π2(x)π2(y)], L([π2(x)π2(y)]) = L([xy]) = 3,
L([π2(x)π2(z)]) ≤ L([xz]) ≤ 3, L([π2(z)π2(y)]) ≤ L([zy]) ≤ 3 and dCm(π2(p), [π2(x)π2(z)] ∪
[π2(z)π2(y)]) = δ(T1) = 3/2. Corollary 3.2.19 gives the contradiction we were looking for
since Cm /∈ F . Thus, we conclude that δ(Cn ⊕ Cm) = 5/4.

If n = 3, 4 and m = 6, 7, 8, 9, then by Theorem 4.2.1 and Example 4.2.3 we have δ(Cn ⊕
Cm) ≥ δ(P2⊕Cm) = δ(Cm⊕P2) = 3/2 since P2 is an isometric subgraph of Cn, and Theorem
4.2.2 gives δ(Cn ⊕ Cm) ≤ 3/2. Thus, we conclude that δ(Cn ⊕ Cm) = 3/2.

Finally, we deal with the case n ≥ 5 and m ≥ 5. Consider Cn as the cycle graph with
vertices {u1, u2, u3, u4, u5, . . . , un} and edges [un, u1] and [uj, uj+1] for 1 ≤ j < n and Cm

as the cycle graph with vertices {v1, v2, v3, v4, v5, . . . , vm} and edges [vm, v1] and [vj, vj+1]
for 1 ≤ j < m. Let x and y be the midpoints of [(u3, v1), (u4, v1)] and [(u1, v3), (u1, v4)],
respectively. Proposition 4.1.5 gives dCn⊕Cm(x, y) = 3. Now we show a geodesic bigon B in
Cn ⊕ Cm with δ(B) = 3/2. Define B := {γ1, γ2} with

γ1 := [x(u4, v1)] ∪ [(u4, v1), (u2, v2)] ∪ [(u2, v2), (u1, v4)] ∪ [(u1, v4)y]

and
γ2 := [x(u3, v1)] ∪ [(u3, v1), (u4, v4)] ∪ [(u4, v4), (u1, v3)] ∪ [(u1, v3)y].

If p is the midpoint of γ2, then dCn⊕Cm

(
p, γ1

)
= 3/2 and we have δ(Cn ⊕ Cm) ≥ δ(B) =

dCn⊕Cm

(
p, γ1

)
= 3/2. Thus, Theorem 4.2.2 gives δ(Cn ⊕ Cm) ≤ 3/2 and we conclude that

δ(Cn ⊕ Cm) = 3/2.

Remark 4.2.18. Since δ(Cn ⊕ Cm) = δ(Cm ⊕ Cn), Theorem 4.2.17 provides the precise
value of δ(Cn ⊕ Cm) for every n,m ≥ 3.

Theorem 4.2.19. Let G1, G2 be any graphs.

(1) If G1 ∈ F and G2 is non-trivial, then δ(G1 ⊕G2) = 3/2.

(2) If δ(G1 ⊕G2) = 3/2, diamV (G1) = 2 and diamV (G2) = 1, then G1 ∈ F .

Proof. Assume first that G1 ∈ F and G2 is non-trivial. Note that G1 is a non-trivial graph
since it belong to F . By Lemma 3.2.18 there is a geodesic triangle T = {x, y, z} in G1 that is
a cycle with x, y, z ∈ J(G1), L([xy]), L([yz]), L([zx]) ≤ 3 and δ(T ) = 3/2 = dG1(p, [yz]∪ [zx])
for some p ∈ [xy]∩V (G1). Since dG1(p, {x, y}) ≥ dG1(p, [yz]∪ [zx]) = 3/2 and dG1(x, y) ≤ 3,
we obtain dG1(x, y) = 3. Then x, y ∈ J(G1) \ V (G1), since p ∈ V (G1), and we have
dG1⊕G2((x, v), (y, v)) = dG1(x, y) = 3 for any fixed v ∈ V (G2). Since x, y ∈ J(G1)\V (G1), z ∈
J(G1), dG1(y, z) ≤ 3 and dG1(z, x) ≤ 3, a similar argument gives dG1⊕G2((y, v), (z, v)) =
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dG1(y, z) and dG1⊕G2((z, v), (x, v)) = dG1(z, x). Hence, T × {v} is a geodesic triangle in
G1 ⊕G2 and 3/2 = δ(T ) = δ(T ×{v}) ≤ δ(G1 ⊕G2), and we conclude δ(G1 ⊕G2) = 3/2 by
Theorem 4.2.2, since G1 and G2 are non-trivial.

Finally, if δ(G1 ⊕G2) = 3/2, diamV (G1) = 2 and diamV (G2) = 1, then δ(G1) = 3/2 by
Theorem 4.2.13 (1). Thus, Proposition 4.2.16 gives G1 ∈ F .

One can think that the converse of (1) in Theorem 4.2.19 holds. However, this is not
true, since the cycle graph C5 does not belong to F and δ(C5 ⊕ C5) = 3/2 (see Theorem
4.2.17).

Finally, we have a characterization of the Cartesian sums with hyperbolicity constant
3/2 which does not involve properties of G1 and G2.

Theorem 4.2.20. For any non-trivial graphs G1, G2, we have δ(G1⊕G2) = 3/2 if and only
if G1 ⊕G2 ∈ F .

Proof. By Proposition 4.1.7 we have 1 ≤ diamV (G1 ⊕G2) ≤ 2.
If diamV (G1 ⊕G2) = 1, then G1 ⊕G2 is a complete graph. Hence, δ(G1 ⊕G2) = 1 and

G1 ⊕G2 /∈ F .
If diamV (G1 ⊕G2) = 2, then Proposition 4.2.16 provides the equivalence.

4.3 Hyperbolicity in the complement of the Cartesian

sum graphs

In this section we obtain an upper bound for the hyperbolicity constant of the complement
of the Cartesian sum of two graphs.

Given any graph G, we denote by G the complement of G, defined as the graph with
V (G) = V (G) and e ∈ E(G) if and only if e /∈ E(G).

The followingl result which will be useful.

Lemma 4.3.1. [57, 79, 88] For any graphs G1 and G2,

G1 ⊕G2 = G1 ⊠G2.

The next lemma follows from Theorem 2.1.5.

Lemma 4.3.2. Let G1, G2 be any graphs and let Γ1,Γ2 be isometric subgraphs of G1 and
G2, respectively. We have that Γ1 ⊠ Γ2 is an isometric subgraph of G1 ⊠G2.

The proof of the following lemma is similar to the proof of Theorem 4.2.1, using Lemma
4.3.2 instead of Proposition 4.1.6.

Lemma 4.3.3. For any graphs G1, G2, we have

δ(G1 ⊠G2) = max{δ(Γ1 ⊠ Γ2) : Γi is an isometric subgraph of Gi, for i = 1, 2}.
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Theorem 4.3.4. Let G1, G2 be any graphs. If diamV (Gi) ≥ 3 for i ∈ {1, 2}, then

3

2
≤ δ(G1 ⊕G2) ≤ 2.

Proof. It is well known that if diamV (G) ≥ 3 for any graph G, then G is connected and
diamV (G) ≤ 3. Thus, Corollary 2.2.1 and Lemma 4.3.1 give δ(G1 ⊕G2) ≤ 2.

If diamV (G) = 1, then G is a complete graph and consequently G is a disconnected
graph. Hence, diamV (G1) ≥ 2 and diamV (G2) ≥ 2. Consequently, there is an isometric
subgraph in Gi isomorphic to a path graph P i

3 with 3 vertices, for i = 1, 2. Lemmas 4.3.1
and 4.3.3 give δ(G1 ⊕G2) = δ(G1 ⊠ G2) ≥ δ(P 1

3 ⊠ P 2
3 ). Thus, δ(G1 ⊕G2) ≥ 3/2 since

δ(P 1
3 ⊠ P 2

3 ) = 3/2 by [24, Corollary 33].





Chapter 5

Hyperbolicity of direct products of
graphs

The direct product is clearly commutative and associative. Weichsel observed that G1 ×G2

is connected if and only if G1 and G2 are connected and G1 or G2 is not a bipartite graph
[118]. Many different properties of direct product of graphs have been studied (sometimes
with various different names, such as cardinal product, tensor product, Kronecker product,
categorical product, conjunction,...). The study includes structural results [8, 18, 56, 65, 66,
67], hamiltonian properties [6, 74], and above all the well-known Hedetniemi’s conjecture on
chromatic number of direct product of two graphs (see [64] and [122]). Open problems in
the area suggest that a deeper structural understanding of this product would be welcome.

5.1 Hyperbolic direct products

In order to study the hyperbolicity constant of the direct product of two graphs G1×G2, we
will need bounds for the distance between two arbitrary points. We will use the definition
given in [57].

Definition 5.1.1. Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) be two graphs. The
direct product G1 ×G2 of G1 and G2 has V (G1)× V (G2) as vertex set, so that two distinct
vertices (u1, v1) and (u2, v2) of G1×G2 are adjacent if [u1, u2] ∈ E(G1) and [v1, v2] ∈ E(G2).

From the definition, it follows that the direct product of two graphs is commutative, i.e.,
G1 × G2 ≃ G2 × G1. Hence, the conclusion of every result in this section with some “non-
symmetric” hypothesis also holds if we change the roles of G1 and G2 (see, e.g., Theorems
5.1.9, 5.1.10, 5.1.20, 5.1.22 and 5.1.31 and Corollary 5.1.32).

In what follows we denote by πi the projection πi : V (G1 ×G2) → V (Gi) for i ∈ {1, 2}.
Note that, in fact, this projection is well defined as a map πi : G1 ×G2 → Gi for i ∈ {1, 2}.

67
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We collect some previous results of [57], which will be useful. If G is a graph and
u, u′ ∈ V (G), then by a u, u′-walk in G we mean a path joining u and u′ where repeating
vertices is allowed.

Proposition 5.1.2. [57, Proposition 5.7] Suppose (u, v) and (u′, v′) are vertices of the direct
product G1 × G2, and n is an integer for which G1 has a u, u′-walk of length n and G2

has a v, v′-walk of length n. Then G1 × G2 has a walk of length n from (u, v) to (u′, v′).
The smallest such n (if it exists) equals dG1×G2((u, v), (u

′, v′)). If no such n exists, then
dG1×G2((u, v), (u

′, v′)) = ∞.

Proposition 5.1.3. [57, Proposition 5.8] Suppose x and y are vertices of G1 ×G2. Then

dG1×G2(x, y) = min
{
n ∈ N | each factor Gi has a πi(x), πi(y)-walk of length n for i = 1, 2

}
,

where it is understood that dG1×G2(x, y) = ∞ if no such n exists.

Corollary 5.1.4. We have for every (u, v), (u′, v′) ∈ V (G1 ×G2)

dG1×G2((u, v), (u
′, v′)) ≥ max

{
dG1(u, u

′), dG2(v, v
′)
}

and, consequently,

diamV (G1 ×G2) ≥ max
{
diamV (G1), diamV (G2)

}
.

Furthermore, if dG1(u, u
′) and dG2(v, v

′) have the same parity, then

dG1×G2((u, v), (u
′, v′)) = max

{
dG1(u, u

′), dG2(v, v
′)
}

and, consequently,

diamV (G1 ×G2) = max
{
diamV (G1), diamV (G2)

}
.

The following theorem, first proved by Weichsel in 1962, characterizes connectedness in
direct products of two factors. As usual, by cycle we mean a simple closed curve, i.e., a path
with different vertices, unless the last one, which is equal to the first vertex.

Theorem 5.1.5. [57, Theorem 5.9] Suppose G1 and G2 are connected non-trivial graphs. If
at least one of G1 or G2 has an odd cycle, then G1 ×G2 is connected. If both G1 and G2 are
bipartite, then G1 ×G2 has exactly two connected components.

Corollary 5.1.6. [57, Corollary 5.10] A direct product of connected non-trivial graphs is
connected if and only if at most one of the factors is bipartite. In fact, the product has
2max{k,1}−1 connected components, where k is the number of bipartite factors.
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Proposition 5.1.7. Let G1 and G2 be two unbounded graphs. Then G1×G2 is not hyperbolic.

Proof. Since G1 and G2 are unbounded graphs, for each positive integer n there exist two
geodesic paths P1 := [w1, w2] ∪ [w2, w3] ∪ · · · ∪ [wn−1, wn] in G1 and P2 := [v1, v2] ∪ [v2, v3] ∪
· · · ∪ [vn−1, vn] in G2. If n is odd, then we can consider the geodesic triangle T in G1 × G2

defined by the following geodesics:

γ1 := [(w1, v2), (w2, v1)] ∪ [(w2, v1), (w3, v2)] ∪ [(w3, v2), (w4, v1)] ∪ · · · ∪ [(wn−1, v1), (wn, v2)],

γ2 := [(w1, v2), (w2, v3)] ∪ [(w2, v3), (w1, v4)] ∪ [(w1, v4), (w2, v5)] ∪ · · · ∪ [(w1, vn−1), (w2, vn)],

γ3 := [(w2, vn), (w3, vn−1)] ∪ [(w3, vn−1), (w4, vn−2)] ∪ [(w4, vn−2), (w5, vn−3)] ∪ · · ·
· · · ∪ [(wn−1, v3), (wn, v2)],

Corollary 5.1.4 gives that γ1, γ2, γ3 are geodesics.
Let m := n+1

2
and consider the vertex (wm, vm+1) in γ3. For every vertex (wi, vj) in

γ1, j ∈ {1, 2}, we have dG1×G2((wm, vm+1), (wi, vj)) ≥ dG2(vm+1, vj) ≥ m + 1 − 2 = n−1
2

by Corollary 5.1.4. We have for every vertex (wi, vj) in γ2, i ∈ {1, 2}, by Corollary 5.1.4,
dG1×G2((wm, vm+1), (wi, vj)) ≥ dG1(wm, wi) ≥ m− 2 = n−3

2
. Hence, dG1×G2

(
(wm, vm+1), γ1 ∪

γ2
)
≥ n−3

2
and δ(G1 × G2) ≥ δ(T ) ≥ n−3

2
. Since n is arbitrarily large, G1 × G2 is not

hyperbolic.

Lemma 5.1.8. Consider two graphs G1 and G2. If f : V (G1) −→ V (G2) is an (α, β)-quasi-
isometric embedding, then there exists an (α, α+β)-quasi-isometric embedding g : G1 −→ G2

with g = f on V (G1). Furthermore, if f is ε-full, then g is (ε+ 1
2
)-full.

Proof. For each x ∈ G1, let us choose a closest point vx ∈ V (G1) from x, and define
g(x) := f(vx). Note that vx = x if x ∈ V (G1) and so g = f on V (G1). Given x, y ∈ G1, we
have

dG2(g(x), g(y)) = dG2(f(vx), f(vy)) ≤ αdG1(vx, vy) + β ≤ α
(
dG1(x, y) + 1

)
+ β,

dG2(g(x), g(y)) = dG2(f(vx), f(vy)) ≥ α−1dG1(vx, vy)− β ≥ α−1
(
dG1(x, y)− 1

)
− β,

and g is an (α, α + β)-quasi-isometric embedding, since α ≥ 1 ≥ α−1.
Furthermore, if f is ε-full, then g is (ε+ 1

2
)-full since g(G1) = f(V (G1)).

Given a graph G, let gI(G) denote the odd girth of G, this is, the length of the shortest
odd cycle in G.

Theorem 5.1.9. Let G1 be a graph and G2 be a non-trivial bounded graph with some odd
cycle. Then, G1 ×G2 is hyperbolic if and only if G1 is hyperbolic.

Proof. Let v0 ∈ V (G2) such that v0 is contained in an odd cycle C with L(C) = gI(G2).
Consider the map i : V (G1) → V (G1 ×G2) such that i(w) := (w, v0) for every w ∈ V (G1).

By Corollary 5.1.4, for any pair of vertices w1, w2 ∈ V (G1),

dG1(w1, w2) ≤ dG1×G2

(
(w1, v0), (w2, v0)

)
.
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Also, Proposition 5.1.3 gives the following.
If a geodesic joining w1 and w2 has even length, then

dG1×G2

(
(w1, v0), (w2, v0)

)
= dG1(w1, w2).

If a geodesic joining w1 and w2 has odd length, then C defines a v0, v0-walk with odd length
and

dG1×G2

(
(w1, v0), (w2, v0)

)
≤ max{dG1(w1, w2), gI(G2)} ≤ dG1(w1, w2) + gI(G2).

Thus, i is a
(
1, gI(G2)

)
quasi-isometric embedding.

Consider any (w, v) ∈ V (G1×G2). Then, if the geodesic joining v and v0 has even length,

dG1×G2

(
(w, v), (w, v0)

)
= dG2(v, v0).

If a geodesic joining v and v0 has odd length, [vv0]∪C defines a v, v0-walk with even length.
Therefore,

dG1×G2

(
(w, v), (w, v0)

)
≤ dG2(v, v0) + gI(G2).

Thus, i is
(
diam(V (G2)) + gI(G2)

)
-full.

Hence, by Lemma 5.1.8, there is a
(
diam(V (G2))+gI(G2)+

1
2

)
-full

(
1, gI(G2)+1

)
-quasi-

isometry, j : G1 → G1 × G2, and G1 × G2 is hyperbolic if and only if G1 is hyperbolic by
Theorem 1.3.6.

Theorem 5.1.10. Let G1 be a graph without odd cycles and G2 be a non-trivial bounded
graph without odd cycles. Then, G1 ×G2 is hyperbolic if and only if G1 is hyperbolic.

Proof. Fix some vertex w0 ∈ V (G1) and some edge [v1, v2] ∈ E(G2).
By Theorem 5.1.5, there are exactly two components in G1 ×G2. Since there are no odd

cycles, there is no (w0, v1), (w0, v2)-walk in G1 ×G2. Thus, let us denote by (G1 ×G2)
1 the

component containing the vertex (w0, v1) and by (G1 ×G2)
2 the component containing the

vertex (w0, v2).
Consider i : V (G1) → V (G1 ×G2)

1 defined as i(w) := (w, v1) for every w ∈ V (G1) such
that every w0, w-walk has even length and i(w) := (w, v2) for every w ∈ V (G1) such that
every w0, w-walk has odd length.

By Proposition 5.1.3, dG1×G2

(
i(w1), i(w2)

)
= dG1(w1, w2) for every w1, w2 ∈ V (G1) and i

is a (1, 0)-quasi-isometric embedding.
Let (w, v) ∈ V (G1 × G2)

1. Let vj with j ∈ {1, 2} such that every v, vj-walk has even
length. Then, by Proposition 5.1.3, dG1×G2

(
(w, v), (w, vj)

)
= dG2(v, vj) ≤ diam(G2). There-

fore, i is diam(G2)-full.
Hence, by Lemma 5.1.8, there is a

(
diam(G2) +

1
2

)
-full

(
1, 1

)
-quasi-isometry, j : G1 →

(G1 ×G2)
1, and (G1 ×G2)

1 is hyperbolic if and only if G1 is hyperbolic by Theorem 1.3.6.
The same argument proves that (G1 ×G2)

2 is hyperbolic.
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Denote by P2 the path graph with two vertices, i.e., a graph with two vertices and an
edge.

Lemma 5.1.11. Let G1 be a graph with some odd cycle and G2 a non-trivial bounded graph
without odd cycles. Then G1 × G2 and G1 × P2 are quasi-isometric and δ(G1 × P2) ≤
δ(G1 ×G2).

Proof. By Theorem 5.1.5, we know that G1 ×G2 and G1 × P2 are connected graphs.
Denote by v1 and v2 the vertices of P2 and fix [w1, w2] ∈ E(G2). The map f : V (G1 ×

P2) −→ V (G1 × [w1, w2]) defined as f(u, vj) := (u,wj) for every u ∈ V (G1) and j = 1, 2,
is an isomorphism of graphs; hence, it suffices to prove that G1 × G2 and G1 × [w1, w2] are
quasi-isometric.

Consider the inclusion map i : V (G1× [w1, w2]) −→ V (G1×G2). Since G1× [w1, w2] is a
subgraph ofG1×G2, we have dG1×G2(x, y) ≤ dG1×[w1,w2](x, y) for every x, y ∈ V (G1×[w1, w2]).

SinceG2 is a graph without odd cycles, every w1, w2-walk has odd length and every wj, wj-
walk has even length for j = 1, 2. Thus Proposition 5.1.3 gives, for every x = (u,w1), y =
(v, w2) ∈ V (G1 × [w1, w2]),

dG1×[w1,w2](x, y) = dG1×G2(x, y) = min
{
L(g) | g is a u, v-walk of odd length

}
.

Furthermore, for every x = (u,wj), y = (v, wj) ∈ V (G1 × [w1, w2]) and j = 1, 2,

dG1×[w1,w2](x, y) = dG1×G2(x, y) = min
{
L(g) | g is a u, v-walk of even length

}
.

Hence, dG1×[w1,w2](x, y) = dG1×G2(x, y) for every x, y ∈ V (G1 × [w1, w2]), and the inclusion
map i is an (1, 0)-quasi-isometric embedding. Therefore, δ(G1 × P2) = δ(G1 × [w1, w2]) ≤
δ(G1 ×G2).

Since G2 is a graph without odd cycles, given any w ∈ V (G2), we have either that every
w,w1-walk has even length and every w,w2-walk has odd length or that every w,w2-walk
has even length and every w,w1-walk has odd length. Also, since G1 is connected, for each
u ∈ V (G1) there is some u′ ∈ V (G1) such that [u, u′] ∈ E(G1). Therefore, by Proposition
5.1.3, for every (u,w) ∈ V (G1 ×G2), if min

{
dG2(w,w1), dG2(w,w2)

}
is even, then

dG1×G2

(
(u,w), V (G1 × [w1, w2])

)
= dG1×G2

(
(u,w), V (u× [w1, w2])

)
= min

{
dG2(w,w1), dG2(w,w2)

}
,

and if min
{
dG2(w,w1), dG2(w,w2)

}
is odd, then

dG1×G2

(
(u,w), V (G1 × [w1, w2])

)
= dG1×G2

(
(u,w), V (u′ × [w1, w2])

)
= min

{
dG2(w,w1), dG2(w,w2)

}
.

In both cases,

dG1×G2

(
(u,w), V (G1 × [w1, w2])

)
≤ diamV (G2),

and i is
(
diamV (G2)

)
-full. By Lemma 5.1.8, there exists a

(
diamV (G2) +

1
2

)
-full (1, 1)-

quasi-isometry g : G1 × [w1, w2] −→ G1 ×G2.
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A u, v-walk g in G is a shortcut of a cycle C if g ∩C = {u, v} and L(g) < dC(u, v) where
dC denotes the length metric on C.

A cycle C ′ is a reduction of the cycle C if both have odd length and C ′ is the union of a
subarc η of C and a shortcut of C joining the endpoints of η. Note that L(C ′) ≤ L(C)− 2.
We say that a cycle is minimal if it has odd length and it does not have a reduction.

Lemma 5.1.12. If C is a minimal cycle of G, then L(C) ≤ 4δ(G).

Proof. We prove first that C is an isometric subgraph of G. Seeking for a contradiction
assume that C is not an isometric subgraph. Thus, there exists a shortcut g of C with
endpoints u, v. There are two subarcs η1, η2 of C joining u and v; since C has odd length,
we can assume that η1 has even length and η2 has odd length. If g has even length, then
C ′ := g ∪ η2 is a reduction of C. If g has odd length, then C ′′ := g ∪ η1 is a reduction of C.
Hence, C is not minimal, which is a contradiction, and so C is an isometric subgraph of G.

Let x, y ∈ C with dC(x, y) = L(C)/2 and σ1, σ2 the two subarcs of C joining x, y. Since
C is an isometric subgraph, T := {σ1, σ2} is a geodesic bigon. If p is the midpoint of σ1,
then Lemma 1.3.3 gives L(C)/4 = dG(p, {x, y}) = dG(p, σ2) ≤ δ(C) ≤ δ(G).

Given any w0, wk-walk g = [w0, w1]∪ [w1, w2]∪ · · · ∪ [wk−1, wk] in G1 and P2 = [v1, v2], if
L(g) is either odd or even, then we define the (w0, v1), (wk, vi)-walk for i ∈ 1, 2,

Γ1g := [(w0, v1), (w1, v2)] ∪ [(w1, v2), (w2, v1)] ∪ [(w2, v1), (w3, v2)] ∪ · · · ∪ [(wk−1, v1), (wk, v2)],

Γ1g := [(w0, v1), (w1, v2)] ∪ [(w1, v2), (w2, v1)] ∪ [(w2, v1), (w3, v2)] ∪ · · · ∪ [(wk−1, v2), (wk, v1)],

respectively.

Remark 5.1.13. By Proposition 5.1.3, if g is a geodesic path in G1, then Γ1g is a geodesic
path in G1 × P2.

Let us define the map R : V (G1×P2) → V (G1×P2) as R(w, v1) = (w, v2) and R(w, v2) =
(w, v1) for every w ∈ V (G1), and the path Γ2g as Γ2g = R(Γ1g).

Let us define the map (Γ1g)
′ : g → Γ1g which is an isometry on the edges and such

that (Γ1g)
′(wj) = (wj, v1) if j is even and (Γ1g)

′(wj) = (wj, v2) if j is odd. Also, let
(Γ2g)

′ : g → Γ2g be the map defined by (Γ2g)
′ := R ◦ (Γ1g)

′.

Given a graph G, denote by C(G) the set of minimal cycles of G.

Lemma 5.1.14. Let G1 be a graph with some odd cycle and P2 = [v1, v2]. Consider a
geodesic g = [w0wk] = [w0, w1] ∪ [w1, w2] ∪ · · · ∪ [wk−1, wk] in G1. Let us define w′

0 :=
(Γ1g)

′(w0) = (w0, v1) and w′
k := (Γ2g)

′(wk), i.e., w
′
k := (wk, v1) or w′

k := (wk, v2) if k is odd

or even, respectively. Then dG1×P2(w
′
0, w

′
k) >

√
dG1

(
wj,C(G1)

)
for every 0 ≤ j ≤ k.

Proof. Fix 0 ≤ j ≤ k. Define

P :=
{
σ | σ is a w0, wk-walk such that L(σ) has a parity different from that of k

}
.
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Proposition 5.1.3 gives

dG1×P2(w
′
0, w

′
k) = min

{
L(σ) | σ ∈ P

}
.

Choose σ0 ∈ P such that L(σ0) = dG1×P2(w
′
0, w

′
k). Since L(g) + L(σ0) is odd, we have

L(g) +L(σ0) = 2t+ 1 for some positive integer t. Thus dG1×P2(w
′
0, w

′
k) = L(σ0) >

1
2
(2t+ 1).

If g∪σ0 is a cycle, then let us define C0 := g∪σ0. Thus, L(C0) = 2t+1 and dG1

(
wj, C0

)
= 0

for every 0 ≤ j ≤ k. Otherwise, we may assume that g ∩ σ0 = [w0wi1 ] ∪ [wi2wk] for some
0 ≤ i1 < i2 ≤ k. If σ1 = σ0 \ g, then let us define C0 := [wi1wi2 ] ∪ σ1 (where [wi1wi2 ] ⊂ g).
Hence, C0 is a cycle, L(C0) ≤ 2t− 1 and dG1

(
wj, C0

)
< 1

2
(2t+ 1).

If C0 is not minimal, then consider a reduction C1 of C0. Let us repeat the process
until we obtain a minimal cycle Cs. Note that L(C1) ≤ L(C0) − 2 and for every point
p1 ∈ C0, dG1

(
p1, C1

)
< 1

2
L(C0). Now, repeating the argument, for every 1 < i ≤ s,

L(Ci) ≤ L(Ci−1)− 2 and for every point pi ∈ Ci−1, dG1

(
pi, Ci

)
< 1

2
L(Ci−1). Therefore,

dG1

(
wj,C(G1)

)
≤ dG1

(
wj, Cs

)
≤ dG1

(
wj, C0

)
+

1

2
L(C0) +

1

2
L(C1) + · · ·+ 1

2
L(Cs)

<
1

2
(2t+ 1) +

1

2
(2t− 1) + · · ·+ 5

2
+

3

2
.

Hence,

dG1

(
wj,C(G1)

)
<

1

2

t∑
i=1

(2i+ 1) =
1

2
t2 + t <

(1
2
(2t+ 1)

)2

<
(
dG1×P2(w

′
0, w

′
k)
)2

.

Corollary 5.1.15. Let G1 be a hyperbolic graph with some odd cycle and P2 = [v1, v2].
Consider a geodesic g = [w0wk] = [w0, w1] ∪ [w1, w2] ∪ · · · ∪ [wk−1, wk] in G1. Let us define
w′

0 := (Γ1g)
′(w0) = (w0, v1) and w′

k := (Γ2g)
′(wk). Then, we have for every 0 ≤ j ≤ k,

1

2

(
k +

√
dG1

(
wj,C(G1)

) )
≤ dG1×P2(w

′
0, w

′
k) ≤ k + 2dG1

(
wj,C(G1)

)
+ 4δ(G1).

Proof. Corollary 5.1.4 and Lemma 5.1.14 give dG1×P2(w
′
0, w

′
k) ≥ k and dG1×P2(w

′
0, w

′
k) ≥√

dG1

(
wj,C(G1)

)
, and these inequalities provide the lower bound of dG1×P2(w

′
0, w

′
k).

Consider a geodesic γ joining wj and C ∈ C(G1) with L(γ) = dG1(wj, C) = dG1

(
wj,C(G1)

)
and the w0, wk-walk

g′ := [w0wj] ∪ γ ∪ C ∪ γ ∪ [wjwk].

One can check that Γ1g
′ is a w′

0, w
′
k-walk in G1 × P2, and so Lemma 5.1.12 gives

dG1×P2(w
′
0, w

′
k) ≤ L(Γ1g

′) = L(g′) = k + 2dG1

(
wj,C(G1)

)
+ L(C)

≤ k + 2dG1

(
wj,C(G1)

)
+ 4δ(G1).
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Consider the set Tv(G) of geodesic triangles T in G that are cycles and such that the
three vertices of the triangle T belong to V (G), and denote by δv(G) the infimum of the
constants λ such that every triangle in Tv(G) is λ-thin.

Theorem 5.1.16. For every graph G we have δv(G) ≤ δ(G) ≤ 4δv(G) + 1/2. Hence, G is
hyperbolic if and only if δv(G) < ∞. Furthermore, if G is hyperbolic, then δv(G) is always a
multiple of 1/2 and there exist a geodesic triangle T = {x, y, z} ∈ Tv(G) and p ∈ [xy]∩J(G)
such that d(p, [xz] ∪ [zy]) = δ(T ) = δv(G).

Proof. The inequality δv(G) ≤ δ(G) is direct.
Consider the set T′

v(G) of geodesic triangles T in G such that the three vertices of the
triangle T belong to V (G), and denote by δ′v(G) the infimum of the constants λ such that
every triangle in T′

v(G) is λ-thin. The argument in the proof of [105, Lemma 2.1] gives that
δ′v(G) = δv(G).

In order to prove the upper bound of δ(G), assume first that G is hyperbolic. We can
assume δ′v(G) < ∞, since otherwise the inequality is direct. By Theorem 1.3.13, there exists
a geodesic triangle T = {x, y, z} that is a cycle with x, y, z ∈ J(G) and p ∈ [xy] such that
d(p, [xz]∪ [zy]) = δ(T ) = δ(G). Assume that x, y, z ∈ J(G)\V (G) (otherwise, the argument
is simpler). Let x1, x2, y1, y2, z1, z2 ∈ T ∩ V (G) such that x ∈ [x1, x2], y ∈ [y1, y2], z ∈ [z1, z2]
and x2, y1 ∈ [xy], y2, z1 ∈ [yz], z2, x1 ∈ [xz]. Since H := {x2, y1, y2, z1, z2, x1} is a geodesic
hexagon with vertices in V (G), it is 4δ′v(G)-thin and every point w ∈ [y1, y2]∪[y2z1]∪[z1, z2]∪
[z2x1] ∪ [x1, x2] verifies d(w, [xz] ∪ [zy]) ≤ 1/2, we have

δ(G) = d(p, [xz] ∪ [zy]) ≤ d(p, [y1, y2] ∪ [y2z1] ∪ [z1, z2] ∪ [z2x1] ∪ [x1, x2]) + 1/2

≤ 4δ′v(G) + 1/2 = 4δv(G) + 1/2.

Assume now that G is not hyperbolic. Therefore, for each M > 0 there exists a geodesic
triangle T = {x, y, z} that is a cycle with x, y, z ∈ J(G) and p ∈ [xy] such that d(p, [xz] ∪
[zy]) ≥ M . The previous argument gives M ≤ 4δv(G) + 1/2 and, since M is arbitrary, we
deduce δv(G) = ∞ = δ(G).

Finally, consider any geodesic triangle T = {x, y, z} in Tv(G). Since d(p, [xz] ∪ [zy]) =
d(p, ([xz]∪ [zy])∩V (G)), d(p, [xz]∪ [zy]) attains its maximum value when p ∈ J(G). Hence,
δ(T ) is a multiple of 1/2 for every geodesic triangle T ∈ Tv(G). Since the set of non-negative
numbers that are multiple of 1/2 is a discrete set, if G is hyperbolic, then δ(G) is a multiple
of 1/2 and there exist a geodesic triangle T = {x, y, z} ∈ Tv(G) and p ∈ [xy] ∩ J(G) such
that d(p, [xz] ∪ [zy]) = δ(T ) = δv(G). This finishes the proof.

Theorem 5.1.17. If G1 is a non-hyperbolic graph, then G1 × P2 is not hyperbolic.

Proof. Since G1 is not hyperbolic, by Theorem 5.1.16, given any R > 0 there is a geodesic
triangle T = {x, y, z} that is a cycle, with x, y, z ∈ V (G1) and such that T is not R-
thin. Therefore, there exists some point m ∈ T , let us assume that m ∈ [xy], such that
dG1(m, [yz] ∪ [zx]) > R.
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Seeking for a contradiction let us assume that G1 × P2 is δ-hyperbolic.
Suppose that for some R > δ, there is a geodesic triangle T = {x, y, z} that is an even

cycle in G1, with x, y, z ∈ V (G1) and such that T is not R-thin. Consider the (closed) path
Λ = [xy]∪ [yz]∪ [zx]. Then, since T has even length, the path Γ1Λ defines a cycle in G1×P2.
Let γ1, γ2, γ3 be the paths in Γ1Λ corresponding to [xy], [yz], [zx], respectively. By Corollary
5.1.4, the curves γ1, γ2 and γ3 are geodesics, and dG1×P2

(
(Γ1Λ)

′(m), γ2 ∪ γ3
)
> δ, leading to

contradiction.
Suppose that for every R > 0, there is a geodesic triangle T = {x, y, z} which is an odd

cycle, with x, y, z ∈ V (G1) and such that T is not R-thin.
Let T1 = {x, y, z} be a geodesic triangle as above and let us assume that diam(T1) =

D > 8δ.
Let T2 = {x′, y′, z′} be another geodesic triangle as above such that T2 is not 3(D +

8δ)-thin, this is, there is a point m in one of the sides, let us call it σ, of T2 such that
dG1(m,T2\σ) > 3(D + 8δ).

Let g = [w0wk] with w0 ∈ T1 and wk ∈ T2 be a shortest geodesic in G1 joining T1 and T2

(if T1 and T2 intersect, just assume that g is a single vertex, w0 = wk, in the intersection).
Let us assume that w0 ∈ [xz] and wk ∈ [x′z′]. Then, let us consider the cycle C in G1

given by the union of the geodesics in T1, g, the geodesics in T2 and the inverse of g from wk

to w0, this is,

C := [w0x] ∪ [xy] ∪ [yz] ∪ [zw0] ∪ [w0wk] ∪ [wkx
′] ∪ [x′y′] ∪ [y′z′] ∪ [z′wk] ∪ [wkw0].

Since T1, T2 are odd cycles, C is an even cycle. Therefore, Γ1C defines a cycle in
G1×P2. Moreover, by Remark 5.1.13, Γ1C is a geodesic decagon in G1×P2 with sides γ1 =
(Γ1C)′([w0x]), γ2 = (Γ1C)′([xy]), γ3 = (Γ1C)′([yz]), γ4 = (Γ1C)′([zw0]), γ5 = (Γ1C)′([w0wk]),
γ6 = (Γ1C)′([wkx

′]), γ7 = (Γ1C)′([x′y′]), γ8 = (Γ1C)′([y′z′]), γ9 = (Γ1C)′([z′wk]) and
γ10 = (Γ1C)′([wkw0]).

Since we are assuming that G1 × P2 is δ-hyperbolic, then for every 1 ≤ i ≤ 10 and every
point p ∈ γi, dG1×P2(p, C\γi) ≤ 8δ.

Let p := (Γ1C)′(m).
Case 1. Suppose that dG1(m,T1 ∪ g) > 8δ.
By assumption, dG1(m,T2\σ) > 8δ. If σ = [x′y′] (resp. σ = [y′z′]), then p ∈ γ7 (resp.

p ∈ γ8) and, by Corollary 5.1.4, dG1×P2(p, C\γ7) > 8δ (resp. dG1×P2(p, C\γ8) > 8δ) leading
to contradiction. If σ = [x′z′], since [x′z′] = [x′wk] ∪ [wkz

′], let us assume m ∈ [x′wk]. Then,
since dG1(m,wk) > 8δ, it follows that dG1(m, [wkz

′]) > 8δ. Thus, p ∈ γ6 and, by Corollary
5.1.4, dG1×P2(p, C\γ6) > 8δ leading to contradiction.

Case 2. Suppose that dG1(m,T1∪g) ≤ 8δ and L(g) ≤ 8δ. Then, for every point q in T1∪g,
dG1(m, q) ≤ 8δ+D+8δ. In particular, dG1(m,wk) ≤ 8δ+D+8δ. Therefore, m ∈ [x′z′] and
let us assume that m ∈ [x′wk]. Since dG1(m,x′) ≥ dG1(m, [x′y′] ∪ [y′z′]) > 3(D + 8δ), there
is a point m′ ∈ [x′m] ⊂ [x′wk] such that dG1(m,m′) = 2(D + 8δ). Then, dG1(m

′, T1 ∪ g) ≥
2(D + 8δ)−D − 8δ − 8δ = D > 8δ. Also, it is trivial to check that dG1(m

′, [x′y′] ∪ [y′z′]) >
3(D + 8δ) − 2(D + 8δ) > 8δ and since [x′z′] is a geodesic, dG1(m

′, [z′wk]) > 8δ. Thus, if
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p′ := (Γ1C)′(m′), then p′ ∈ γ6 and, by Corollary 5.1.4, dG1×P2(p
′, C\γ6) > 8δ leading to

contradiction.
Case 3. Suppose that dG1(m,T1 ∪ g) ≤ 8δ and L(g) > 8δ. Since g is a shortest geodesic

in G1 joining T1 and T2, this implies that dG1(T1, T2) > 8δ and dG1(m, [w0wk]) ≤ 8δ. More-
over, dG1(m,wk) ≤ 16δ. Otherwise, there is a point q ∈ [w0wk] such that dG1(m, q) ≤ 8δ
and dG1(q, wk) > 8δ which means that dG1(q, w0) < dG1(w0, wk) − 8δ and dG1(m,w0) <
dG1(w0, wk) leading to contradiction.

Since dG1(m,wk) ≤ 16δ, m ∈ [x′z′]. Let us assume that m ∈ [x′wk]. Since dG1(m, [x′y′]∪
[y′z′]) > 3(D+8δ), there is a pointm′ ∈ [x′m] ⊂ [x′wk] such that dG1(m,m′) = 2(D+8δ). Let
us see that dG1(m

′, [w0wk]) > 8δ. Suppose there is some q ∈ [w0wk] such that dG1(m
′, q) ≤ 8δ.

Since m′ ∈ T2 and g is a shortest geodesic joining T1 and T2, dG1(q, wk) ≤ 8δ. However,
32δ < 2(D+8δ) = dG1(m

′,m) ≤ dG1(m
′, q)+dG1(q, wk)+dG1(wk,m) ≤ 8δ+8δ+16δ which is

a contradiction. Hence, dG1(m
′, [w0wk]) > 8δ. Also, it is trivial to check that dG1(m

′, [x′y′]∪
[y′z′]) > 3(D+8δ)−2(D+8δ) > 8δ and since [x′z′] is a geodesic, dG1(m

′, [z′wk]) > 8δ. Thus,
if p′ := (Γ1C)′(m′), then p′ ∈ γ6 and, by Corollary 5.1.4, dG1×P2(p

′, C\γ6) > 8δ leading to
contradiction.

Proposition 5.1.7, Lemma 5.1.11 and Theorems 5.1.9, 5.1.10 and 5.1.17 have the following
consequence.

Corollary 5.1.18. If G1 is a non-hyperbolic graph and G2 is some non-trivial graph, then
G1 ×G2 is not hyperbolic.

Proposition 5.1.7 and Corollary 5.1.18 provide a necessary condition for the hyperbolicity
of G1 ×G2.

Theorem 5.1.19. Let G1, G2 be non-trivial graphs. If G1×G2 is hyperbolic, then one factor
graph is hyperbolic and the other one is bounded.

Theorems 5.1.9 and 5.1.10 show that this necessary condition is also sufficient if either
G2 has some odd cycle or G1 and G2 do not have odd cycles (when G1 is a hyperbolic graph
and G2 is a bounded graph). We deal now with the other case, when G1 has some odd cycle
and G2 does not have odd cycles.

Theorem 5.1.20. Let G1 be a graph with some odd cycle and G2 a non-trivial bounded
graph without odd cycles. Assume that G1 satisfies the following property: for each M > 0
there exist a geodesic g joining two minimal cycles of G1 and a vertex u ∈ g ∩ V (G1) with
dG1

(
u,C(G1)

)
≥ M . Then G1 ×G2 is not hyperbolic.

Proof. If G1 is not hyperbolic, then Corollary 5.1.18 gives that G1 × G2 is not hyperbolic.
Assume now that G1 is hyperbolic. By Theorem 1.3.6 and Lemma 5.1.11, we can assume
that G2 = P2 and V (P2) = {v1, v2}.

Fix M > 0 and choose a geodesic g = [w0wk] = [w0, w1]∪ [w1, w2]∪· · ·∪ [wk−1, wk] joining
two minimal cycles in G1 and 0 < r < k with dG1

(
wr,C(G1)

)
≥ M .
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Define the paths g1 and g2 in G1×P2 as g1 := Γ1g and g2 := Γ2g. Since L(g1) = L(g2) =
L(g) = dG1(w0, wk), we have

dG1×P2

(
g1(w0), g1(wk)

)
≤ L(g1) = dG1(w0, wk), dG1×P2

(
g2(w0), g2(wk)

)
≤ L(g2) = dG1(w0, wk).

Corollary 5.1.4 gives that

dG1×P2

(
g1(w0), g1(wk)

)
≥ dG1(w0, wk), dG1×P2

(
g2(w0), g2(wk)

)
≥ dG1(w0, wk).

Hence, g1 and g2 are geodesics in G1 × P2. Choose geodesics g3 = [g1(w0)g2(w0)] and
g4 = [g1(wk)g2(wk)] in G1 × P2. Since dP2(v1, v2) = 1 is odd, Proposition 5.1.3 gives

dG1×P2

(
g1(w0), g2(w0)

)
= min

{
L(σ) | σ is a w0, w0-walk

}
= min

{
L(σ) | σ cycle of odd length containing w0

}
.

Since w0 belongs to a minimal cycle, L(g3) ≤ 4δ(G1) by Lemma 5.1.12. In a similar way, we
obtain L(g4) ≤ 4δ(G1).

Consider the geodesic quadrilateralQ := {g1, g2, g3, g4} inG1×P2. Thus dG1×P2

(
g1(wr), g2

∪g3∪g4
)
≤ 2δ(G1×P2). Since max

{
L(g3), L(g4)

}
≤ 4δ(G1), we deduce dG1×P2

(
g1(wr), g2

)
≤

2δ(G1 × P2) + 4δ(G1).
Let 0 ≤ j ≤ k with dG1×P2

(
g1(wr), g2

)
= dG1×P2

(
g1(wr), g2(wj)

)
. Let us define w′

r :=
g1(wr) and w′

j := g2(wj). Thus Lemma 5.1.14 gives

√
M ≤

√
dG1

(
wr,C(G1)

)
≤ dG1×P2(w

′
r, w

′
j) = dG1×P2(w

′
r, g2) ≤ 2δ(G1 × P2) + 4δ(G1),

and since M is arbitrarily large, we deduce that G1 × P2 is not hyperbolic.

Lemma 5.1.21. Let G1 be a hyperbolic graph and suppose there is some constant K > 0
such that for every vertex w ∈ G1, dG1(w,C(G1)) ≤ K. Then, G1 × P2 is hyperbolic.

Proof. Denote by v1 and v2 the vertices of P2. Let i : V (G1) → V (G1 × P2) defined as
i(w) := (w, v1) for every w ∈ G1.

For every pair of vertices x, y ∈ V (G1), by Corollary 5.1.4, dG1(x, y) ≤ dG1×P2(i(x), i(y)).
By Corollary 5.1.15,

dG1×P2(i(x), i(y)) ≤ dG1(x, y) + 2dG1

(
x,C(G1)

)
+ 4δ(G1) ≤ dG1(x, y) + 2K + 4δ(G1).

Therefore, i : V (G1) → V (G1 × P2) is a
(
1, 2K + 4δ(G1)

)
-quasi-isometric embedding.

Notice that for every (w, v1) ∈ V (G1×P2), (w, v1) = i(w). Also, for any (w, v2) ∈ V (G1×
P2), since G1 is connected, there is some edge [w,w′] ∈ E(G1) and we have [(w, v2), (w

′, v1)] ∈
E(G1 × P2). Therefore, i : V (G1) → V (G1 × P2) is 1-full.

Thus, by Lemma 5.1.8, G1 and G1×P2 are quasi-isometric and, by Theorem 1.3.6, G1×P2

is hyperbolic.
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Theorem 5.1.9 and Lemmas 5.1.11 and 5.1.21 have the following consequence.

Theorem 5.1.22. Let G1 be a hyperbolic graph and G2 some non-trivial bounded graph. If
there is some constant K > 0 such that for every vertex w ∈ G1, dG1(w,C(G1)) ≤ K, then
G1 ×G2 is hyperbolic.

We will finish this section with a characterization of the hyperbolicity of G1 ×G2, under
an additional hypothesis. Since the proof of this result is long and technical, in order to
make the arguments more transparent, we collect some results we need along the proof in
technical lemmas.

Let J be a finite or infinite index set. Now, given a graph G1, we define some graphs
related to G1 which will be useful in the following results. Let Bj := BG1(wj, Kj) with wj ∈
V (G1) and Kj ∈ Z+, for any j ∈ J , such that supj Kj = K < ∞, Bj1 ∩ Bj2 = ∅ if j1 ̸= j2,
and every odd cycle C in G1 satisfies C∩Bj ̸= ∅ for some j ∈ J . Denote by G′

1 the subgraph
of G1 induced by V (G1)\ (∪jBj). Let Nj := ∂Bj = {w ∈ V (G1) : dG1(w,wj) = Kj}. Denote
by G∗

1 the graph with V (G∗
1) = V (G′

1) ∪ (∪j{w∗
j}), where w∗

j are additional vertices, and
E(G∗

1) = E(G′
1) ∪ (∪j{[w,w∗

j ] : w ∈ Nj}). We have G′
1 = G1 ∩G∗

1.

Lemma 5.1.23. Let G1 be a graph as above. Then, there exists a quasi-isometry g : G1 → G∗
1

with g(wj) = w∗
j for every j ∈ J .

Proof. Let f : V (G1) → V (G∗
1) defined as f(u) = u for every u ∈ V (G′

1), and f(u) = w∗
i for

every u ∈ V (Bi). It is clear that f : V (G1) → V (G∗
1) is 0-full.

Now, we focus on proving that f : V (G1) → V (G∗
1) is a (K, 2K)-quasi-isometric embed-

ding. For every u, v ∈ V (G1), it is clear that dG∗
1
(f(u), f(v)) ≤ dG1(u, v).

In order to prove the other inequality, let us fix u, v ∈ V (G1) and let us consider a
geodesic γ in G∗

1 joining f(u) and f(v).
Assume that u, v ∈ V (G′

1). If L(γ) = dG1(u, v), then dG1(u, v) = dG∗
1
(f(u), f(v)). If

L(γ) < dG1(u, v), then γ meets some w∗
j . Since γ is a compact set, it intersects just a finite

number of w∗
j ’s, which we denote by w∗

j1
, . . . w∗

jr . We consider γ as an oriented curve from
f(u) to f(v); thus we can assume that γ meets w∗

j1
, . . . w∗

jr in this order.
Let us define the following vertices in γ

w1
i = [f(u)w∗

ji
] ∩Nji , w2

i = [w∗
ji
f(v)] ∩Nji ,

for every 1 ≤ i ≤ r. Note that [w2
iw

1
i+1] ⊂ G′

1 for every 1 ≤ i < r (it is possible to have
w2

i = w1
i+1).

Since dG∗
1
(w1

i , w
2
i ) = 2 and dG1(w

1
i , w

2
i ) ≤ 2K, we have dG∗

1
(w1

i , w
2
i ) ≥ 1

K
dG1(w

1
i , w

2
i ) for
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every 1 ≤ i ≤ r. Thus,

dG∗
1
(f(u), f(v)) = dG∗

1
(f(u), w1

1) +
r∑

i=1

dG∗
1
(w1

i , w
2
i ) +

r−1∑
i=1

dG∗
1
(w2

i , w
1
i+1) + dG∗

1
(w2

r , f(v))

≥ dG1(u,w
1
1) +

1

K

r∑
i=1

dG1(w
1
i , w

2
i ) +

r−1∑
i=1

dG1(w
2
i , w

1
i+1) + dG1(w

2
r , v)

≥ 1

K

(
dG1(u,w

1
1) +

r∑
i=1

dG1(w
1
i , w

2
i ) +

r−1∑
i=1

dG1(w
2
i , w

1
i+1) + dG1(w

2
r , v)

)
≥ 1

K
dG1(u, v).

Assume that f(u) = f(v). Therefore, there exists j with u, v ∈ Bj and

dG∗
1
(f(u), f(v)) = 0 > dG1(u, v)− 2K.

Assume now that u and/or v does not belong to V (G′
1) and f(u) ̸= f(v). Let u0, v0 be

the closest vertices in V (G′
1) ∩ γ to f(u), f(v), respectively (it is possible to have u0 = f(u)

or v0 = f(v)). Since u0, v0 ∈ V (G′
1), u0 = f(u0), v0 = f(v0), we have dG1(u, u0) < 2K and

dG1(v, v0) < 2K. Hence,

dG∗
1
(f(u), f(v)) = dG∗

1
(f(u), u0) + dG∗

1
(u0, v0) + dG∗

1
(v0, f(v))

≥ dG∗
1
(f(u0), f(v0))

≥ 1

K
dG1(u0, v0)

≥ 1

K

(
dG1(u, v)− dG1(u, u0)− dG1(v, v0)

)
>

1

K
dG1(u, v)− 4.

If K ≥ 2, then dG∗
1
(f(u), f(v)) > 1

K
dG1(u, v) − 2K. If K = 1, then dG1(u, u0) ≤

1, dG1(v, v0) ≤ 1, and dG∗
1
(f(u), f(v)) ≥ dG1(u, v)− 2.

Finally, we conclude that f : V (G1) → V (G∗
1) is a (K, 2K)-quasi-isometric embedding.

Thus, Lemma 5.1.8 provides a quasi-isometry g : G1 → G∗
1 with the required property.

Definition 5.1.24. Given a graph G1 and some index set J let BJ = {Bj}j∈J be a family of
balls where Bj := BG1(wj, Kj) with wj ∈ V (G1), Kj ∈ Z+ for any j ∈ J , supj Kj = K < ∞
and Bj1 ∩Bj2 = ∅ if j1 ̸= j2. Suppose that every odd cycle C in G1 satisfies that C ∩Bj ̸= ∅
for some j ∈ J . If there is some constant M > 0 such that for every j ∈ J , there is an odd
cycle Cj such that Cj ∩Bj ̸= ∅ with L(Cj) < M , then we say that BJ is M-regular.

Remark 5.1.25. If J is finite, then there exists M > 0 such that {Bj}j∈J is M-regular.
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Denote by G∗ the graph with V (G∗) = V (G′
1 × P2) ∪ (∪j{w∗

j}), where G′
1 is a graph as

above and w∗
j are additional vertices, and E(G∗) = E(G′

1×P2)∪ (∪j{[w,w∗
j ] : π1(w) ∈ Nj}).

Lemma 5.1.26. Let G1 be a graph as above and P2 with V (P2) = {v1, v2}. If G1 is hyperbolic
and BJ as above is M-regular, then there exists a quasi-isometry f : G1 × P2 → G∗ with
f(wj, vi) = w∗

j for every j ∈ J and i ∈ {1, 2}.

Proof. Let F : V (G1 × P2) → V (G∗) defined as F (v, vi) = (v, vi) for every v ∈ V (G′
1), and

F (v, vi) = w∗
j for every v ∈ V (Bj). It is clear that F : V (G1 ×P2) → V (G∗) is 0-full. Recall

that we denote by π1 : G1 × P2 → G1 the projection map. Define π∗ : G∗ → G1 as π∗ = π1

on G′
1 × P2 and π∗(x) = wj for every x with dG∗(x,w∗

j ) < 1 for some j ∈ J .
Now, we focus on proving that F : V (G1×P2) → V (G∗) is a quasi-isometric embedding.

For every (w, vi), (w
′, vi′) ∈ V (G1 × P2), one can check

dG∗(F (w, vi), F (w′, vi′)) ≤ dG1×P2((w, vi), (w
′, vi′)).

In order to prove the other inequality, let us fix (w, vi), (w
′, vi′) ∈ V (G′

1×P2) (the inequalities
in other cases can be obtained from the one in this case, as in the proof of Lemma 5.1.23).
Consider a geodesic γ := [F (w, vi)F (w′, vi′)] in G∗. If L(γ) = dG1×P2((w, vi), (w

′, vi′)), then

dG∗(F (w, vi), F (w′, vi′)) = dG1×P2((w, vi), (w
′, vi′)).

If L(γ) < dG1×P2((w, vi), (w
′, vi′)), then π∗(γ) meets some Bj. Since γ is a compact set, π∗(γ)

intersects just a finite number of Bj’s, which we denote by Bj1 , . . . Bjr . We consider γ as an
oriented curve from F (w, vi) to F (w′, vi′); thus we can assume that π∗(γ) meets Bj1 , . . . Bjr

in this order.
Let us define the following set of vertices in γ

{w1
i , w

2
i } := γ ∩ (Nji × P2),

for every 1 ≤ i ≤ r, such that dG1×P2((w, vi), w
1
i ) < dG1×P2((w, vi), w

2
i ). Note that [w

2
iw

1
i+1] ⊂

G′
1 × P2 for every 1 ≤ i < r and dG1×P2(w

2
i , w

1
i+1) ≥ 1 since Bji ∩Bji+1

= ∅.
If dG1(π(w

1
i ), π(w

2
i )) = dG1×P2(w

1
i , w

2
i ) for some 1 ≤ i ≤ r, then dG1×P2(w

1
i , w

2
i ) ≤ 2K.

Since
dG1×P2(w

2
i , w

1
i+1) ≥ 1 for 1 ≤ i < r, we have that dG1×P2(w

1
i , w

2
i ) ≤ 2K dG1×P2(w

2
i , w

1
i+1) in

this case.
If dG1(π1(w

1
i ), π1(w

2
i )) < dG1×P2(w

1
i , w

2
i ) for some 1 ≤ i ≤ r, then dG1(π1(w

1
i ), π1(w

2
i )) +

dG1×P2(w
1
i , w

2
i ) is odd.

Since BJ is M -regular, consider an odd cycle C with C ∩ Bji ̸= ∅ and L(C) < M , and
let bi ∈ C ∩ Bji and [π1(w

1
i )bi], [biπ1(w

2
i )] geodesics in G1. Thus, [π1(w

1
i )bi] ∪ [biπ1(w

2
i )]

and [π1(w
1
i )bi] ∪ C ∪ [biπ1(w

2
i )] have different parity which means that one of them has

different parity from [π1(w
1
i )π1(w

2
i )]. Then, dG1×P2(w

1
i , w

2
i ) ≤ L([π1(w

1
i )bi]∪C∪[biπ1(w

2
i )]) ≤
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4K +M . Since dG1×P2(w
2
i , w

1
i+1) ≥ 1 for 1 ≤ i < r, we have that dG1×P2(w

1
i , w

2
i ) ≤

(
4K +

M
)
dG1×P2(w

2
i , w

1
i+1) in this case.

Thus, we have that dG1×P2(w
1
i , w

2
i ) ≤ 4K +M for every 1 ≤ i ≤ r and dG1×P2(w

1
i , w

2
i ) ≤(

4K +M
)
dG1×P2(w

2
i , w

1
i+1) for every 1 ≤ i < r. Therefore,

dG1×P2((w, vi), (w
′, vi′)) ≤ dG1×P2((w, vi), w

1
1) +

r∑
i=1

dG1×P2(w
1
i , w

2
i ) +

r−1∑
i=1

dG1×P2(w
2
i , w

1
i+1)

+ dG1×P2(w
2
r , (w

′, vi′))

≤ dG1×P2((w, vi), w
1
1) + dG1×P2(w

2
r , (w

′, vi′)) +
(
4K +M + 1

) r−1∑
i=1

dG1×P2(w
2
i , w

1
i+1)

+ dG1×P2(w
1
r , w

2
r)

= dG∗(F (w, vi), F (w1
1)) + dG∗(F (w2

r), F (w′, vi′)) +
(
4K +M + 1

) r−1∑
i=1

dG∗(F (w2
i ), F (w1

i+1))

+ dG1×P2(w
1
r , w

2
r)

≤
(
4K +M + 1

)(
dG∗(F (w, vi), F (w1

1)) + dG∗(F (w2
r), F (w′, vi′)) +

r−1∑
i=1

dG∗(F (w2
i ), F (w1

i+1))
)

+4K +M

≤
(
4K +M + 1

)
dG∗(F (w, vi), F (w′, vi′)) + 4K +M.

We conclude that F : V (G1 × P2) → V (G∗) is a quasi-isometric embedding. Thus, Lemma
5.1.8 provides a quasi-isometry f : G1 × P2 → G∗ with the required property.

Definition 5.1.27. Given a geodesic metric space X and closed connected pairwise disjoint
subsets {ηj}j∈J of X, we consider another copy X ′ of X. The double DX of X is the union
of X and X ′ obtained by identifying the corresponding points in each ηj and η′j.

Definition 5.1.28. Let us consider H > 0, a metric space X, and subsets Y, Z ⊆ X. The set
VH(Y ) := {x ∈ X : d(x, Y ) ≤ H} is called the H-neighborhood of Y in X. The Hausdorff
distance of Y to Z is defined by H(Y, Z) := inf{H > 0 : Y ⊆ VH(Z), Z ⊆ VH(Y )}.

The following results in [5] and [51] will be useful.

Theorem 5.1.29. [5, Theorem 3.2] Let us consider a geodesic metric space X and closed
connected pairwise disjoint subsets {ηj}j∈J of X, such that the double DX is a geodesic
metric space. Then the following conditions are equivalent:

(1) DX is hyperbolic.
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(2) X is hyperbolic and there exists a constant c1 such that for every k, l ∈ J and a ∈
ηk, b ∈ ηl we have dX(x,∪j∈Jηj) ≤ c1 for every x ∈ [ab] ⊂ X.

(3) X is hyperbolic and there exist constants c2, α, β such that for every k, l ∈ J and
a ∈ ηk, b ∈ ηl we have dX(x,∪j∈Jηj) ≤ c2 for every x in some (α, β)-quasi-geodesic
joining a with b in X.

Theorem 5.1.30. [51, p.87] For each δ ≥ 0, a ≥ 1 and b ≥ 0, there exists a constant
H = H(δ, a, b) with the following property:

Let us consider a δ-hyperbolic geodesic metric space X and an (a, b)-quasigeodesic g
starting in x and finishing in y. If γ is a geodesic joining x and y, then H(g, γ) ≤ H.

This property is known as geodesic stability. Mario Bonk proved in 1996 that geodesic
stability was, in fact, equivalent to Gromov hyperbolicity (see [15]).

Theorem 5.1.31. Let G1 be a graph and Bj := BG1(wj, Kj) with wj ∈ V (G1) and Kj ∈ Z+,
for any j ∈ J , such that supj Kj = K < ∞, Bj1 ∩Bj2 = ∅ if j1 ̸= j2, and every odd cycle C
in G1 satisfies C ∩ Bj ̸= ∅ for some j ∈ J . Suppose {Bj}j∈J is M-regular for some M > 0.
Let G2 be a non-trivial bounded graph without odd cycles. Then, the following statements
are equivalent:

(1) G1 ×G2 is hyperbolic.

(2) G1 is hyperbolic and there exists a constant c1, such that for every k, l ∈ J and wk ∈
Bk, wl ∈ Bl there exists a geodesic [wkwl] in G1 with dG1(x,∪j∈Jwj) ≤ c1 for every
x ∈ [wkwl].

(3) G1 is hyperbolic and there exist constants c2, α, β, such that for every k, l ∈ J we have
dG1(x,∪j∈Jwj) ≤ c2 for every x in some (α, β)-quasi-geodesic joining wk with wl in
G1.

Proof. Items (2) and (3) are equivalent by geodesic stability in G1 (see Theorem 5.1.30).
Assume that (2) holds. By Lemma 5.1.23, there exists an (α, β)-quasi-isometry f : G1 →

G∗
1 with f(wj) = w∗

j for every j ∈ J . Given k, l ∈ J, f([wkwl]) is an (α, β)-quasi-geodesic
with endpoints w∗

k and w∗
l in G∗

1. Given x ∈ f([wkwl]), we have x = f(x0) with x0 ∈ [wkwl]
and dG∗

1
(x,∪j∈Jw

∗
j ) ≤ αdG1(x0,∪j∈Jwj) + β ≤ αc1 + β. Taking X = G∗

1, DX = G∗ and
ηj = w∗

j for every j ∈ J , Theorem 5.1.29 gives that G∗ is hyperbolic. Now, Lemma 5.1.26
gives that G1 × P2 is hyperbolic and we conclude that G1 × G2 is hyperbolic by Lemma
5.1.11.

Now suppose (1) holds. By Lemma 5.1.11, G1×P2 is hyperbolic and, by Theorem 5.1.17,
G1 is hyperbolic. Then, Lemma 5.1.26 gives that G∗ is hyperbolic and taking X = G∗

1, DX =
G∗ and ηj = w∗

j for every j ∈ J , by Theorem 5.1.29, (2) holds.

Theorem 5.1.31 and Remark 5.1.25 have the following consequence.
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Corollary 5.1.32. Let G1 be a graph and suppose that there are a positive integer K and a
vertex w ∈ G1, such that every odd cycle in G1 intersects the open ball B := BG1(w,K). Let
G2 be a non-trivial bounded graph without odd cycles. Then, G1 × G2 is hyperbolic if and
only if G1 is hyperbolic.

5.2 Bounds for the hyperbolicity constant of some di-

rect products

Remark 5.2.1. Note that if G1 is a bipartite graph, then diamG1 = diamV (G1). Fur-
thermore, if G2 is a bipartite graph, then the product G1 × G2 has exactly two connected
components, which will be denoted by (G1 × G2)

1 and (G1 × G2)
2, where each one is a

bipartite graph and, consequently, diam(G1 ×G2)
i = diamV ((G1 ×G2)

i) for i ∈ {1, 2}.

Remark 5.2.2. Let Pm, Pn be two path graphs with m ≥ n ≥ 2. The product Pm×Pn has ex-
actly two connected components, which will be denoted by (Pm×Pn)

1 and (Pm×Pn)
2. If u, v ∈

V ((Pm×Pn)
i) for i ∈ {1, 2}, then d(Pm×Pn)i(u, v) = max

{
dPm(π1(u), π1(v)), dPn(π2(u), π2(v))

}
and diam(Pm × Pn)

i = diamV ((Pm × Pn)
i) = m− 1.

Furthermore, if m1 ≤ m and n1 ≤ n then δ(Pm × Pn) ≥ δ(Pm1 × Pn1).

Lemma 5.2.3. Let Pm, Pn be two path graphs with m ≥ n ≥ 3, and let γ be a geodesic
in Pm × Pn such that there are two different vertices u, v in γ, with π1(u) = π1(v). Then,
L(γ) ≤ n− 1.

Proof. Let γ := [xy], and let V (Pm) = {v1, . . . , vm}, V (Pn) = {w1, . . . , wn} be the sets of
vertices in Pm, Pn, respectively, such that [vj, vj+1] ∈ E(Pm) and [wi, wi+1] ∈ E(Pn) for
1 ≤ j < m, 1 ≤ i < n. Seeking for a contradiction, assume that L(γ) > n − 1. Notice
that if [uv] denotes the geodesic contained in γ joining u and v, then π2 restricted to [uv]
is injective. Consider two vertices u′, v′ ∈ γ such that [uv] ⊆ [u′v′] ⊆ γ, π2 is injective
in [u′v′] and π2(u

′) = wi1 , π2(v
′) = wi2 with i2 − i1 maximal under these conditions. Since

L(γ) > n−1 ≥ i2−i1, either there is an edge [v′, w] in G1×G2 such that [v′, w]∩(γ\[u′v′]) ̸= ∅
or there is an edge [u′, w′] inG1×G2 such that [u′, w′]∩(γ\[u′v′]) ̸= ∅. Also, since L(γ) > n−1,
notice that π2 is not injective in γ. Moreover, since i2− i1 is maximal, if π2(w) = wi2+1, then
w /∈ γ, and since L(γ) > n− 1, u′ /∈ {x, y} and π2(w

′) = wi1+1. Thus, either π2(w) = wi2−1

or π2(w
′) = wi1+1.

Hence, let us assume that there is an edge [v′, w] in G1 × G2 such that [v′, w] ∩ (γ \
[u′v′]) ̸= ∅ with π2(w) = wi2−1 (otherwise, if there is an edge [u′, w′] in G1 × G2 such that
[u′, w′] ∩ (γ \ [u′v′]) ̸= ∅ with π2(w

′) = wi1+1, the proof is similar).
Suppose π1(v

′) = vj. Let v′′ be the vertex in [u′v′] such that π2(v
′′) = wi2−1. Then,

by construction of G1 × G2, since v′′ ̸= w, it follows that {π1(v
′′), π1(w)} = {vj−1, vj+1}.

Therefore, in particular, 1 < j < m.
Assume that v′′ = (vj−1, wi2−1) (if v′′ = (vj+1, wi2−1), then the argument is similar).

Therefore, w = (vj+1, wi2−1).
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Consider the geodesic

σ = [(vj+1, wi2−1), (vj, wi2−2)] ∪ [(vj, wi2−2), (vj−1, wi2−3)] ∪ [(vj−1, wi2−3), (vj−2, wi2−4)] ∪ . . .

Since π1(u) = π1(v), there is a vertex ξ of V (Pm × Pn) in [u′v′] ∩ σ. Let s ∈ [v′, w] ∩ γ
with s ̸= v′. Let σ0 be the geodesic contained in σ joining ξ and w. Let γ0 be the geodesic
contained in γ joining ξ and s. Hence, L(σ0 ∪ [ws]) < L(σ0) + 1 < L(γ0) leading to
contradiction.

Theorem 5.2.4. Let Pm, Pn be two path graphs with m ≥ n ≥ 2. If n = 2, then δ(Pm×P2) =
0. If n ≥ 3, then

min
{m

2
, n− 1

}
− 1 ≤ δ(Pm × Pn) ≤ min

{m

2
, n

}
− 1

2
.

Furthermore, if m ≤ 2n− 3 and m is odd, then δ(Pm × Pn) = (m− 1)/2.

Proof. If m ≥ 2, then Pm × P2 has two connected components isomorphic to Pm, and
δ(Pm × P2) = 0.

Assume that n ≥ 3. By symmetry, it suffices to prove the inequalities for δ((Pm ×Pn)
1).

Hence, Lemma 1.3.7 and Remark 5.2.2 give δ((Pm × Pn)
1) ≤ m−1

2
. By Theorem 1.3.13,

there exists a geodesic triangle T = {x, y, z} ∈ T1(Pm × Pn) with p ∈ γ1 := [xy], γ2 :=
[xz], γ3 := [yz], and δ((Pm × Pn)

1) = δ(T ) = d(Pm×Pn)1(p, γ2 ∪ γ3). Let u ∈ V (γ1) such that
d(Pm×Pn)1(p, u) ≤ 1/2.

In order to prove δ((Pm × Pn)
1) ≤ n− 1/2, we consider two cases.

Assume first that there is at least a vertex v ∈ V ((Pm × Pn)
1) ∩ T \ {u} such that

π1(u) = π1(v). If v /∈ γ1, then v ∈ γ2 ∪ γ3 and

δ(T ) = d(Pm×Pn)1(p, γ2 ∪ γ3) ≤ 1/2 + d(Pm×Pn)1(u, v) ≤ n− 1/2.

If v ∈ γ1, then L(γ1) ≤ n− 1 by Lemma 5.2.3, and

δ(T ) = d(Pm×Pn)1(p, γ2 ∪ γ3) ≤ d(Pm×Pn)1(p, {x, y}) ≤ (n− 1)/2 < n− 1/2.

Assume now that there is not a vertex v ∈ V ((Pm × Pn)
1) ∩ T \ {u} such that π1(u) =

π1(v). Then, there exist two different vertices v1, v2 in T \ {u} such that d(Pm×Pn)1(u, v1) =
d(Pm×Pn)1(u, v2) = 1, and π1(v1) = π1(v2). If v1 or v2 belongs to γ2 ∪ γ3, then δ(T ) =
d(Pm×Pn)1(p, γ2 ∪ γ3) ≤ 3/2 ≤ n − 1/2. Otherwise, v1, v2 ∈ γ1 \ {u}. Lemma 5.2.3 gives
L(γ1) ≤ n− 1, and we have that

δ(T ) = d(Pm×Pn)1(p, γ2 ∪ γ3) ≤ d(Pm×Pn)1(p, {x, y}) ≤ (n− 1)/2 < n− 1/2.

In order to prove the lower bound, denote the vertices of Pm and Pn by V (Pm) =
{w1, w2, w3, . . . , wm} and V (Pn) = {v1, v2, v3, . . . , vn}, with [wi, wi+1] ∈ E(Pm) for 1 ≤ i < m
and [vi, vi+1] ∈ E(Pn) for 1 ≤ i < n.
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Let (Pm × Pn)
1 be the connected component of Pm × Pn containing (w1, vn−1).

Assume first that m ≥ 2n− 3. Consider the following curves in (Pm × Pn)
1:

γ1 := [(w1, vn−1), (w2, vn)] ∪ [(w2, vn), (w3, vn−1)] ∪ [(w3, vn−1), (w4, vn)] ∪ · · ·
· · · ∪ [(w2n−4, vn), (w2n−3, vn−1)],

γ2 := [(w1, vn−1), (w2, vn−2)] ∪ [(w2, vn−2), (w3, vn−3)] ∪ · · · ∪ [(wn−2, v2), (wn−1, v1)]

∪ [(wn−1, v1), (wn, v2)] ∪ · · · ∪ [(w2n−4, vn−2), (w2n−3, vn−1)].

Corollary 5.1.4 gives that γ1, γ2 are geodesics. If B is the geodesic bigon B = {γ1, γ2}, then
Remark 5.2.2 gives that

δ(Pm × Pn) ≥ δ(B) ≥ d(Pm×Pn)1((wn−1, v1), γ1) = n− 2.

If m is odd with m ≤ 2n− 3, then n− (m+ 1)/2 ≥ 1 and we can consider the curves in
(Pm × Pn)

1:

γ1 := [(w1, vn−1), (w2, vn)] ∪ [(w2, vn), (w3, vn−1)] ∪ [(w3, vn−1), (w4, vn)] ∪ · · ·
· · · ∪ [(wm−1, vn), (wm, vn−1)],

γ2 := [(w1, vn−1), (w2, vn−2)] ∪ [(w2, vn−2), (w3, vn−3)] ∪ · · · ∪ [(w(m+1)/2−1, vn−(m+1)/2+1),

(w(m+1)/2, vn−(m+1)/2)] ∪ [(w(m+1)/2, vn−(m+1)/2), (w(m+1)/2+1, vn−(m+1)/2+1)] ∪ · · ·
· · · ∪ [(wm−1, vn−2), (wm, vn−1)].

Corollary 5.1.4 gives that γ1, γ2 are geodesics. If B = {γ1, γ2}, then Remark 5.2.2 gives that

δ(Pm × Pn) ≥ δ(B) ≥ d(Pm×Pn)1((w(m+1)/2, vn−(m+1)/2), γ1) = (m− 1)/2.

By Remark 5.2.2, if m is even with m− 1 ≤ 2n− 3, then we have that

δ(Pm × Pn) ≥ δ(Pm−1 × Pn) ≥ (m− 2)/2.

Hence,

δ(Pm×Pn) ≥
{

n− 2, if m ≥ 2n− 3
(m− 2)/2, if m ≤ 2n− 2

}
= min

{
n−2,

m− 2

2

}
= min

{m

2
, n−1

}
−1.

Furthermore, if m ≤ 2n−3 and m is odd, then we have proved (m−1)/2 ≤ δ(Pm×Pn) ≤
(m− 1)/2.

Theorem 5.2.5. If G1 and G2 are bipartite graphs with k1 := diamV (G1) and k2 :=
diamV (G2) such that k1 ≥ k2 ≥ 1, then

max
{
min

{k1 − 1

2
, k2 − 1

}
, δ(G1), δ(G2)

}
≤ δ(G1 ×G2) ≤

k1
2
.

Furthermore, if k1 ≤ 2k2 − 2 and k1 is even, then δ(G1 ×G2) = k1/2.
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Proof. Corollary 5.1.4, Lemma 1.3.7 and Remark 5.2.1 give us the upper bound.
In order to prove the lower bound, we can see that there exist two path graphs Pk1+1, Pk2+1

which are isometric subgraphs of G1 and G2, respectively. It is easy to check that Pk1+1 ×
Pk2+1 is an isometric subgraph of G1 ×G2. By Lemma 1.3.3 and Theorem 5.2.4, we have

min
{k1 − 1

2
, k2 − 1

}
≤ δ(Pk1+1 × Pk2+1) ≤ δ(G1 ×G2).

Using a similar argument as above, we have δ(P2 ×G2) ≤ δ(G1 ×G2) and δ(G1 × P2) ≤
δ(G1 ×G2). Thus, since (G1 × P2)

i ≃ G1 and (P2 ×G2)
i ≃ G2 for i ∈ {1, 2}, we obtain the

first statement.
Furthermore, if k1 + 1 ≤ 2(k2 + 1) − 3 and k1 + 1 is odd, then Theorem 5.2.4 gives

δ(Pk1+1 × Pk2+1) = k1/2, and we conclude δ(G1 ×G2) = k1/2.



Conclusions and Open Problems

Conclusions

We characterize the strong product of two graphs G1⊠G2 which are hyperbolic, in terms of
G1 and G2: the strong product graph G1 ⊠G2 is hyperbolic if and only if one of the factors
is hyperbolic and the other one is bounded. We also prove some sharp relations between
δ(G1 ⊠ G2), δ(G1), δ(G2) and the diameters of G1 and G2 (and we find families of graphs
for which the inequalities are attained). Furthermore, we obtain the exact values of the
hyperbolicity constant for many strong product graphs.

Furthermore, we characterize the lexicographic product of two graphs G1 ◦G2 which are
hyperbolic, in terms of G1 and G2: the lexicographic product graph G1 ◦ G2 is hyperbolic
if and only if G1 is hyperbolic, unless if G1 is a trivial graph; if G1 is trivial, then G1 ◦ G2

is hyperbolic if and only if G2 is hyperbolic. Also, we obtain that δ(G1) ≤ δ(G1 ◦ G2) ≤
δ(G1)+3/2 ifG1 is not a trivial graph, and we find families of graphs for which the inequalities
are attained.

Besides, we characterize the hyperbolic product graphs for the Cartesian sum G1 ⊕ G2:
G1 ⊕G2 is always hyperbolic, unless either G1 or G2 is the trivial graph; if G1 or G2 is the
trivial graph, then G1⊕G2 is hyperbolic if and only if G2 or G1 is hyperbolic, respectively. We
also obtain the sharp inequalities 1 ≤ δ(G1 ⊕G2) ≤ 3/2 for every non-trivial graphs G1, G2.
Besides, we characterize the Cartesian sums with δ(G1 ⊕ G2) = 1, with δ(G1 ⊕ G2) = 5/4
and with δ(G1 ⊕ G2) = 3/2. Furthermore, we obtain the precise value of the hyperbolicity
constant of the Cartesian sum of many graphs.

Finally, we prove that if the direct product G1 × G2 is hyperbolic, then one factor is
hyperbolic and the other one is bounded. Also, we prove that this necessary condition is, in
fact, a characterization in many cases. In other cases, we find characterizations which are
not so simple. Furthermore, we obtain good bounds for the hyperbolicity constant of the
direct product of some important graphs.
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Open Problems

• We have characterized the hyperbolic direct product graphs in several cases, but we
would like to obtain a complete characterization.

• We have obtained good bounds of δ(G1×G2) for several kinds of graphs, but we would
like to compute the precise value of δ(G1 ×G2) for some families of graphs.

• We would like to relate the hyperbolicity with other properties of graphs. In par-
ticular, we are interested in the relation between the hyperbolicity and the Cheeger
isoperimetric inequality.
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[11] Bermudo, S., Rodŕıguez, J. M. and Sigarreta, J. M., Computing the hyperbolicity con-
stant, Comput. Math. Appl. 62 (2011), 4592-4595.

[12] Bermudo, S., Rodŕıguez, J. M., Sigarreta, J. M. and Touŕıs, E., Hyperbolicity and
complement of graphs, Appl. Math. Letters 24 (2011), 1882-1887.
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Astérisque 270 (2001).

[17] Bowditch, B. H., Notes on Gromov’s hyperbolicity criterion for path-metric spaces.
Group theory from a geometrical viewpoint, Trieste, 1990 (ed. E. Ghys, A. Haefliger
and A. Verjovsky; World Scientific, River Edge, NJ, 1991) 64-167.
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periodic planar graphs, Acta Math. Sinica 30 (2014), 79-90.

[24] Carballosa, W., Casablanca, R. M., de la Cruz, A. and Rodŕıguez, J. M., Gromov
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[32] Carballosa, W., Rodŕıguez, J. M. and Sigarreta, J. M., Hyperbolicity in the corona and
join of graphs, Aequat. Math. 89 (2015), 1311-1327.
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bolicity of Denjoy domains with hyperbolic and quasihyperbolic metrics, J. Math. Soc.
Japan 64 (2012), 247-261.
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[76] Kraner-Šumenjaka, T., Pavlicb, P. and Tepeh, A., On the Roman domination in the
lexicographic product of graphs, Discrete Appl. Math. 160 (13-14) (2012), 2030-2036.

[77] Krauthgamer, R. and Lee, J. R., Algorithms on negatively curved spaces, FOCS 2006.

[78] Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A. and Boguñá, M., Hyperbolic
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[99] Rodŕıguez, J. M., Characterization of Gromov hyperbolic short graphs, Acta Math.
Sinica 30 (2014), 197-212.
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MATEMÁTICAS, Ediciones IVIC (Instituto Venezolano de Investigaciones Cient́ıficas),
Caracas (Venezuela), (2010).
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[115] Špacapan, S., Connectivity of Strong Products of Graphs, Graphs Combin. 26 (2010),
457-467.
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