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mento de Matemáticas de la Universidad Carlos III de Madrid por la oportunidad que me
ha dado de formarme como investigador. Igualmente quiero agradecer a todos los miembros
del tribunal de la disertación doctoral por aceptar su papel en este proceso final que tanto
tiempo les consume, esperando que el trabajo les resulte interesante y lo disfruten.

A Yadira, mi esposa, por su apoyo y amor; a mi suegra y mi madre por su apoyo con
el cuidado, atención y formación de nuestro pequeño Walter Junior que nos proporcionó
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Resumen

Sea X un espacio métrico geodésico y x1, x2, x3 ∈ X . Un triángulo geodésico T =
{x1, x2, x3} es la unión de tres geodésicas [x1x2], [x2x3] y [x3x1] de X . El espacio X es δ-
hiperbólico (en el sentido de Gromov) si todo lado de T está contenido en la δ-vecindad de la
unión de los otros dos lados, para todo triángulo geodésico T de X . Se denota por δ(X) a la
constante de hiperbolicidad óptima de X , es decir, δ(X) := inf{δ ≥ 0 : X es δ-hiperbólico }.
El estudio de los grafos hiperbólicos es un tema interesante dado que la hiperbolicidad de un
espacio métrico geodésico es equivalente a la hiperbolicidad de un grafo más sencillo asociado
al espacio.

Uno de los principales objetivos de esta Tesis Doctoral es obtener información cuantitativa
sobre la variación de la constante de hiperbolicidad del grafo G \ e que se obtiene del grafo
G mediante la eliminación de una arista arbitraria e de él. Estas desigualdades permiten
caracterizar, de forma cuantitativa, la hiperbolicidad de cualquier grafo en términos de su
hiperbolicidad local.

En esta memoria se obtene información acerca de la constante de hiperbolicidad del grafo
ĺınea L(G) en términos de propiedades del grafo G. En particular, se obtienen los siguientes
resultados cualitativos: un grafo G es hiperbólico si y sólo si L(G) es hiperbólico; si {Gn}
es una T-descomposición de G, el grafo ĺınea L(G) es hiperbólico si y sólo si supn δ(L(Gn))
es finito. Además, se obtienen resultados cuantitativos cuando las aristas de G y L(G)
tienen longitud k. Se demuestra que g(G)/4 ≤ δ(L(G)) ≤ c(G)/4 + 2k, donde g(G) es
el cuello de G y c(G) es su circunferencia. También se prueba que δ(L(G)) ≥ sup{L(g) :
g es un ciclo isométrico de G }/4. Igualmente, se obtienen cotas para δ(G) + δ(L(G)) y se
caracterizan los grafos G tales que δ(L(G)) < k.

Por otra parte, se consideran grafos G con aristas de longitudes arbitrarias, y L(G)
con aristas de longitudes no constante. En particular, se demuestra que los ciclos de G se
transforman isométricamente en ciclos de L(G) con la misma longitud. También se obtiene
la relación δ(G) ≤ δ(L(G)) ≤ 5δ(G) + 3lmax, donde lmax := supe∈E(G) L(e). Este resultado
prueba la monotońıa de la constante de hiperbolicidad bajo una transformación no trivial
(el grafo ĺınea de un grafo).

También, se obtienen criterios que permiten decidir, para una clase amplia de grafos,
cuando son estos hiperbólicos o no. Se presta especial atención en los grafos planares que
son la “frontera” (el 1-esqueleto) de una teselación del plano eucĺıdeo. Además, se prueba que
los grafos que se obtienen como 1-esqueleto de un CW 2-complejo general son hiperbólicos
si y sólo si su grafo dual es hiperbólico.

Uno de los principales problemas en este área es relacionar la hiperbolicidad de un grafo
con otras propiedades de la teoŕıa de grafos. En este trabajo se extiende de dos man-
eras (arista-cordalidad y camino-cordalidad) la definición clásica de cordalidad con el fin
de relacionar esta propiedad con la hiperbolicidad. De hecho, se demuestra que todo grafo



arista-cordal es hiperbólico y que todo grafo hiperbólico es camino-cordal. También, se de-
muestra que todo grafo cúbico camino-cordal (con constante pequeña de camino-cordalidad)
es hiperbólico.

Algunos trabajos previos caracterizan la hiperbolicidad de productos de grafos (para el
producto cartesiano, el producto fuerte y el producto lexicográfico) en términos de propiedades
de los grafos factores. En el último caṕıtulo, se caracteriza la hiperbolicidad de dos produc-
tos de grafos: el grafo join G1 ⊎ G2 y el corona G1 ⋄ G2. El grafo join G1 ⊎ G2 siempre
es hiperbólico, y el corona G1 ⋄ G2 es hiperbólico si y sólo si G1 es hiperbólico. Además,
obtenemos fórmulas sencillas para la constante de hiperbolicidad del grafo join G1 ⊎ G2 y
del corona G1 ⋄G2.



Review

If X is a geodesic metric space and x1, x2, x3 ∈ X , a geodesic triangle T = {x1, x2, x3} is
the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X . The space X is δ-hyperbolic
(in the Gromov sense) if any side of T is contained in the δ-neighborhood of the union
of the two other sides, for every geodesic triangle T in X . We denote by δ(X) the sharp
hyperbolicity constant of X , i.e., δ(X) := inf{δ ≥ 0 : X is δ-hyperbolic } . The study of
hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space
is equivalent to the hyperbolicity of a graph related to it.

One of the main aims of this PhD Thesis is to obtain quantitative information about the
distortion of the hyperbolicity constant of the graph G \ e obtained from the graph G by
deleting an arbitrary edge e from it. These inequalities allow to obtain other main result,
which characterizes in a quantitative way the hyperbolicity of any graph in terms of local
hyperbolicity.

In this work we also obtain information about the hyperbolicity constant of the line
graph L(G) in terms of properties of the graph G. In particular, we prove qualitative results
as the following: a graph G is hyperbolic if and only if L(G) is hyperbolic; if {Gn} is a
T-decomposition of G ({Gn} are simple subgraphs of G), the line graph L(G) is hyperbolic
if and only if supn δ(L(Gn)) is finite. Besides, we obtain quantitative results when k is
the length of the edges of G and L(G). Two of them are quantitative versions of our
qualitative results. We also prove that g(G)/4 ≤ δ(L(G)) ≤ c(G)/4 + 2k, where g(G)
is the girth of G and c(G) is its circumference. We show that δ(L(G)) ≥ sup{L(g) :
g is an isometric cycle in G }/4. Besides, we obtain bounds for δ(G) + δ(L(G)). Also, we
characterize the graphs G with δ(L(G)) < k.

Furthermore, we consider G with edges of arbitrary lengths, and L(G) with edges of
non-constant lengths. In particular, we prove that a cycle of the graph G is transformed
isometrically into a cycle of the graph L(G) with the same length. We also prove that
δ(G) ≤ δ(L(G)) ≤ 5δ(G) + 3lmax, where lmax := supe∈E(G) L(e). This result implies the
monotony of the hyperbolicity constant under a non-trivial transformation (the line graph
of a graph).

Also, we obtain criteria which allow us to decide, for a large class of graphs, whether
they are hyperbolic or not. We are especially interested in the planar graphs which are the
“boundary” (the 1-skeleton) of a tessellation of the Euclidean plane. Furthermore, we prove
that a graph obtained as the 1-skeleton of a general CW 2-complex is hyperbolic if and only
if its dual graph is hyperbolic.

One of the main problems on this subject is to relate the hyperbolicity with other prop-
erties on graph theory. We extend in two ways (edge-chordality and path-chordality) the
classical definition of chordal graphs in order to relate this property with Gromov hyperbolic-
ity. In fact, we prove that every edge-chordal graph is hyperbolic and that every hyperbolic



graph is path-chordal. Furthermore, we prove that every path-chordal cubic graph (with
small path-chordality constant) is hyperbolic.

Some previous works characterize the hyperbolic product graphs (for the Cartesian prod-
uct, strong product and lexicographic product) in terms of properties of the factor graphs.
Finally, we characterize the hyperbolic product graphs for two important kinds of products:
the graph join G1⊎G2 and the corona G1 ⋄G2. The graph join G1⊎G2 is always hyperbolic,
and G1 ⋄ G2 is hyperbolic if and only if G1 is hyperbolic. Furthermore, we obtain simple
formulae for the hyperbolicity constant of the graph join G1 ⊎G2 and the corona G1 ⋄G2.
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Introduction.

Hyperbolic spaces play an important role in geometric group theory and in geometry of neg-
atively curved spaces (see, e.g., [1, 37, 38]). The concept of Gromov hyperbolicity grasps the
essence of negatively curved spaces like the classical hyperbolic space, Riemannian manifolds
of negative sectional curvature, and of discrete spaces like trees and the Cayley graphs of
many finitely generated groups. It is remarkable that a simple concept leads to such a rich
general theory (see [1, 37, 38]).

The study of mathematical properties of Gromov hyperbolic spaces and its applications
is a topic of recent and increasing interest in graph theory; see, for instance [5, 7, 8, 9, 13,
18, 19, 24, 34, 49, 50, 51, 52, 53, 55, 58, 59, 63, 64, 65, 66, 72, 73, 75, 78, 81].

The theory of Gromov spaces was used initially for the study of finitely generated groups
(see [38, 39] and the references therein), where it was demonstrated to have a practical
importance. This theory was applied principally to the study of automatic groups (see [60]),
which play an important role in the science of computation. The concept of hyperbolicity
appears also in discrete mathematics, algorithms and networking. For example, it has been
shown empirically in [76] that the internet topology embeds with better accuracy into a
hyperbolic space than into an Euclidean space of comparable dimension. A few algorithmic
problems in hyperbolic spaces and hyperbolic graphs have been considered in recent papers
(see [27, 32, 36, 57]). Another important application of these spaces is secure transmission of
information by internet (see [49, 50, 51]). In particular, the hyperbolicity plays an important
role in the spread of viruses through the network (see [50, 51]). The hyperbolicity is also
useful in the study of DNA data (see [13]).

In recent years several researchers have been interested in showing that metrics used
in geometric function theory are Gromov hyperbolic. For instance, the Gehring-Osgood j-
metric is Gromov hyperbolic; and the Vuorinen j-metric is not Gromov hyperbolic except in
the punctured space (see [43]). The study of Gromov hyperbolicity of the quasihyperbolic
and the Poincaré metrics is the subject of [3, 10, 44, 45, 66, 67, 68, 73, 75]. In particular, in
[66, 73, 75, 78] it is proved the equivalence of the hyperbolicity of many negatively curved
surfaces and the hyperbolicity of a simple graph; hence, it is useful to know hyperbolicity
criteria for graphs.

There are several definitions of Gromov hyperbolicity (see Chapter 1). These different
definitions are equivalent in the sense that if X is δ-hyperbolic with respect to the definition
A, then it is δ′-hyperbolic with respect to the definition B for some δ′ (see, e.g., [11, 37]). We
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5

will work primarily with the definition of Gromov hyperbolicity given by the Rips condition
for “geodesic triangles” (see Definition 1.1.1).

Three main problems on Gromov hyperbolic graphs are the following:

I. To characterize the hyperbolicity for some class of graphs.

II. To obtain inequalities relating the hyperbolicity constant and other parameters of graphs.

III. To study the invariance of the hyperbolicity of graphs under appropriate transforma-
tions.

In this work, we study:

1. The distortion of the hyperbolicity constant when we remove one edge in a graph, and
several consequences (Problem III).

2. Inequalities involving the hyperbolicity constants of a graph and its line graph (Prob-
lems II and III).

3. The hyperbolicity of planar graphs that are the 1-skeleton of a tessellation of the
Euclidean plane or an abstract CW 2-Complex (Problem I and III).

4. The relationship of hyperbolicity and some natural generalizations of the classical
concept of chordality (Problem II).

5. The hyperbolicity of the graph join and corona of two graphs (Problem I).

The outline of this PhD Thesis is as follows.

In Chapter 1 we give a brief introduction to hyperbolic spaces in the Gromov sense.
Furthermore, we show some previous results which will be useful.

In Chapter 2 we study the distortion of the hyperbolicity constant of the graph G \ e
obtained from a graph G by removing an edge e, see Theorems 2.2.7 and 2.2.13. In the
context of graphs, to remove an edge of the graph is a very natural transformation. To
obtain a quantitative control on this distortion is a very important result. These bounds
allow to obtain the characterization, in a quantitative way, of the hyperbolicity of any graph
in terms of local hyperbolicity. We call S-graph (see Section 2.3) to the graph G obtained
by “pasting” the subgraphs {Gn}n≥1 “following the combinatorial design given by a graph
G0”; Theorem 2.3.2 states that G is δ-hyperbolic if and only if Gn is δ′-hyperbolic for every
n ≥ 0, in a simple quantitative way.

In Chapter 3 we study the line graphs with edges of constant length. One of the main
aim of this Chapter is to obtain information about the hyperbolicity constant of the line
graph L(G) in terms of properties of the graph G. In particular, we obtain results on the
hyperbolicity of L(G) in terms of the hyperbolicity of G (see Theorems 3.1.1, 3.1.3) and
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in terms of the hyperbolicity of the line graphs of certain elements of a decomposition in
subgraphs of G (we call it T-decomposition, see Theorem 3.3.7). We obtain some relations
between the hyperbolicity constant of the line graph L(G) and some natural properties of G
such as its girth and its circumference (see Theorem 3.3.12). Furthermore, we characterize
the graphs G with δ(L(G)) < k (see Theorem 3.3.6).

In Chapter 4, we deal with graphs with edges with arbitrary lengths. In order to obtain
the main result of the chapter we construct a 1-Lipschitz continuous function between the
line graph and the original graph (see Proposition 4.1.2). The main result of this Chapter
is the inequality

δ(G) ≤ δ(L(G)) ≤ 5 δ(G) + 3 sup
e∈E(G)

L(e), (1)

for the line graph L(G) of every graph G (see Theorem 4.1.10). The second inequality in (1)
can be improved for graphs with edges of length k (see Corollary 4.1.12). Also, we obtain
for graphs with edges of length k other inequalities involving the hyperbolicity constant of
L(G) (see Theorem 4.1.13 and Corollary 4.1.14).

Chapter 5 deals with a wide class of planar graphs: the graphs which are the “boundary”
(the 1-skeleton) of a tessellation of the Euclidean plane. In fact, in Section 5.1 we provide
several criteria in order to conclude that many tessellation graphs of the Euclidean plane R2

are non-hyperbolic. In Section 5.2 we deal with a wider class of graphs: the graphs which
are the 1-skeleton of an abstract CW 2-complex. In fact, we prove that a graph obtained as
the 1-skeleton of a CW 2-complex is hyperbolic if and only if its dual graph is hyperbolic
(see Theorem 5.2.4). This result improves [65, Theorem 4.1].

One of the main problems on the theory of hyperbolic graphs is to relate the hyperbolicity
with other properties on graph theory. In Chapter 6, we extend in two ways (edge-chordality
and path-chordality) the classical definition of chordal graphs in order to relate this property
with Gromov hyperbolicity. In fact, we prove in Section 6.1 that every edge-chordal graph is
hyperbolic (see Theorem 6.1.3) and that every hyperbolic graph is path-chordal (see Theorem
6.1.8). Although the reciprocal of these two Theorems do not hold (see Examples 6.1.6
and 6.1.9), we prove in Section 6.2 that every path-chordal cubic graph (with small path-
chordality constant) is hyperbolic. However, Example 6.2.10 shows that a path-chordal
graph can be non-hyperbolic.

In [16, 17, 59] the authors study the hyperbolicity of the strong product graphs, the
lexicographic product graphs and the Cartesian product graphs, respectively. In Chapter 7
we study the hyperbolicity of two binary operations of graphs, the hyperbolicity of graph
join and corona of two graphs. In Section 7.2 we obtain that the graph join of two graphs is
always hyperbolic and we compute its hyperbolicity constant in the terms of G1 and G2, see
Corollary 7.2.1 and Theorem 7.2.14. In Section 7.3 we prove that the corona G1 ⋄G2 of two
graphs G1, G2 is hyperbolic if and only if G1 is hyperbolic, and also, we obtain the precise
value of the hyperbolicity constant of the corona G1 ⋄ G2, see Theorem 7.3.2. We want to
remark that it is not usual at all to obtain explicit formulae for the hyperbolicity constant
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of large classes of graphs.

The results in this work appear in [4, 18, 19, 20, 21, 24] (besides, I have worked in the
papers [16, 17, 22, 23] related with this topic); these papers have been published or submitted
to international mathematical journals which appear in the Journal Citation Reports. These
results were presented in the following international and national conferences:

• Workshop into Doc-Course: Triangulations And Extremal Graph Theory, March 2012,
Sevilla, Spain.

• VIII Jornadas de Matemática Discreta y Algoŕıtmica, July 2012, Almeŕıa, Spain.

• International Conference of Numerical Analysis and Applied Mathematics, September
2012, Kos, Greece.

• XIV Evento Cient́ıfico Internacional MATECOMPU 2012, November 2012, Matanzas,
Cuba.

• Workshop of Young Researchers in Mathematics 2013, September 2013, Universidad
Complutense de Madrid, Spain.

• VIII Encuentro Andaluz de Matemática Discreta, October 2013, Universidad de Sevilla,
Spain.

They were presented also in the following Seminars:

• Seminario de Matemáticas Avanzadas de la Unidad Académica de Matemática, Uni-
versidad Autónoma de Guerrero, México. June 2012.

• Coloquio de la Unidad Académica de Matemática, Universidad Autónoma de Guerrero,
México. May 2013.

• Seminario CUICBAS de la Facultad de Ciencias, Universidad de Colima, México. June
2013.

• Seminar on Orthogonality, Approximation Theory and Applications. Group of Applied
Mathematical Analysis (GAMA), Universidad Carlos III de Madrid. October 2013.



Chapter 1

A brief introduction on Gromov
hyperbolic spaces.

Let (X, d) be a metric space and let γ : [a, b] −→ X be a continuous function. We say that
γ is a geodesic if L(γ|[t,s]) = d(γ(t), γ(s)) = |t− s| for every s, t ∈ [a, b], where L denotes the
length of a curve. We say that X is a geodesic metric space if for every x, y ∈ X there exists
a geodesic joining x and y; we denote by [xy] any of such geodesics (since we do not require
uniqueness of geodesics, this notation is ambiguous, but it is convenient). It is clear that
every geodesic metric space is path-connected. If the metric space X is a graph, we use the
notation [u, v] for the edge joining the vertices u and v.

In order to consider a graph G as a geodesic metric space, we must identify any edge
[u, v] ∈ E(G) with the real interval [0, l] (if l := L([u, v]), i.e., if l is the length of [u, v]);
therefore, any point in the interior of any edge is a point of G and, if we consider the edge
[u, v] as a graph with just one edge, then it is isometric to [0, l]. A connected graph G is
naturally equipped with a distance defined on its points, induced by taking shortest paths
in G. Then, we see G as a metric graph.

Throughout the work we just consider connected graphs which are locally finite (i.e., in
each ball there are just a finite number of edges) or have all edges with constant length; these
properties guarantee that the graphs are geodesic metric spaces (since we consider that every
point in any edge of a graph G is a point of G, whether or not it is a vertex of G). Note
that the edges can have arbitrary lengths. We want to remark that by [9] the study of the
hyperbolicity of graphs with loops and multiple edges can be reduced to the study of the
hyperbolicity of simple graphs (see Theorems 1.3.12 and 1.3.13). Usually we just consider
simple graphs, but in Chapters 2 and 6 we consider graphs with loops and multiple edges.

1.1 Hyperbolic spaces in the Gromov sense.

The concept of hyperbolicity offers a global approach to spaces like the hyperbolic plane,
simply-connected Riemannian manifolds with pinched negative sectional curvature, metric

8
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trees and others classical hyperbolic spaces. Several of their properties were introduced by
Mikhael Gromov in the context of finitely generated groups but its generality reached new
horizons.

If X is a geodesic metric space and J = {J1, J2, . . . , Jn} is a polygon, with sides Jj ⊆ X ,
we say that J is δ-thin if for every x ∈ Ji we have that d(x,∪j 6=iJj) ≤ δ. We denote by δ(J)
the sharp thin constant of J , i.e., δ(J) := inf{δ ≥ 0 : J is δ-thin } .
Definition 1.1.1. Given x1, x2, x3 ∈ X. A geodesic triangle T = {x1, x2, x3} is the union
of the three geodesics [x1x2], [x2x3] and [x3x1]. The space X is δ-hyperbolic (or satisfies the
Rips condition with constant δ) if every geodesic triangle in X is δ-thin.

Figure 1.1: δ-thin triangle.

We denote by δ(X) the sharp hyperbolicity constant of X , i.e., δ(X) := sup{δ(T ) :
T is a geodesic triangle in X }. We say that X is hyperbolic if X is δ-hyperbolic for some
δ ≥ 0.

Sometimes we write the geodesic triangle T as T = {[x1x2], [x2x3], [x3x1]}.
Remark 1.1.2. If X is hyperbolic, then δ(X) = inf{δ ≥ 0 : X is δ-hyperbolic }.

One can check that every geodesic polygon in X with n sides is (n − 2)δ(X)-thin; in
particular, any geodesic quadrilateral is 2δ(X)-thin. The above result is obtained by dividing
the polygon into n− 2 triangles.

There are several definitions of Gromov hyperbolicity. These different definitions are
equivalent in the sense that if X is δ-hyperbolic with respect to the definition A, then it is
δ′-hyperbolic with respect to the definition B for some δ′ (see, e.g., [11, 37]). We have chosen
this definition since it has a deep geometric meaning (see, e.g., [37]).

The following are interesting examples of hyperbolic spaces.

Example 1.1.3. Any point of a geodesic triangle in the real line belongs to two sides of the
triangle simultaneously, and therefore R is 0-hyperbolic.

Example 1.1.4. The Euclidean plane R2 is not hyperbolic: it is clear that equilateral trian-
gles can be drawn with arbitrarily large diameter.
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R

a bb

c

c

R2

a = a′ = a′′ b′ b′′

c′

c′′

Figure 1.2: R and R2 as examples of hyperbolic spaces.

The argument in Example 1.1.4 can be generalized to higher dimensions:

a normed vector space E is hyperbolic if and only if dim E = 1.

Example 1.1.5. Every metric tree is 0-hyperbolic: in fact, every point of a geodesic triangle
in a tree belongs simultaneously to two sides of the triangle (see Figure 1.3).

a

b

c

Figure 1.3: Any metric tree T verifies δ(T ) = 0.

Example 1.1.6. Every bounded metric space X is (diamX/2)-hyperbolic: in fact, the
distance from any point of a geodesic triangle to the endpoints of its geodesic is at most
diam(X)/2.

Example 1.1.7. Every simply connected complete Riemannian manifold with sectional cur-
vature verifying K ≤ −c2, for some positive constant c, is hyperbolic.

The following example is an exercise in [71, p.191], it is a particular case of Example
1.1.7.

Example 1.1.8. The open unit disk in the complex plane with its Poincaré metric is log(1+√
2)-hyperbolic.
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We refer to [11, 37] for more background and further results.

We want to remark that the main examples of hyperbolic graphs are the trees. In fact,
the hyperbolicity constant of a geodesic metric space can be viewed as a measure of how
“tree-like” the space is, since those spaces X with δ(X) = 0 are precisely the metric trees.
This is an interesting subject since, in many applications, one finds that the borderline
between tractable and intractable cases may be the tree-like degree of the structure to be
dealt with (see, e.g., [25]).

x

y

z

P

x

y

z

P

P

P

P

P

Figure 1.4: First steps in order to compute the hyperbolicity constant of X .

Given a Cayley graph (of a presentation with solvable word problem) there is an algorithm
which allows to decide if it is hyperbolic. However, for a general graph or a general geodesic
metric space deciding whether or not a space is hyperbolic is usually very difficult. We have
to consider an arbitrary geodesic triangle T , and calculate the minimum distance from an
arbitrary point P of T to the union of the other two sides of the triangle to which P does
not belong to (see Figure 1.4). And then we have to take the supremum over all the possible
choices for P and then over all the possible choices for T (see Figures 1.4 and 1.5).

Without disregarding the difficulty of solving this minimax problem, notice that in general
the main obstacle is that we do not know the location of geodesics in the space. Therefore, it
is interesting to obtain inequalities involving the hyperbolicity constant and other parameters
of graphs. Another natural problem is to study the invariance of the hyperbolicity of graphs
under appropriate transformations.

Since to obtain a characterization of hyperbolic graphs is a very ambitious goal, it seems
reasonable to study this problem for particular classes of graphs (see Chapters 3, 4, 5, 6 and
7). We also study the hyperbolicity of graphs under some transformations (see Chapters 2,
3 and 4).
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Figure 1.5: Calculating the supremum over all geodesic triangles.

1.2 Others definitions of Gromov hyperbolicity.

Gromov product definition

Definition 1.2.1. Given a metric space X, we define the Gromov product of x, y ∈ X with
base point w ∈ X by

(x|y)w :=
1

2

(
d(x, w) + d(y, w)− d(x, y)

)
. (1.1)

We say that the Gromov product is δ hyperbolic if there is a constant δ ≥ 0 such that

(x|z)w ≥ min
{
(x|y)w, (y|z)w

}
− δ

for every x, y, z ∈ X.

The following result (see [1, Proposition 2.2] and [38, Lemma 1.1A]) gives that the defi-
nition is independent of base point.

Proposition 1.2.2. Let X be a metric space and w,w′ ∈ X. If the Gromov product based
at w is δ-hyperbolic, then the Gromov product based at w′ is 2δ-hyperbolic.

We say that X is δ-hyperbolic product if its Gromov product is δ-hyperbolic for any base
point, i.e.,

(x|z)w ≥ min
{
(x|y)w, (y|z)w

}
− δ (1.2)

for every x, y, z, w ∈ X (see, e.g., [37]).
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It is well known that (1.2) is equivalent to our definition of Gromov hyperbolicity (Defi-
nition 1.1.1). Furthermore, we have the following quantitative result about this equivalence.

Theorem 1.2.3. [37, Proposition 2.21, p.41] Let us consider a geodesic metric space X.
(1) If X is δ-hyperbolic, then it is 4δ-hyperbolic product.
(2) If X is δ-hyperbolic product, then it is 3δ-hyperbolic.

Fine definition

First, we recall the definition of fine triangles.

Definition 1.2.4. Given a geodesic triangle T = {x, y, z} in a geodesic metric space X, let
TE be a Euclidean triangle with sides of the same length than T . Since there is no possible
confusion, we will use the same notation for the corresponding points in T and TE. The
maximum inscribed circle in TE meets the side [xy] (respectively [yz], [zx]) in a point z′

(respectively x′, y′) such that d(x, z′) = d(x, y′), d(y, x′) = d(y, z′) and d(z, x′) = d(z, y′).
We call the points x′, y′, z′, the internal points of {x, y, z}. There is a unique isometry fxyz
of {x, y, z} onto a tripod (a star graph with one vertex w of degree 3, and three vertices
x′′, y′′, z′′ of degree one, such that d(x′′, w) = d(x, z′) = d(x, y′), d(y′′, w) = d(y, x′) = d(y, z′)
and d(z′′, w) = d(z, x′) = d(z, y′)), see Figure 1.6. The triangle {x, y, z} is δ-fine if fxyz(p) =
fxyz(q) implies that d(p, q) ≤ δ. The space X is δ-fine if every geodesic triangle in X is δ-fine.

TE

x y

z

x′y′

z′

z′′

x′′ y′′

w
fxyz

Figure 1.6: Isometry fxyz of the triangle TE = {x, y, z} onto a tripod.

We also allow degenerated tripods, i.e., path graphs P1, P2 with one or two vertices,
respectively. These situations correspond with triangles with several vertices repeated; in
these cases the inscribed circle in TE is a point.

It is known that this definition of fine is also equivalent to our definition of Gromov
hyperbolicity. Furthermore, we have the following quantitative result.

Theorem 1.2.5. [37, Proposition 2.21, p.41] Let us consider a geodesic metric space X.
(1) If X is δ-hyperbolic, then it is 4δ-fine.
(2) If X is δ-fine, then it is δ-hyperbolic.
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Insize definition

Definition 1.2.6. Given a geodesic metric space X, let T = {x, y, z} be a geodesic triangle
in X and let x′, y′, z′ be the internal points on T defined in Definition 1.2.4. We define the
insize of the geodesic triangle T to be

insize(T ) := diam{x′, y′, z′}. (1.3)

The space X is δ-insize if every geodesic triangle in X has insize at most δ.

This definition of insize is also equivalent to our definition of Gromov hyperbolicity.
Besides, we have the following quantitative result.

Theorem 1.2.7. [37, Proposition 2.21, p.41] Let us consider a geodesic metric space X.
(1) If X is δ-hyperbolic, then it is 4δ-insize.
(2) If X is δ-insize, then it is 2δ-hyperbolic.

Minsize definition

Definition 1.2.8. Given a geodesic metric space X, let T = {x, y, z} be a geodesic triangle
in X and let x′ ∈ [yz], y′ ∈ [zx], z′ ∈ [xy]. We define the minsize of the geodesic triangle T
to be

minsize(T ) := min
x′,y′,z′∈T

diam{x′, y′, z′}. (1.4)

The space X is δ-minsize if every geodesic triangle in X has minsize at most δ.

It is known that this definition of minsize is also equivalent to our definition of Gromov
hyperbolicity, in a quantitative way.

Theorem 1.2.9. [37, Proposition 2.21, p.41] Let us consider a geodesic metric space X.
(1) If X is δ-hyperbolic, then it is 4δ-minsize.
(2) If X is δ-minsize, then it is 8δ-hyperbolic.

Geodesics diverge

As usual, we denote by Bk(x) the open ball in a metric space, i.e.,

Bk(x) := {y ∈ X : d(x, y) < k} for any x ∈ X and k > 0.

Definition 1.2.10. Given a geodesic metric space X, we say that e : [0,∞) → (0,∞) is a
divergence function for X, if for every point x ∈ X and all geodesics γ = [xy], γ′ = [xz],
the function e satisfies the following condition:

For every R, r > 0 such that R + r ≤ min{L([xy]), L([xz])}, if d(γ(R), γ′(R)) ≥ e(0),
and α is a path in X \BR+r(x) from γ(R + r) to γ′(R + r), then we have L(α) > e(r) (see
Figure 1.7).
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x

y

z

γ(R)

γ′(R)

γ(R + r)

γ′(R + r)

BR+r(x) α

Figure 1.7: Geodesics diverge.

We say that geodesics diverge in X if there is a divergence function e(r) such that

lim
r→∞

e(r) = ∞.

We say that geodesics diverge exponentially in X if there is an exponential divergence
function. Theorem 1.1 in [62] shows that in a geodesic metric space X , geodesics diverge in
X if and only if geodesics diverge exponentially in X .

It is known that Definition 1.2.10 is also equivalent to our definition of Gromov hyper-
bolicity (see [1, 62]). However, a quantitative result of this is not possible.

Gromov boundary

Let X be a metric space and we fix a base point w ∈ X . We say that a sequence x̂ = {xi}∞i=1

in X is a Gromov sequence if (xi|xj)w → ∞ as i, j → ∞.
Since, we have

∣∣(x|y)w − (x|y)w′

∣∣ = 1

2

∣∣d(x, w)− d(x, w′) + d(y, w)− d(y, w′)
∣∣ ≤ d(w,w′),

this concept is independent of the base point. The Gromov sequences are usually called
sequences converging at infinity or tending to infinity (see, e.g., [1]). For the sake of brevity,
we shall omit the base point w in the notation.

We say that two sequences x̂ and ŷ in X are equivalent and write x̂ ∼ ŷ if (xi|yi) → ∞ as
i → ∞. This relation is always reflexive and symmetric, but it is transitive if X is hyperbolic
(it is necessary to use (1.2) in order to prove it).
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Definition 1.2.11. Let X be a hyperbolic product metric space. Let x denote the equivalence
class containing the Gromov sequence x̂ in X. The set of all equivalence classes

∂X := {x : x̂ is a Gromov sequence in X}

is the Gromov boundary of X, and the set

X := X ∪ ∂X

is the Gromov closure of X.

A geodesic ray in a space X is an isometric image of the half line [0,∞). In the case of
geodesic metric spaces one can alternatively define a boundary point as an equivalence class
of geodesic rays [37, p.119].

We want to define the Gromov product (a|b) for all a, b ∈ X . Assume first that a, b ∈ ∂X
and choose Gromov sequences x̂ ∈ a, ŷ ∈ b. The numbers (xi|yj) need not converge to a
limit but they converge to a rough limit in the following sense (see [79, Lemma 5.6]):

Lemma 1.2.12. Let X be a δ-hyperbolic product metric space. Let a, b ∈ ∂X, a 6= b, and
let x̂, x̂′ ∈ a, ŷ, ŷ′ ∈ b, z ∈ X. Then

lim sup
i,j→∞

(x′
i|y′j) ≤ lim inf

i,j→∞
(xi|yj) + 2δ < ∞,

lim sup
i→∞

(x′
i|z) ≤ lim inf

i→∞
(xi|z) + δ < ∞.

Given a, b ∈ ∂X , there exist several definitions for (a|b). We choose the following one,
since it is very useful.

Definition 1.2.13. Let X be a hyperbolic product metric space and a, b ∈ ∂X. We define

(a|b) := inf{lim inf
i,j→∞

(xi|yj) : x̂ ∈ a, ŷ ∈ b}. (1.5)

The same definition is used in [1, 28, 79], but [37] uses sup instead of inf.

In order to provide a topological structure to X , we consider the set B consisting of all:

1. open balls Br(x), for any x ∈ X and r > 0;

2. sets of the form Nx,k := {y ∈ X : (x|y) > k}, for any x ∈ ∂X and k > 0.

Proposition 4.8 in [1] shows that the set B is a basis for a topology of X . Furthermore,
we have the following result.

Proposition 1.2.14. [1, Proposition 4.10] Let X be a locally compact hyperbolic product
metric space. Then X is a Hausdorff compact metric space, and X is open and dense in X.
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1.3 Previous results on hyperbolic graphs.

Let us return to our framework: graphs as geodesic metric spaces. In this section we present
some previous results about hyperbolic graphs. These results will be used throughout the
thesis or are benchmark results on the subject.

Definition 1.3.1. We say that a subgraph Γ of G is isometric if dΓ(x, y) = dG(x, y) for
every x, y ∈ Γ.

We will need the following results (see [72, Lemma 5] and [73, Lemma 2.1]).

Lemma 1.3.2. If Γ is an isometric subgraph of G, then δ(Γ) ≤ δ(G).

Lemma 1.3.3. Let us consider a geodesic metric space X. If every geodesic triangle in X
that is a simple closed curve is δ-thin, then X is δ-hyperbolic.

This lemma has the following direct consequence. As usual, by cycle we mean a simple
closed curve, i.e., a path with different vertices in a graph, except for the last one, which is
equal to the first vertex.

Corollary 1.3.4. In any graph G,

δ(G) = sup{δ(T ) : T is a geodesic triangle that is a cycle}.

Let (X, dX) and (Y, dY ) be two metric spaces. A map f : X −→ Y is said to be an
(α, β)-quasi-isometric embedding, with constants α ≥ 1, β ≥ 0 if for every x, y ∈ X :

α−1dX(x, y)− β ≤ dY (f(x), f(y)) ≤ αdX(x, y) + β.

The function f is ε-full if for each y ∈ Y there exists x ∈ X with dY (f(x), y) ≤ ε.

A map f : X −→ Y is said to be a quasi-isometry, if there exist constants α ≥ 1, β, ε ≥ 0
such that f is an ε-full (α, β)-quasi-isometric embedding.

Note that a quasi-isometric embedding, in general, is not continuous.

A fundamental property of hyperbolic spaces is the following (see, e.g., [37]).

Theorem 1.3.5 (Invariance of hyperbolicity). Let f : X −→ Y be an (α, β)-quasi-isometric
embedding between the geodesic metric spaces X and Y . If Y is hyperbolic, then X is
hyperbolic.

Besides, if f is ε-full for some ε ≥ 0 (a quasi-isometry), then X is hyperbolic if and only
if Y is hyperbolic.

Furthermore, if X (respectively, Y ) is δ-hyperbolic, then Y (respectively, X) is δ′-hyperbolic,
where δ′ is a constant which just depends on δ, α, β and ε (respectively, δ, α and β).
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We denote by G \ {v} the metric space obtained by removing the point {v} from the
metric space G. We say that a vertex v of a graph G is a connection vertex if G \ {v} is
not connected. Sometimes connection vertices are called tree-vertices; note that any vertex
with degree greater than one in a tree is a connection vertex.

Given a graph G, a family of subgraphs {Gn}n∈Λ of G is a T-decomposition of G if
∪nGn = G and Gn ∩Gm is either a connection vertex or the empty set for each n 6= m.

A T-decomposition of G always exists, as we will show by introducing the canonical
T-decomposition of G below.

We denote by {Gn}n the closures in G of the connected components of the set

G \
{
v ∈ V (G) : v is a connection vertex of G

}
.

It is clear that {Gn}n is a T-decomposition of G; we call it the canonical T-decomposition
of G.

Consider a graph G and a family of subgraphs {Gn}n∈Λ of G such that ∪nGn = G and,
for each n 6= m, Gn ∩ Gm is either the empty set or an edge enm such that the graph
Gn ∩Gm \ {enm} is not connected. We define a graph R as follows: for each index n ∈ Λ, let
us consider a point vn (vn is an abstract point which is not contained in Gn) and we define
the set of vertices of R as V (R) = {vn}n∈Λ; two vertices of R are neighbors if and only if
Gn ∩ Gm 6= ∅. We say that the family of subgraphs {Gn}n of G is a T-edge-decomposition
of G if the graph R is a tree. T-decompositions are a useful tool in the study of hyperbolic
graphs (see e.g. [9, 24, 58, 72]).

G

b

b

b

b
b

R

Figure 1.8: Graph G with the tree R corresponding to a T-edge-decomposition.

Remark 1.3.6. Note that every Gn in any T-decomposition of G is an isometric subgraph
of G.

We will need the following result (see [9, Theorem 5]), which allows to obtain global
information about the hyperbolicity of a graph from local information.
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Theorem 1.3.7. Let G be any graph and let {Gn}n be any T-decomposition of G. Then
δ(G) = supn δ(Gn).

The following result (see [72, Theorem 8]) will be useful.

Lemma 1.3.8. In any graph G the inequality δ(G) ≤ (diamG)/2 holds, and it is sharp.

The following results provide inequalities involving the hyperbolicity constant of a graph
and its edges.

Theorem 1.3.9. [72, Theorem 19] Let G be any graph with m edges. Then δ(G) ≤∑m

k=1 lk/4, where lk = L(ek) for every edge ek ∈ E(G). Moreover, δ(G) =
∑m

k=1 lk/4 if
and only if G is isomorphic to Cm.

This result have a direct consequence (see [72, Corollary 20]).

Lemma 1.3.10. Let G be any graph with m edges such that every edge has length k. Then
δ(G) ≤ km/4, and the equality is attained if and only if G is a cycle graph.

In [58, Theorem 30] we find the following result, which relates the hyperbolic constant of
a graph and its order. Note that in [58] multiple edges and loops are allowed.

The following family of graphs allows to characterize the extremal graphs in Theorem
1.3.11 below. Let Fn be the set of Hamiltonian graphs G of order n with every edge of length
k and such that there exists a Hamiltonian cycle G0 which is the union of two geodesics Γ1,Γ2

in G with length nk/2 such that the midpoint x0 of Γ1 satisfies dG(x0,Γ2) = nk/4.

Theorem 1.3.11. Let G be any graph with n vertices. If every edge has length k, then

δ(G) ≤ nk/4.

Moreover, if n ≥ 3 we have δ(G) = nk/4 if and only if G ∈ Fn; if n = 2, δ(G) = k/2 if and
only if G has a multiple edge; if n = 1, δ(G) = k/4 if and only if G has a loop.

The following results appear in [9, Theorems 8 and 10]. They allow to reduce the study
of the hyperbolicity of graphs to the study of the hyperbolicity of simple graphs.

Given a graph G, we define A(G) as the graph G without its loops, and B(G) as the
graph G without its multiple edges, obtained by replacing each multiple edge by a single
edge with the minimum length of the edges corresponding to that multiple edge.

Theorem 1.3.12. If G is a graph with some loop, then G is hyperbolic if and only if A(G)
is hyperbolic and sup{L(g) : g is a loop of G} < ∞. Besides,

δ(G) = max

{
δ(A(G)) ,

1

4
sup{L(g) : g is a loop of G}

}
.

In particular, if every edge has length k, then δ(G) = max{δ(A(G)), k/4}.
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Theorem 1.3.13. If G is a graph with some multiple edge, then G is hyperbolic if and only
if B(G) is hyperbolic and J := sup{L(β) : β is a multiple edge of G} < ∞. Besides, if
j := inf{L(β) : β is a multiple edge of G},

max

{
δ(B(G)),

J + j

4

}
≤ δ(G) ≤ δ(B(G)) + J.

Furthermore, if every edge of G has length k, then

δ(G) = max

{
δ(B(G)),

k

2

}
= max

{
δ(A(B(G))),

k

2

}
.

If every edge of G has length k and B(G) is not a tree, then δ(G) = δ(B(G)) =
δ(A(B(G))).

We will need the following results in [58].

Proposition 1.3.14. [58, Proposition 5] Let G be any graph with edges of length k. If there
exists a cycle g in G with length L(g) = 3k, then δ(G) ≥ 3k/4.

Theorem 1.3.15. [58, Theorem 7] Let G be any graph with edges of length k. If there exists
a cycle g in G with length L(g) ≥ 4k, then

δ(G) ≥ 1

4
min

{
L(σ) : σ is a cycle in G with L(σ) ≥ 4k

}
.

Note that Theorem 1.3.15 improves Proposition 1.3.14: for instance, if there are cycles
of lengths 3k and 7k in a graph G and there are not cycles of lengths 4k, 5k and 6k, then
Proposition 1.3.14 gives δ(G) ≥ 3k/4 and Theorem 1.3.15 gives δ(G) ≥ 7k/4.

Theorem 1.3.16. [58, Theorem11] Let G be any graph with edges of length k.

• δ(G) < k/4 if and only if G is a tree.

• δ(G) < k/2 if and only if A(G) is a tree.

• δ(G) < 3k/4 if and only if B(A(G)) is a tree.

• δ(G) < k if and only if every cycle g in G has length L(g) ≤ 3k.

Furthermore, if δ(G) < k, then δ(G) ∈ {0, k/4, k/2, 3k/4}.

The following results characterize the graphs with hyperbolicity constant k and greater
than k, respectively.
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Theorem 1.3.17. [6, Theorem 3.10] Let G be any graph with edges of length k. Then
δ(G) = k if and only if the following conditions hold:

(1) There exists a cycle isomorphic to C4.

(2) For every cycle σ with L(σ) ≥ 5k and for every vertex w ∈ σ, we have degσ(w) ≥ 3.

Theorem 1.3.18. [6, Theorem 3.2] Let G be any graph with edges of length k. Then
δ(G) ≥ 5k/4 if and only if there exist a simple cycle σ in G with length L(σ) ≥ 5k and a
vertex w ∈ V (σ) such that degσ(w) = 2.

We will also need the following result (see [72, Theorem 11]).

Theorem 1.3.19. The following graphs with edges of length k have the following hyperbol-
icity constants:

• The path graphs verify δ(Pn) = 0 for every n ≥ 1.

• The cycle graphs verify δ(Cn) = nk/4 for every n ≥ 3.

• The complete graphs verify δ(K1) = δ(K2) = 0, δ(K3) = 3k/4, δ(Kn) = k for every
n ≥ 4.

• The complete bipartite graphs verify δ(K1,1) = δ(K1,2) = δ(K2,1) = 0, δ(Km,n) = k for
every m,n ≥ 2.

• The Petersen graph P verifies δ(P ) = 3k/2.

• The wheel graph with n vertices Wn verifies δ(W4) = δ(W5) = k, δ(Wn) = 3k/2 for
every 7 ≤ n ≤ 10, and δ(Wn) = 5k/4 for n = 6 and for every n ≥ 11.

Cubic graphs (graphs with all of their vertices of degree 3) are very interesting in many
situations (see, e.g., [12, 14, 29]). Theorem 1.3.5 and the following results show that they
are also very important in the study of Gromov hyperbolicity.

Theorem 1.3.20. [9, Theorem 21] Given any graph G and any ε > 0 there exist a cubic
graph G′ and an ε-full (1 + ε, ε) quasi-isometry f : G −→ G′.

Theorem 1.3.21. [63, Theorem 3.4] For any graph G with maximum degree ∆ and edges
of length k, there exists a b-full (2b, b)-quasi-isometry f : G → G∗, where G∗ is a cubic graph
with every edge of length k and b is a constant depending just on k and ∆.
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These results allow to reduce the study of the hyperbolicity of graphs to the study of the
hyperbolicity of cubic simple graphs.

We will use the following results which allow to reduce the study of the hyperbolicity of
graphs to a countable set of geodesic triangles.

Given a graph G, we define PMV (G) as the set of points of the graph G which are either
vertices or midpoints of the edges.

Theorem 1.3.22. [5, Theorem 2.6] For every hyperbolic graph G with edges of lengths k,
δ(G) is a multiple of k/4.

Theorem 1.3.23. [5, Theorem 2.7] For any hyperbolic graph G with edges of length k,
there exists a geodesic triangle T = {x, y, z} that is a cycle with δ(T ) = δ(G) and x, y, z ∈
PMV (G).



Chapter 2

Distortion of the hyperbolicity
constant of a graph.

One of the important problems in the study of any mathematical property is to determine
its stability under appropriate deformations, in other words, to determine what type of
perturbations preserve this property (with a quantitative control of the distortion). In the
context of graphs, to delete an edge of the graph is a very natural transformation. One of
the main aims of this Chapter is to obtain quantitative information about the distortion
of the hyperbolicity constant of the graph G \ e obtained from the graph G by deleting an
arbitrary edge e from it (see Section 1.2). Note that this is a difficult task, since deleting
an edge can change dramatically (or not) the hyperbolicity constant: on the one hand, if
C is a cycle graph and e ∈ E(C), then δ(C) = L(C)/4 and C \ e is a path graph (a tree)
with δ(C \ e) = 0; on the other hand, if G is any graph with a vertex v of degree one and
e ∈ E(G) is the edge starting in v, then δ(G \ e) = δ(G). However, Theorems 2.2.7 and
2.2.13 give precise upper bounds, respectively, for δ(G \ e) in terms of δ(G), and for δ(G) in
terms of δ(G \ e).

These bounds allow to obtain the other main result of this Chapter, Theorem 2.3.2,
which characterizes in a quantitative way the hyperbolicity of any graph in terms of local
hyperbolicity. That was the idea that lead us to think of a graph G as the union of some
subgraphs {Gn}n≥1. In order to obtain that, we call S-graph (see Section 1.3) to the graph G
obtained by “pasting” the subgraphs {Gn}n≥1 “following the combinatorial design given by
a graph G0”; Theorem 2.3.2 states that G is δ-hyperbolic if and only if Gn is δ′-hyperbolic
for every n ≥ 0, in a simple quantitative way. Note that any graph can be viewed as a
S-graph (see Section 1.3).

In order to prove Theorem 2.3.2 we need to introduce a new definition of hyperbolic-
ity (equivalent to the previous definition) which we think that it is interesting by itself:
quadrilaterals δ-fine (see Section 1.1).

We want to remark that in the context of hyperbolic graphs it is usually not possible to
obtain precise inequalities with explicit constants like the ones appearing in Theorems 2.2.7,

23
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2.2.13 and 2.3.2.

2.1 A new definition of hyperbolicity in geodesic me-

tric spaces

There are several definitions of Gromov hyperbolicity. These different definitions are equiv-
alent in the sense that if X is δ-hyperbolic with respect to the definition A, then it is
δ′-hyperbolic with respect to the definition B for some δ′ (see Section 1.2).

A basic result is that hyperbolicity (thin) is equivalent to be fine (see Theorem 1.2.5). In
this Chapter we need a new definition of fine hyperbolicity for geodesic quadrilaterals which
will play an important role in the proof of Theorem 2.3.2.

Definition 2.1.1. A quatripod is a double star graph, i.e, a tree with two vertices v1, v2 of
degree 3 which are connected by an edge and four vertices of degree 1 two of them connected
to v1 and the other two connected to v2. We also allow degenerated quatripods, i.e., star
graphs K1,4 (complete bipartite graph).

Remark 2.1.2. We also allow more degenerated quatripods, as star graphs K1,3 (respectively,
K1,2). These situations correspond with quadrilaterals with several vertices repeated.

Definition 2.1.3. A geodesic metric space X es τ -fine for quadrilaterals if given any geodesic
quadrilateral Q = {x, y, z, w} in X there exists a quatripod Q with vertices of degree one,
x0, y0, z0, w0, and a map F : Q −→ Q such that:

i) F (x) = x0, F (y) = y0, F (z) = z0, and F (w) = w0.

ii) F is an isometry between [xy] and [x0y0], [yz] and [y0z0], [zw] and [z0w0], and between
[wx] and [w0x0].

iii) If F (p) = F (q) then d(p, q) ≤ τ .

This new concept of fine quadrilaterals is an equivalent definition of hyperbolicity, as
Theorems 1.2.5 and 2.1.4 show.

Theorem 2.1.4. Let us consider a geodesic metric space X.

• If X is δ-fine for quadrilaterals, then it is δ-fine (for triangles).

• If X is δ-fine (for triangles), then it is 2δ-fine for quadrilaterals.

Proof. The first statement is direct, since a triangle is a degenerated quadrilateral with two
vertices repeated. We prove now the second statement.

Given a geodesic quadrilateral Q = {x, y, z, w}, we are going to find an Euclidean quadri-
lateral QE with sides of the same length than the sides of Q. Let us choose, for example,
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a geodesic [xz] joining the vertex x with the vertex z. We have divided in this way the
quadrilateral Q into two geodesic triangles T1 = {x, y, z} and T2 = {x, z, w}. Let us consider
two Euclidean triangles T1,E , T2,E with sides of the same length than the sides of T1 and
T2; without loss of generality we can assume that the sides of T1,E and T2,E corresponding
to [xz] are the real interval [0, d(x, z)] in the complex plane, T1,E is contained in the upper
halfplane and T2,E is contained in the lower halfplane. Since there is no possible confusion,
we will use the same notation for the corresponding points in Tj and Tj,E, j = 1, 2. Then
QE is the Euclidean quadrilateral QE = {x, y, z, w}.

Now, the maximum inscribed circle in T1,E meets the side [xy] (respectively [yz], [zx])
in the internal point z′ (respectively x′, y′) such that d(x, z′) = d(x, y′), d(y, x′) = d(y, z′)
and d(z, x′) = d(z, y′). Similarly, the maximum inscribed circle in T2,E meets the side [xz]
(respectively [zw], [wx]) in the internal point w′′ (respectively x′′, z′′) such that d(x, z′′) =
d(x, w′′), d(z, w′′) = d(z, x′′) and d(w, x′′) = d(w, z′′).

There is a unique isometry f1 of the triangle T1 = {x, y, z} onto a tripod T1, with one
vertex v1 of degree 3, and three vertices x1, y1, z1 of degree 1, such that d(x1, v1) = d(x, z′) =
d(x, y′), d(y1, v1) = d(y, x′) = d(y, z′) and d(z1, v1) = d(z, x′) = d(z, y′). As X is δ-fine
for triangles, if f1(p) = f1(q) then we have that d(p, q) ≤ δ. Similarly, there is also a
unique isometry f2 of the triangle T2 = {x, z, w} onto a tripod T2 with one vertex v2 of
degree 3, and three vertices x2, z2, w2 of degree 1, such that d(x2, v2) = d(x, z′′) = d(x, w′′),
d(w2, v2) = d(w, x′′) = d(w, z′′) and d(z2, v2) = d(z, w′′) = d(z, x′′). Again as X is δ-fine for
triangles, if f2(p) = f2(q) then we have that d(p, q) ≤ δ.

Let us consider the quatripod Q obtained from T1 and T2 by identifying [x1z1] ⊂ T1 with
[x2z2] ⊂ T2: i.e., Q is a tree with two vertices v1, v2 of degree 3 which are connected by an
edge with length equal to d(y′, w′′) and four vertices of degree one x1 = x2, y1, z1 = z2, w2.
Assume that d(x1, v1) < d(x2, v2) (the case d(x1, v1) > d(x2, v2) is similar). Then the vertices
x1, y1 are connected to v1 as in the tripod T1 and the other two z2, w2 are connected to v2 as
in the tripod T2. If d(x1, v1) = d(x2, v2), then Q is a degenerated quatripod which is a limit
case: y′ = w′′, v1 = v2 and Q is a tree with a vertex v1 = v2 with degree 4.

Then there is a unique map F of the quadrilateral Q = {x, y, z, w} onto the quatripod
Q satisfying properties i) and ii) in Definition 2.1.3.

Assume now that p, q ∈ Q satisfy F (p) = F (q). We have the following cases:

i) If F (p) = F (q) belongs to [x1z1] = [x2z2], then, a fortiori, it must exists a point u ∈ [xz]
such that f1(p) = f1(u) and f2(q) = f2(u). Therefore, d(p, u) ≤ δ and d(q, u) ≤ δ and
it follows that d(p, q) ≤ 2δ in this case.

ii) If F (p) = F (q) belongs to the edge [v1, y1], then f1(p) = f1(q) and so d(p, q) ≤ δ.

iii) If F (p) = F (q) belongs to the edge [v2, w2], then f2(p) = f2(q) and so d(p, q) ≤ δ.
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QE

x z

y

w

x′z′

y′

x′′z′′

w′′ F

v′2

v′1

F (x) F (w)

F (y) F (z)

Q

Figure 2.1: Map F of the quadrilateral QE = {x, y, z, w} onto the quatripod Q.

2.2 Deleting an edge

In this section we deal with one of the main problems in the Chapter: to obtain quantitative
relations between δ(G\ e) and δ(G), where e is any edge of G. As usual, we define the graph
G \ e as the graph with V (G \ e) = V (G) and E(G \ e) = E(G) \ {e}.

Since the proofs of these inequalities are long and technical, in order to make the ar-
guments more transparent, we collect some results we need along the proof in technical
lemmas.

Lemma 2.2.1. Let G be any graph, e ∈ E(G) with G \ e connected and x, y ∈ G \ e. If a
geodesic ΓG = [xy]G ⊂ G contains e, then there exists a point z ∈ ΓG\e = [xy]G\e ⊂ G\e such
that the subcurve γxz (respectively, γzy) contained in ΓG\e and joining x and z (respectively,
z and y) is a geodesic in G.

Proof. Consider the points A,B ∈ ΓG\e such that dG\e(x,A) = dG(x, e) and dG\e(y, B) =
dG(y, e), and choose z as the midpoint of [A,B] ⊂ ΓG\e. (The points A and B always exist
since L(ΓG) ≤ L(ΓG\e).) From the fact that γxz ⊂ ΓG\e and γzy ⊂ ΓG\e are geodesics in
G \ e, we obtain dG(z, e) ≥ L([A,B])/2; hence, γxz and γzy are geodesics in G.

Lemma 2.2.2. Let G be any graph and e ∈ E(G) with G \ e connected. For all x, y ∈ G \ e,
if ΓG = [xy]G is a geodesic in G containing e and ΓG\e = [xy]G\e is a geodesic in G \ e, then

∀ u ∈ ΓG\e , ∃ u′ ∈ ΓG \ e : dG\e(u, u
′) ≤ 2δ(G). (2.1)

Remark 2.2.3. In ΓG \ e we include the vertices connected by e.
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Proof. Without loss of generality we can assume that G is hyperbolic, since otherwise
the inequality is direct. By Lemma 2.2.1 we have a point z ∈ ΓG\e such that T =
{ΓG, [yz]G\e, [zx]G\e} is a geodesic triangle in G. Without loss of generality we can as-
sume that u ∈ [yz]G\e. If L([yz]G\e) ≤ δ(G), then there exists u′ = y ∈ ΓG such that
dG\e(u, u

′) ≤ δ(G). If L([yz]G\e) > δ(G), then we can take a point C ∈ [yz]G\e such
that dG\e(C, z) = δ(G); therefore, if u ∈ [Cy] \ {C}, then the hyperbolicity of G im-
plies dG(u,ΓG ∪ [zx]G\e) ≤ δ(G); note that if dG(u, [zx]G\e) ≤ δ(G) then the geodesic
γ joining u and [zx]G\e is not contained in G \ e; in fact, e ⊂ γ, and since e ⊂ ΓG

we have dG(u,ΓG) ≤ L(γ) ≤ δ(G); otherwise, dG(u,ΓG) ≤ δ(G); in both cases, since
e ⊂ ΓG, we deduce dG\e(u,ΓG) = dG(u,ΓG) ≤ δ(G). Assume now that u ∈ [Cz]G\e

(i.e., u ∈ [yz]G\e with dG\e(u, z) ≤ δ(G)); for every ε > 0 there exists uε ∈ [yz]G\e such
that dG\e(u, uε) ≤ δ(G) + ε and dG\e(uε, z) > δ(G). Then there exists u′

ε ∈ ΓG with
dG\e(u

′
ε, uε) ≤ δ(G) and dG\e(u, u

′
ε) ≤ 2δ(G) + ε. Since ε > 0 is arbitrary, by compactness of

ΓG there exists u′ ∈ ΓG with dG\e(u
′, u) ≤ 2δ(G).

In order to finish the proof it suffices to note that if u′ belongs to the interior of e, we
can replace u′ by one of the vertices joined by e.

We also obtain this similar result.

Lemma 2.2.4. Let G be any graph and e ∈ E(G) with G \ e connected. For all x, y ∈ G \ e,
if ΓG = [xy]G is a geodesic in G containing e and ΓG\e = [xy]G\e is a geodesic in G \ e, then

∀ u′ ∈ ΓG , ∃ u ∈ ΓG\e : dG(u
′, u) ≤ δ(G). (2.2)

Furthermore,

∀ u′ ∈ ΓG \ e , ∃ u ∈ ΓG\e : dG\e(u
′, u) ≤ 2δ(G). (2.3)

Proof. Without loss of generality we can assume that G is hyperbolic, since otherwise
the inequalities are direct. By Lemma 2.2.1 we have a point z ∈ ΓG\e such that T =
{ΓG, [yz]G\e, [zx]G\e} is a geodesic triangle in G; so (2.2) follows directly since G is hyper-
bolic. We prove now (2.3).

Let A and B be the vertices of e, such that [xA]G ⊂ ΓG and [By]G ⊂ ΓG are geodesics
in G with [xA]G ∩ [By]G = ∅. Without loss of generality we can assume that u′ ∈ [xA]G.
If L([xA]G) ≤ δ(G), then there exists u ∈ ΓG\e such that dG\e(u

′, u) ≤ δ(G). If L([Ax]G) >
δ(G), then let us consider the point A′ ∈ [Ax]G such that dG\e(A

′, A) = δ(G); if u′ ∈ [A′x]G,
then we have dG(u

′, e) ≥ δ(G) and therefore dG\e(u
′, u) ≤ δ(G). Finally, if u′ ∈ [AA′]G, then

there exits u′′ ∈ [A′x]G such that dG\e(u
′, u′′) ≤ δ(G); hence, there exits u ∈ ΓG\e such that

dG\e(u
′, u) ≤ dG\e(u

′, u′′) + dG\e(u
′′, u) ≤ 2δ(G).

The argument in the proof of Lemma 2.2.4 also gives the following result.
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Corollary 2.2.5. Let G be any graph, e ∈ E(G) with G \ e connected, and x, y, z ∈ G \ e;
let T = {[xy], [yz], [zx]} be a geodesic triangle in G such that [xy] contains e and [yz], [zx]
do not contain e. Then

∀ u′ ∈ [xy] \ e, ∃ u ∈ [yz] ∪ [zx] : dG\e(u
′, u) ≤ 2δ(G). (2.4)

Lemma 2.2.6. Let G be any graph and e ∈ E(G) with G \ e connected. Let TG =
{[xy]G, [yz]G, [zx]G} be a geodesic triangle in G with x, y, z ∈ G \ e. Then e is contained
at most in two of the three sides of TG.

Proof. Without loss of generality we can assume that e = [A,B] is contained in [xy]G and
[xz]G. Since [xy]G = [xA]G\e ∪ [A,B] ∪ [By]G\e, we have L([xB]G\e) ≥ L([xA]G\e) + L(e)
and L([Ay]G\e) ≥ L(e) + L([By]G\e); since [xz]G = [xA]G\e ∪ [A,B] ∪ [Bz]G\e, we have
L([Az]G\e) ≥ L(e) + L([zB]G\e). Hence, min{L(γ) : γ is a path in G between y and z with
e ⊂ γ} ≥ L(e) + dG\e(y, B) + dG\e(B, z); since dG(y, z) ≤ dG\e(y, B) + dG\e(B, z), then e is
not contained in [yz]G.

We can prove now the following Theorem.

Theorem 2.2.7. Let G be any graph and e ∈ E(G) with G \ e connected. The following
inequality holds

δ(G \ e) ≤ 5δ(G). (2.5)

Proof. Without loss of generality we can assume that G is hyperbolic, since otherwise the
inequality is direct. If e = [A,B] and L(e) ≥ dG\e(A,B), then G \ e is an isometric subgraph
of G and Lemma 1.3.2 gives δ(G \ e) ≤ δ(G). Assume now that L(e) < dG\e(A,B).

Let us consider an arbitrary geodesic triangle TG\e = {[xy]G\e, [yz]G\e, [zx]G\e} in G \ e.
Let TG be a geodesic triangle ofG with the same vertices of TG\e, i.e., TG = {[xy]G, [yz]G, [zx]G},
satisfying the following property: if a and b are vertices of TG\e with dG\e(a, b) = dG(a, b),
then we choose [ab]G as [ab]G\e. If n is the number of the geodesic sides of TG containing e,
then by Lemma 2.2.6 n is either 0, 1 or 2.

Case n = 0 In this case we have TG = TG\e. Let us consider any α ∈ TG\e; without loss of
generality we can assume that α ∈ [xy]G\e.

Since G is hyperbolic, there exists β ∈ [xz]G\e ∪ [yz]G\e such that dG(α, β) ≤ δ(G). If
dG\e(α, β) = dG(α, β) ≤ δ(G), then dG\e(α, [xz]G\e ∪ [yz]G\e) ≤ δ(G). Hence, we can
assume that dG\e(α, β) > dG(α, β); then the geodesic in G joining α and β contains e.
Let γ1 be the geodesic contained in [xy]G\e joining α and x, and let γ2 be the geodesic
contained in [xy]G\e joining α and y; then γ1 ∪ γ2 = [xy]G\e.

If L(γ1) ≤ 2δ(G) or L(γ2) ≤ 2δ(G), then there exists β ∈ {x, y} ⊂ [xz]G\e ∪ [yz]G\e

such that dG\e(α, β) ≤ 2δ(G).
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If L(γ1) > 2δ(G), then consider the point α′ ∈ γ1 such that dG\e(α, α
′) = 2δ(G). Since

G is hyperbolic, there exists β ′ ∈ [xz]G\e ∪ [yz]G\e such that dG(α
′, β ′) ≤ δ(G). If

dG\e(α
′, β ′) = dG(α

′, β ′) ≤ δ(G), then we conclude dG\e(α, [xz]G\e ∪ [yz]G\e) ≤ 3δ(G).
If dG\e(α

′, β ′) > dG(α
′, β ′), then the geodesic in G joining α′ and β ′ contains e; recall

that the geodesic in G joining α and β contains e; hence, there exists a path in G
joining α and α′ with length less than 2δ(G), and therefore [xy]G\e is not a geodesic in
G. This is a contradiction, and we conclude dG\e(α, [xz]G\e ∪ [yz]G\e) ≤ 3δ(G).

Therefore, δ(TG\e) ≤ 3δ(G) in the case n = 0.

Case n = 1 In this case, without loss of generality we can assume that [xz]G = [xz]G\e and
[yz]G = [yz]G\e.

By Lemma 2.2.2, for any α1 ∈ [xy]G\e there exists α
′ ∈ [xy]G\e such that dG\e(α1, α

′) ≤
2δ(G). Furthermore, by Corollary 2.2.5 there exists β1 ∈ [xz]G ∪ [yz]G such that
dG\e(α

′, β1) ≤ 2δ(G). Hence, we have dG\e(α1, β1) ≤ 4δ(G).

Let us consider now any α2 ∈ [xz]G\e ∪ [yz]G\e; without loss of generality we can
assume that α2 ∈ [yz]G\e. Since T ′ = {[xy]G, [yz]G\e, [zx]G\e} is a geodesic triangle
in G, there exists α′ ∈ [xy]G ∪ [xz]G\e such that dG(α2, α

′) ≤ δ(G). Hence, there
exists α′′ ∈ ([xy]G \ e) ∪ [xz]G such that dG\e(α2, α

′′) ≤ δ(G) (if the geodesic joining
α2 and α′ contains e = [A,B], then A,B ∈ [xy]G). If α′′ ∈ [xz]G\e, then we obtain
dG\e(α2, α

′′) ≤ δ(G). Assume now that α′′ ∈ [xy]G \ e. By Lemma 2.2.4 there exists
β2 ∈ [xy]G\e such that dG\e(α

′′, β2) ≤ 2δ(G), and we have dG\e(α2, β2) ≤ 3 d(G).

Therefore, we obtain δ(TG\e) ≤ 4δ(G) in the case n = 1.

Case n = 2 Without loss of generality we can assume that [yz]G\e = [yz]G.

Let us consider α ∈ [xy]G\e ∪ [xz]G\e; without loss of generality we can assume that
α ∈ [xy]G\e and that dG(x,A) < dG(x,B). By Lemma 2.2.2, for any α ∈ [xy]G\e

there exists α′ ∈ [xy]G \ e such that dG\e(α, α
′) ≤ 2δ(G). If α′ ∈ [yB]G, then

since T ′ = {[yB]G, [Bz]G, [zy]G\e} is δ(G)-thin in G there exists β ′
0 ∈ [yz]G ∪ [Bz]G

such that dG(α
′, β ′

0) ≤ δ(G); hence, there exists β ′ ∈ [yz]G ∪ ([xz]G \ e) such that
dG\e(α

′, β ′) ≤ δ(G), since if the geodesic joining α′ and β ′
0 contains e, then we can take

α′ ∈ {A,B}. Moreover, if β ′ ∈ [yz]G, then dG\e(α, β
′) ≤ 3δ(G). If β ′ ∈ [xz]G \ e, then

by Lemma 2.2.4, there exists β ∈ [xz]G\e such that dG\e(β
′, β) ≤ 2δ(G). Hence, we

have dG\e(α, β) ≤ 5δ(G). If α′ ∈ [xA]G, then we also obtain dG\e(α, β) ≤ 5δ(G) with a
similar argument.

Consider now α ∈ [yz]G\e; since T ′ = {[yB]G, [Bz]G, [zy]G\e} is δ(G)-thin in G, there
exists α′

0 ∈ [yB]G ∪ [Bz]G such that dG(α, α
′
0) ≤ δ(G). Thus, there exists α′ ∈ ([xy]G∪

[xz]G) \ e such that dG\e(α, α
′) ≤ δ(G), since if the geodesic joining α and α′

0 contains
e, then we can take α′ ∈ {A,B}. Hence, without loss of generality we can suppose that
α′ ∈ [xy]G \ e; then by Lemma 2.2.4 there exists β ∈ [xy]G\e such that dG\e(α

′, β) ≤
2δ(G). Therefore, we have dG\e(α, β) ≤ 3δ(G).
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Finally, we obtain δ(TG\e) ≤ 5δ(G) in this case.

We will prove now a kind of converse of Theorem 2.2.7. First of all, note that it is not
possible to have the inequality δ(G) ≤ c δ(G \ e) for some fixed constant c, since if G is the
cycle graph with n vertices and edges with length 1, and e is any edge of G, then δ(G) = n/4
and δ(G \ e) = 0.

We prove first some previous results.

Lemma 2.2.8. Let G be any graph and e ∈ E(G) with G\e connected. Let TG be a geodesic
triangle in G contained in G \ e. Then TG is δ(G \ e)-thin in G, i.e.,

δ(TG) ≤ δ(G \ e). (2.6)

Proof. This result is straightforward since TG is a geodesic triangle in G \ e also, and
dG(x, y) ≤ dG\e(x, y) for every x, y ∈ G \ e.

Lemma 2.2.9. Let G be any graph and e = [A,B] ∈ E(G) with G \ e connected. For all
x, y ∈ G \ e, if ΓG = [xy]G is a geodesic in G containing e and ΓG\e = [xy]G\e is a geodesic
in G \ e, then

∀ u ∈ ΓG\e , ∃ u′ ∈ ΓG \ e : dG(u, u
′) ≤ 2δ(G \ e) + 1

2
dG\e(A,B). (2.7)

Proof. Without loss of generality we can assume that G\e is hyperbolic, since otherwise the
inequality is direct. We can assume also that ΓG = [xy]G = [xA] ∪ e ∪ [By]. Let us consider
the geodesic quadrilateral P4 = {[xy]G\e, [xA], [AB]G\e, [By]} in G \ e. Since P4 is 2δ(G \ e)
-thin in G \ e, then

∀ u ∈ ΓG\e , dG\e(u, [xA] ∪ [AB]G\e ∪ [By]) ≤ 2δ(G \ e),

and inequality (2.7) follows.

Lemma 2.2.10. Let G be any graph and e = [A,B] ∈ E(G) with G \ e connected. For all
x, y ∈ G \ e, if ΓG = [xy]G is a geodesic in G containing e and ΓG\e = [xy]G\e is a geodesic
in G \ e, then

∀ u′ ∈ ΓG , ∃ u ∈ ΓG\e : dG(u
′, u) ≤ 5δ(G \ e) + dG\e(A,B). (2.8)

Proof. Without loss of generality we can assume that G\e is hyperbolic, since otherwise the
inequality is direct. We can assume also that ΓG = [xy]G = [xA]∪e∪[By]. Denoted by P the
middle point of [AB]G\e. Note that the condition e ⊆ ΓG = [xy]G, implies dG\e(A,B) ≥ L(e).

Note also that
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∀ u′ ∈ ΓG , ∃ u∗ ∈ [xA] ∪ [By] : dG(u, u
∗) ≤ 1

2
L(e).

Without loss of generality we can assume that u∗ ∈ [xA]. Since T = {[xA], [AP ]G\e,
[xP ]G\e} is a geodesic triangle in G \ e, there exists α ∈ [AP ]G\e ∪ [xP ]G\e such that
dG(u

∗, α) ≤ dG\e(u
∗, α) ≤ δ(G \ e), and so

∀ u∗ ∈ [xA] , ∃ β ∈ [xP ]G\e : dG(u
∗, β) ≤ δ(G \ e) + 1

2
dG\e(A,B).

Now, T = {[xy]G\e, [xP ]G\e, [Py]G\e} is a geodesic triangle in G \ e and T is 4δ(G \ e)-
fine by Theorem 1.2.5. Let us denote by r, s and t the internal points in the geodesics
[xy]G\e, [xP ]G\e and [Py]G\e, respectively. Since L([sP ]G\e) = L([Pt]G\e) =

1
2
(L([xP ]G\e) +

L([Py]G\e)− L([xy]G\e)), we have

∀ β ∈ [xP ]G\e ∪ [Py]G\e, ∃ u ∈ [xy]G\e :

dG(β, u) ≤ 4δ(G \ e) + 1

2

(
L([xP ]G\e) + L([Py]G\e)− L([xy]G\e)

)
.

Triangle inequality gives L([xP ]G\e)+L([Py]G\e) ≤ L([xA]G\e)+L([AP ]G\e)+L([PB]G\e)
+L([By]G\e) = L([xy]G) + dG\e(A,B)− L(e); since L([xy]G\e) ≥ L([xy]G), we deduce

1

2

(
L([xP ]G\e) + L([Py]G\e)− L([xy]G\e)

)
≤ 1

2

(
dG\e(A,B)− L(e)

)
.

Finally, if we consider the path [u′u∗] ∪ [u∗β] ∪ [βu], then we obtain

dG(u
′, u) ≤ 1

2
L(e) + δ(G \ e) + 1

2
dG\e(A,B) + 4δ(G \ e) + 1

2

(
dG\e(A,B)− L(e)

)

= 5δ(G \ e) + dG\e(A,B).

Lemma 2.2.11. Let G be any graph and e = [A,B] ∈ E(G) with G \ e connected. Let TG =
{[xy]G, [yz]G, [zx]G} be a geodesic triangle in G, such that e ⊆ [xy]G and [yz]G, [zx]G ⊂ G\e.
Then

δ(TG) ≤ 6δ(G \ e) + dG\e(A,B). (2.9)

Proof. Without loss of generality we can assume that G\e is hyperbolic, since otherwise the
inequality is direct. Let [xy]G\e be a geodesic in G \ e; then T = {[xy]G\e, [yz]G, [zx]G} is a
geodesic triangle in G \ e. Hence, for any α ∈ [yz]G we have

dG(α, [zx]G ∪ [xy]G\e) ≤ dG\e(α, [zx]G ∪ [xy]G\e) ≤ δ(G \ e).
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By Lemma 2.2.9, for any β ∈ [xy]G\e, we have dG(β, [xy]G) ≤ 2δ(G \ e) + 1
2
dG\e(A,B).

Then we obtain

dG(α, [zx]G ∪ [xy]G) ≤ 3δ(G \ e) + 1

2
dG\e(A,B).

If α ∈ [zx]G, then the same argument gives the last inequality.
By Lemma 2.2.10, for any α ∈ [xy]G, there exists β ∈ [xy]G\e such that dG(α, β) ≤

5δ(G \ e) + dG\e(A,B). If we consider again the geodesic triangle T in G \ e, then we have

dG(β, [yz]G ∪ [zx]G) ≤ dG\e(β, [yz]G ∪ [zx]G) ≤ δ(G \ e),
Therefore, for any α ∈ [xy]G, we obtain

dG(α, [yz]G ∪ [zx]G) ≤ 6δ(G \ e) + dG\e(A,B).

Lemma 2.2.12. Let G be any graph and e = [A,B] ∈ E(G) with G \ e connected. Let
TG = {[xy]G, [yz]G, [zx]G} be a geodesic triangle in G, such that {x, y, z} ∩ e 6= ∅. Then

δ(TG) ≤ max
{
2δ(G \ e) + dG\e(A,B), L(e)

}
. (2.10)

Proof. Without loss of generality we can assume that G \ e is hyperbolic, since otherwise
the inequality is direct. If every vertex of TG belongs to e, then we have TG ⊆ e ∪ [AB]G\e;
hence, δ(TG) ≤ 1

4
L(TG) =

1
4
(L(e) + dG\e(A,B)).

Assume now that there are exactly two vertices of TG in e; without loss of generality we
can assume that x, y ∈ e, z /∈ e, A ∈ [xz]G and B ∈ [yz]G. In order to bound δ(TG), let us
choose any α ∈ TG. If α ∈ [xy]G, then we have dG(α, [xz]G ∪ [yz]G) = dG(α, {x, y}) ≤ L(e).
If α ∈ [xz]G ∪ [yz]G, then without loss of generality we can assume that α ∈ [xz]G. If
α ∈ [xA]G ⊂ [xz]G, then we have dG(α, [xy]G ∪ [yz]G) ≤ dG(α, x) ≤ L(e). If α ∈ [Az]G ⊂
[xz]G, then let us consider the geodesic triangle T ∗ = {[Az]G, [zB]G, [AB]G\e} in G \ e; then
there exists β ∈ [Bz]G ∪ [AB]G\e such that dG(α, β) ≤ dG\e(α, β) ≤ δ(G \ e), and we obtain
dG(α, [yz]G ∪ [xy]G) ≤ δ(G \ e) + dG\e(A,B). Hence,

δ(TG) ≤ max
{
δ(G \ e) + d\e(A,B), L(e)

}
.

Finally, assume that there is exactly one vertex of TG in e; without loss of generality
we can assume that x ∈ e, z, y /∈ e, A ∈ [xy]G and B ∈ [xz]G. In order to bound δ(TG),
let us choose any α ∈ TG. If α ∈ [yz]G, then T ∗

4 = {[Ay]G, [yz]G, [zB]G, [AB]G\e} is a
geodesic quadrilateral in G \ e and there exists β ∈ [yA]G ∪ [AB]G\e ∪ [Bz]G such that
dG(α, β) ≤ dG\e(α, β) ≤ 2δ(G \ e); hence, we obtain dG(α, [yx]G ∪ [xz]G) ≤ 2δ(G \ e) +
1
2
dG\e(A,B). If α ∈ [xy]G ∪ [xz]G, then without loss of generality we can assume that

α ∈ [xy]G. If α ∈ [xA]G ⊂ [xy]G, then we have dG(α, [xz]G ∪ [yz]G) ≤ dG(α, x) ≤ L(e). If
α ∈ [Ay]G ⊂ [xy]G, then let us consider again the geodesic quadrilateral T ∗

4 ; hence, there
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exists β ∈ [AB]G\e ∪ [Bz]G ∪ [zy]G such that dG(α, β) ≤ dG\e(α, β) ≤ 2δ(G \ e), and we
obtain dG(α, [yz]G ∪ [zx]G) ≤ 2δ(G \ e) + dG\e(A,B). Hence,

δ(TG) ≤ max
{
2δ(G \ e) + dG\e(A,B), L(e)

}
.

Finally, we can prove a kind of converse of Theorem 2.2.7.

Theorem 2.2.13. Let G be any graph and e = [A,B] ∈ E(G) with G \ e connected. Then

max
{1

5
δ(G\ e), 1

4
dG\e(A,B),

1

4
L(e)

}
≤ δ(G) ≤ max

{
6δ(G\ e)+dG\e(A,B), L(e)

}
. (2.11)

Proof. Theorem 2.2.7 gives δ(G \ e)/5 ≤ δ(G). If dG\e(A,B) ≤ L(e), then let C1 be the
midpoint of e and w1 the midpoint of [AC1]G; since T1 = {A,B,C1} is a geodesic triangle in
G, we have δ(G) ≥ δ(T1) ≥ dG(w1, [AB]G ∪ [BC1]G) = L(e)/4. If dG\e(A,B) ≥ L(e), then
let C2 be the midpoint of a geodesic [AB]G\e and w2 the midpoint of [AC2]G\e ⊂ [AB]G\e

(note that [AC2]G\e is a geodesic in G also); since T2 = {A,B,C2} is a geodesic triangle in
G, we have δ(G) ≥ δ(T2) ≥ dG(w2, e ∪ [BC2]G) = dG\e(A,B)/4. These facts prove the lower
bound for δ(G).

In order to prove the second inequality, let us consider a geodesic triangle TG in G. By
Lemma 2.2.12 we can assume that every vertex of TG is contained in G \ e. By Lemma 2.2.6
at most two geodesics sides of TG contain e. If TG ⊆ G \ e, then Lemma 2.2.8 gives the
result. If just one geodesic side of TG contains e, then it suffices to apply Lemma 2.2.11. If
two geodesics sides of TG contain e, then we can split TG in the union of e, a geodesic bigon
in G \ e and a geodesic triangle in G \ e, and Lemma 2.2.8 finishes the proof.

We have the following direct consequences.

Corollary 2.2.14. Let G be any graph and e = [A,B] ∈ E(G) with G \ e connected. Then

1

5
max

{
δ(G \ e), dG\e(A,B), L(e)

}
≤ δ(G) ≤ 12max

{
δ(G \ e), dG\e(A,B), L(e)

}
.

Corollary 2.2.15. Let G be any graph and e = [A,B] ∈ E(G) such that G \ e is connected
and L(e) ≤ dG\e(A,B). Then

δ(G) ≤ 6δ(G \ e) + dG\e(A,B). (2.12)
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2.3 Hyperbolic S-graphs

Using the previous results, we prove in this section that local hyperbolicity guarantees the
hyperbolicity of any graph, in a quantitative way. In order to do that we need to introduce
the concept of S-graph.

Definition 2.3.1. Let us consider a graph G0 with E(G0) = {[an, bn]}n≥1, and a family of
graphs {Gn}n≥1 such that for all n ≥ 1 there exist a′n, b

′
n ∈ V (Gn) such that dGn

(a′n, b
′
n) =

LG0
([an, bn]). We define the S-graph G associated to {Gn}n≥0 as follows; we replace each

edge [an, bn] ∈ E(G0) by the whole graph Gn in the following way: an and bn are substituted,
respectively, by a′n and b′n, for each n ≥ 1.

A very simple example of S-graph is the following: Let G be any graph with at least two
connection vertices v, w (recall that a connection vertex is a vertex whose removal renders
G disconnected). We denote by G1, G2, G3, the closures in G of the connected components
of the metric graph G minus the points {v, w}. Without loss of generality we can assume
that v ∈ G1, v, w ∈ G2 and w ∈ G3. If α 6= v is a vertex of G1 and β 6= w is a vertex
of G3, we define G0 as the graph with V (G0) = {α, v, w, β}, E(G0) = {[α, v], [v, w], [w, β]}
and L([α, v]) = dG(α, v), L([v, w]) = dG(v, w), L([w, β]) = dG(w, β). Then G is the S-graph
associated to {G0, G1, G2, G3}.

The previous example shows that we can see graphs as S-graphs. Besides, Figure 2.3
show another example of a particular S-graph G associated to G0 := K4 \ e with edges of
length 2 and {Gn}5n=1 = {C6, K3,3, K4 \ e, C6, C5 ∪ e} all with edges of length 1.

Figure 2.2: S-graph associated to {K4 \ e, C6, K4 \ e,K3,3, C5 ∪ e, C6}.
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Theorem 2.3.2. Let G be the S-graph associated to {Gn}n≥0. Then, G is hyperbolic if and
only if {Gn}n≥0 are hyperbolic with the same hyperbolicity constant. Furthermore,

1

5
sup
n≥0

δ(Gn) ≤ δ(G) ≤ 11 sup
n≥0

δ(Gn).

Proof. Assume first that G is hyperbolic. For each n ≥ 1, let us denote by [a′nb
′
n]Gn

a geodesic
in Gn, and define G∗ as the subgraph of G given by G∗ = ∪n≥1[a

′
nb

′
n]Gn

. Note that G∗ and
G0 are isometric. We have that G∗ is an isometric subgraph of G and Lemma 1.3.2 gives
δ(G0) = δ(G∗) ≤ δ(G). In what follows we identify G∗ and G0. For each n ≥ 1, if G \ Gn

is connected, let us consider a geodesic αn in G \ Gn joining a′n and b′n; if G \ Gn is not
connected, we define αn = ∅; then Gn ∪ αn is an isometric subgraph of G. Therefore, by
Theorem 2.2.7 and Lemma 1.3.2, we have that δ(Gn) ≤ 5δ(Gn ∪ αn) ≤ 5δ(G). Hence, Gn is
5δ(G)-hyperbolic for every n ≥ 0.

Assume now that Gn is δ-hyperbolic for every n ≥ 0. Let us consider any fixed geodesic
triangle T = {x, y, z} in G; by Lemma 1.3.4 we can assume that T is a cycle.

If x, y, z belong to different subgraphs Gs, Gr, Gt, respectively, then let us consider the
three geodesic triangles Ts = {x, a′s, b′s}, Tr = {y, a′r, b′r} and Tt = {z, a′t, b′t} in Gs, Gr and
Gt, respectively, and their tripods (see Definition 1.2.4). Let Px (respectively, Py, Pz) be the
internal point of Ts in [a′sb

′
s] (respectively, Tr in [a′rb

′
r], Tt in [a′tb

′
t]).

Since T is a cycle and we are identifying G∗ and G0, without loss of generality we can
assume that

[xy] = [xbs]Gs
∪ [bsar]G0

∪ [ary]Gr
,

[yz] = [ybr]Gr
∪ [brat]G0

∪ [atz]Gt

and
[zx] = [zbt]Gt

∪ [btas]G0
∪ [asx]Gs

.

We are going to prove that [Pxbs]G0
∪[bsar]G0

∪[arPy]G0
is a geodesic in G0. Let [PxPy]G0

=
[Pxcs]G0

∪ [cscr]G0
∪ [crPy]G0

be a geodesic in G0 joining Px and Py, where cs ∈ {as, bs}
and cr ∈ {ar, br}. Seeking for a contradiction, assume that L([PxPy]G0

) < L([Pxbs]G0
) +

L([bsar]G0
) + L([arPy]G0

). Denote by Pas and Pbs the internal points of Ts in [xa′s]Gs
and

[xb′s]Gs
, respectively; denote by Par and Pbr the internal points of Tr in [ya′r]Gs

and [yb′r]Gs
,

respectively. Then

L([Pxcs]Gs
) + L([cscr]G0

) + L([crPy]Gr
) < L([Pxbs]Gs

) + L([bsar]G0
) + L([arPy]Gr

),

L([Pcscs]Gs
) + L([cscr]G0

) + L([crPcr ]Gr
) < L([Pbsbs]Gs

) + L([bsar]G0
) + L([arPar ]Gr

),

dG(x, y) ≤ L([xPcs ]Gs
) + L([Pcscs]Gs

) + L([cscr]G0
) + L([crPcr ]Gr

) + L([Pcry]Gr
) <

< L([xPbs ]Gs
) + L([Pbsbs]Gs

) + L([bsar]G0
) + L([arPar ]Gr

) + L([Pary]Gr
) =

= L([xy]) = dG(x, y),
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which is a contradiction. Then, we have that [Pxbs]G0
∪ [bsar]G0

∪ [arPy]G0
is a geodesic in

G0 joining Px and Py. A similar argument proves that [Pybr]G0
∪ [brat]G0

∪ [atPz]G0
and

[Pzbt]G0
∪ [btas]G0

∪ [asPx]G0
are also geodesics in G0. Now, let us consider the geodesic

triangle T0 = {Px, Py, Pz} in G0 with these geodesics.
Let us consider any α ∈ T . Without loss of generality we can assume that α ∈ [xy]. If

α ∈ [xbs]Gs
, then since Ts is δ-thin there exists α′ ∈ [xas]Gs

∪[asbs]Gs
such that dGs

(α, α′) ≤ δ.
If α′ ∈ [xas]Gs

, then α′ ∈ [xz]. Assume now that α′ ∈ [asbs]Gs
. If α′ ∈ [asPx]Gs

, then there
exists β ∈ [xas]Gs

⊂ [xz] such that dGs
(α′, β) ≤ 4δ and dG(α, β) ≤ 5δ. If α′ ∈ [Pxbs]Gs

⊂
[PxPy]G0

since T0 is δ-thin, there exists β ′ ∈ [PyPz]G0
∪ [PzPx]G0

such that dG0
(α′, β ′) ≤ δ.

Then, β ′ belongs to [brat]G0
∪ [btas]G0

⊂ [yz]G ∪ [zx]G or to one of the subgraphs Ts, Tr or Tt

(if β ′ belongs to [Pybr]Gr
, [atPz]Gt

, [Pzbt]Gt
, [asPx]Gs

) and there exists β ∈ [yz]G ∪ [zx]G such
that dG(β

′, β) ≤ 4δ. Then, we obtain dG(α, β) ≤ dGs
(α, α′) + dG0

(α′, β ′) + dG(β
′, β) ≤ 6δ.

Note that, by symmetry, if α ∈ [ary]Gr
we have the same result. If α ∈ [bsar]G0

, then
since T0 is δ-thin there exists β ′ ∈ [PyPz]G0

∪ [PzPx]G0
such that dG0

(α, β ′) ≤ δ. Then, β ′

belongs to [brat]G0
∪ [btas]G0

⊂ [yz]G ∪ [zx]G or to one of the subgraphs Ts, Tr or Tt (if β
′

belongs to [Pybr]Gr
, [atPz]Gt

, [Pzbt]Gt
, [asPx]Gs

) and there exists β ∈ [yz]G ∪ [zx]G such that
dG(β

′, β) ≤ 4δ. Then, we obtain dG(α, β) ≤ dG0
(α, β ′) + dG(β

′, β) ≤ 5δ. Consequently, if
x, y, z belong to different subgraphs, then

δ(T ) ≤ 6δ.

If x, y belong to the same subgraph Gs and z ∈ Gr with s 6= r, then consider two geodesic
polygons Fs = {x, y, as, bs} and Tr = {z, ar, br} in Gs and Gr, respectively. Consider the
tripod of Tr and a quatripod of Fs respectively, into the definition of fine. Let P ′

x, P
′
y, P

′
z be

the vertices with degree 3 in the quatripod and the tripod, respectively; let Pz be the point
in [arbr] related with P ′

z (the internal point), and Px, Py ∈ [asbs] related with P ′
x, P

′
y (note

that it is possible to have Px = Py, in particular, if P ′
x or P ′

y is neighbor of the two vertices
corresponding to as and bs).

Without loss of generality we can assume that

[yz] = [ybs]Gs
∪ [bsar]G0

∪ [arz]Gr
,

[xz] = [xas]Gs
∪ [asbr]G0

∪ [brz]Gr

and
[asbs]Gs

= [asPx]Gs
∪ [PxPy]Gs

∪ [Pybs]Gs
.

As in the previous case, it is possible to check that [Pxas]G0
∪[asbr]G0

∪[brPz]G0
, [Pzar]G0

∪
[arbs]G0

∪ [bsPy]G0
and [PxPy]G0

are geodesics in G0. Let us consider the geodesic triangle
T0 = {Px, Py, Pz} in G0 with these geodesics.

Let us fix any α ∈ [xy]; there exists α′ ∈ [xas]Gs
∪ [asbs]Gs

∪ [bsy]Gs
such that dGs

(α, α′) ≤
2δ. If α′ ∈ [xas]Gs

∪[bsy]Gs
, then α′ ∈ [xz]∪[zy]. If α′ ∈ [asPx]Gs

∪[Pybs]Gs
, then by definition

of fine quatripod there exists β ′ ∈ [xas]Gs
∪ [bsy]Gs

⊂ [xz] ∪ [zy] such that dGs
(α′, β ′) ≤ 8δ.
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If Px 6= Py and α′ ∈ [PxPy]Gs
, then since T0 is δ-thin there exists β ′ ∈ [PyPz]G0

∪ [PzPx]G0

such that dG0
(α′, β ′) ≤ δ; then, β ′ ∈ [bsar]G0

∪ [bras]G0
⊂ [yz]G ∪ [zx]G or since Fs is 8δ-fine

and Tr is 4δ-fine there exists β ∈ [yz]G ∪ [zx]G such that dGi
(β ′, β) ≤ 8δ with i ∈ {r, s}.

Therefore, we conclude dG(α, β) ≤ 11δ.
Let us fix now any α ∈ [xz]∪ [yz]; without loss of generality we can assume that α ∈ [yz].
Assume first that α ∈ [ybs]Gs

; then since Fs is 2δ-thin there exists α′ ∈ [xy]G ∪ [xas]Gs
∪

[asbs]Gs
such that dGs

(α, α′) ≤ 2δ. If α′ ∈ [xy] ∪ [xas]Gs
, then α′ ∈ [xy] ∪ [xz]. Assume now

that α′ ∈ [asbs]Gs
. If α′ ∈ [asPx]Gs

, then since Fs is 8δ-fine there exists β ′ ∈ [xas]Gs
⊂ [xz]

such that dGs
(α′, β ′) ≤ 8δ and dG(α, β

′) ≤ 10δ. If Px 6= Py and α′ ∈ [PxPy]Gs
, then there

exists β ′ ∈ [xy]G such that dGs
(α′, β ′) ≤ 8δ and dG(α, β

′) ≤ 10δ. If α′ ∈ [Pybs]Gs
⊂ [PyPz]G0

,
then since T0 is δ-thin, there exists β ′ ∈ [PzPx]G0

∪ [PxPy]G0
such that dG0

(α′, β ′) ≤ δ. If
β ′ ∈ [PxPy]Gs

, then since Fs is 8δ-fine there exists β ∈ [xy]G such that dGs
(β ′, β) ≤ 8δ and

dG(α, β) ≤ 11δ. Assume that β ′ ∈ [PzPx]G0
; if β ′ ∈ [Pzbr]Gr

∪ [Pxas]Gs
, then since Fs is

8δ-fine and Tr is 4δ-fine there exists β ∈ [zx] such that dGi
(β ′, β) ≤ 8δ with i ∈ {r, s} and

therefore dG(α, β) ≤ 11δ; otherwise, β ′ ∈ [bras]G0
⊂ [zx] and dG(α, β

′) ≤ 3δ.
Assume that α ∈ [bsar]G0

⊂ [PyPz]G0
. Since T0 is δ-thin there exists α′ ∈ [PzPx]G0

∪
[PxPy]G0

such that dG0
(α, α′) ≤ δ; using the previous arguments for α′ ∈ [Pybs]Gs

, we obtain
that there exists β ∈ [xy] ∪ [xz] such that dG(α, β) ≤ 9δ.

Assume that α ∈ [arz]Gr
; then since Tr is δ-thin there exists α′ ∈ [zbr]Gr

∪ [brar]Gr

such that dGr
(α, α′) ≤ δ. If α′ ∈ [zbr]Gr

, then α′ ∈ [zx]. If α′ ∈ [brPz]Gr
, then since Tr

is 4δ-fine there exists β ′ ∈ [zbr]Gr
⊂ [zx] such that dGr

(α′, β ′) ≤ 4δ and dG(α, β
′) ≤ 5δ.

If α′ ∈ [Pzar]Gr
, then since T0 is δ-thin there exists β ′ ∈ [PzPx]G0

∪ [PxPy]G0
such that

dG0
(α′, β) ≤ δ; using the previous arguments for α′ ∈ [Pybs]Gs

, we obtain that there exists
β ∈ [xy] ∪ [xz] such that dG(α, β) ≤ 10δ.

Consequently, if x, y belong to the same subgraph Gs and z ∈ Gr with s 6= r, then

δ(T ) ≤ 11δ.

Finally, assume that x, y, z belong to the same subgraph Gs. If T is contained in Gs,
then δ(T ) ≤ δ(Gs) ≤ δ. Assume that T is not contained in Gs; then e = [as, bs] ∈ E(G0),
G0 \ e is connected and L(e) ≤ dGs

(a′s, b
′
s). Hence, T is contained in Gs ∪ αs, where αs is a

geodesic in G0 \ e joining as and bs. Corollary 2.2.15 gives

δ(T ) ≤ δ(Gs ∪ αs) ≤ 6δ(Gs) + dGs
(a′s, b

′
s) ≤ 6δ + dGs

(a′s, b
′
s).

Note that [as, bs] ∪ αs is an isometric cycle in G0; therefore,

1

4
dGs

(a′s, b
′
s) =

1

4
L([as, bs]) ≤

1

4
L([as, bs] ∪ αs) ≤ δ([as, bs] ∪ αs) ≤ δ(G0) ≤ δ.

Consequently, if x, y, z belong to the same subgraph, then δ(T ) ≤ 10δ.
Finally, we obtain that G is hyperbolic with δ(G) ≤ 11δ.



Chapter 3

Hyperbolicity of line graph with edges
of length k.

In this Chapter we study the line graphs with constant length of edges. Line graphs were
initially introduced in the papers [80] and [56], although the terminology of line graph was
used in [42] for the first time. They are an active topic of research at this moment.

Definition 3.0.3. Let G be a graph with edges E(G) = {ei}i∈I . The line graph L(G) of G
is a graph which has a vertex Vei ∈ V (L(G)) for each edge ei of G, and an edge joining Vei

and Vej when ei ∩ ej 6= ∅.

Some authors define the edges of line graph with length 1 or another fixed constant, but
we define the length of the edge [Vei, Vej ] ∈ E(L(G)) as (L(ei)+L(ej))/2. Obviously, if every
edge of G has length k for some constant k, then every edge of L(G) has length k.

One of the main aim of this Chapter is to obtain information about the hyperbolicity
constant of the line graph L(G) in terms of properties of the graph G.

In particular, we prove qualitative results as the following: a graph G is hyperbolic if
and only if L(G) is hyperbolic (see Theorem 3.1.1); if {Gn} is a T-decomposition of G, then
the line graph L(G) is hyperbolic if and only if supn δ(L(Gn)) is finite (see Theorem 3.3.7).

Besides, we obtain quantitative results. Some of them are quantitative versions of our
qualitative results:

1

12
δ(G)− 3k

4
≤ δ(L(G)) ≤ 12 δ(G) + 18k, (3.1)

for graphsG with edges of length k (see Theorem 3.1.3); and, if {Gn}n is any T-decomposition
of any graph G, then

sup
n

δ(L(Gn)) ≤ δ(L(G)) ≤ sup
n

δ(L(Gn)) + k

(see Theorem 3.3.7).

38
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We also prove (see Theorem 3.3.12) that

g(G)

4
≤ δ(L(G)) ≤ c(G)

4
+ 2k,

where g(G) is the girth of G (the infimum of the lengths of the cycles in G) and c(G) its
circumference (the supremum of the lengths of its cycles). We show that

δ(L(G)) ≥ 1

4
sup{L(g) : g is an isometric cycle in G }

(see Theorem 3.2.2).
Furthermore, we characterize the graphs G with δ(L(G)) < k (see Theorem 3.3.6).
If G is any graph with δ(L(G)) < k, then there are just two possibilities: δ(L(G)) = 0

or δ(L(G)) = 3k/4. Furthermore,

• δ(L(G)) = 0 if and only if G is a tree with maximum degree ∆ ≤ 2,

• δ(L(G)) = 3k/4 if and only if G is either a tree with maximum degree ∆ = 3 or
isomorphic to C3.

3.1 Hyperbolicity of Line Graphs.

Using the Invariance of hyperbolicity (see Theorem 1.3.5), we can obtain the main qualitative
aim in this section.

Theorem 3.1.1. There exists a (k/2)-full (1, k)-quasi-isometry from G on its line graph
L(G) and, consequently, G is hyperbolic if and only if L(G) is hyperbolic.

Furthermore, if G (respectively, L(G)) is δ-hyperbolic, then L(G) (respectively, G) is
δ′-hyperbolic, where δ′ is a constant which just depends on δ and k.

Proof. By Theorem 1.3.5, it suffices to find a (k/2)-full (1, k)-quasi-isometry f : G → L(G).
If e ∈ E(G), we denote by p(e) its corresponding vertex in V (L(G)). We define a function
f : G → L(G) in the following way: if x belongs to the interior of some e ∈ E(G), then
f(x) := p(e); if x ∈ V (G), let us choose some edge e ∈ E(G) starting in x and then
f(x) := p(e). Since f(G) = V (L(G)), we deduce that f is (k/2)-full.

Fix x, y ∈ G. If f(x) = f(y), then dG(x, y) ≤ k = dL(G)(f(x), f(y)) + k. Let us assume
that dL(G)(f(x), f(y)) = km, with m = 1. Then there exist vertices w0 = f(x), w1, . . . , wm−1,
wm = f(y) ∈ V (L(G)) and a geodesic γ := [f(x), w1] ∪ [w1, w2] ∪ · · · ∪ [wm−1, f(y)] in L(G)
joining f(x) and f(y). Therefore, there exist vertices v0, v1, . . . , vm+1 ∈ V (G), such that
x ∈ [v0, v1], y ∈ [vm, vm+1] and p([vj , vj+1]) = wj for j = 0, 1, . . . , m. Then dG(x, y) ≤
k(m+ 1) = dL(G)(f(x), f(y)) + k.
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Let us consider now x, y ∈ G\V (G) and a geodesic η := [xu0]∪ [u0, u1]∪· · ·∪ [ur−1, ur]∪
[ury] joining them in G. Then dG(x, y) ≥ kr and the path in L(G) given by the r + 2
vertices f(x), p([u0, u1]), . . . , p([ur−1, ur]), f(y) joins f(x) and f(y) in L(G). Consequently,
dL(G)(f(x), f(y)) ≤ k(r + 1) ≤ dG(x, y) + k. If we consider now the cases x ∈ V (G) or
y ∈ V (G), a similar argument also gives dL(G)(f(x), f(y)) ≤ dG(x, y) + k.

We have obtained also a quantitative version (with explicit constants) for the hyperbol-
icity constants on Theorem 3.1.1. First recall the Gromov product (see Definition 1.2.1).
Let us denote by δ∗(G) the sharp constant for this inequality, i.e.

δ∗(G) := sup
{
min

{
(x, y)w, (y, z)w

}
− (x, z)w : x, y, z, w ∈ G

}
.

Theorem 3.1.2. For any graph G we have

δ∗(G)− 3k ≤ δ∗(L(G)) ≤ δ∗(G) + 6k.

Proof. Recall that we have seen in the proof of Theorem 3.1.1 that there exists a (k/2)-full
(1, k)-quasi-isometry f : G → L(G).

Consequently, if δ∗(G) = ∞, then δ∗(L(G)) = ∞ and the inequalities trivially hold.
Furthermore, if δ∗(G) < ∞, then δ∗(L(G)) < ∞.
It is not difficult to check that

(x, y)w − 3k

2
≤ (f(x), f(y))f(w) ≤ (x, y)w +

3k

2

for every x, y, w ∈ G. Then, we deduce for every x, y, z, w ∈ G,

(x, z)w ≥ (f(x), f(z))f(w) −
3k

2
≥ min

{
(f(x), f(y))f(w), (f(y), f(z))f(w)

}
− δ∗(L(G))− 3k

2
≥ min

{
(x, y)w, (y, z)w

}
− δ∗(L(G))− 3k.

Then δ∗(G) ≤ δ∗(L(G)) + 3k.
Furthermore, given x′, y′, z′, w′ ∈ L(G) there exist x, y, z, w ∈ G with dL(G)(x

′, f(x)) ≤
k/2, dL(G)(y

′, f(y)) ≤ k/2, dL(G)(z
′, f(z)) ≤ k/2 and dL(G)(w

′, f(w)) ≤ k/2. It is not difficult
to check that

(x, y)w − 3k ≤ (x′, y′)w′ ≤ (x, y)w + 3k.

Then
(x′, z′)w′ ≥ (x, z)w − 3k ≥ min

{
(x, y)w, (y, z)w

}
− δ∗(G)− 3k

≥ min
{
(x′, y′)w′, (y′, z′)w′

}
− δ∗(G)− 6k.

Then δ∗(L(G)) ≤ δ∗(G) + 6k.

We deduce directly the following result.
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Theorem 3.1.3. For any graph G we have

1

12
δ(G)− 3k

4
≤ δ(L(G)) ≤ 12 δ(G) + 18k.

Proof. Using the inequalities in Theorem 1.2.3 relating δ∗(G) and δ(G), and Theorem 3.1.2,
we conclude

δ(G) ≤ 3 δ∗(G) ≤ 3 (δ∗(L(G)) + 3k) ≤ 12 δ(L(G)) + 9k,

δ(L(G)) ≤ 3 δ∗(L(G)) ≤ 3 (δ∗(G) + 6k) ≤ 12 δ(G) + 18k.

3.2 Inequalities involving the hyperbolicity constant of

line graphs.

The following result is consequence of Lemma 1.3.8.

Theorem 3.2.1. For any graph G we have δ(L(G)) ≤ 1
2
diamV (G) + k, and this inequality

is sharp.

Proof. By Lemma 1.3.8, we have δ(L(G)) ≤ 1
2
diamL(G). Since diamL(G) ≤ diamV (L(G))+

k and diamV (L(G)) ≤ diamV (G) + k, we conclude that δ(L(G)) ≤ 1
2
diamV (G) + k. Note

that the equality is attained in the complete graph G = K6.

Theorem 3.2.2. We have for any graph G

δ(L(G)) ≥ 1

4
sup{L(g) : g is an isometric cycle in G } .

Proof. First of all, we prove that if C is any isometric cycle of a graph G, then p(C) is an
isometric cycle of the line graph L(G).

Seeking for a contradiction, assume that p(C) is not an isometric cycle of the line graph
L(G). Then there exist two edges e1, e2 ∈ E(G) of C such that dp(C)(p(e1), p(e2)) = r and
dL(G)(p(e1), p(e2)) = k ≤ r − 1.

Since dp(C)(p(e1), p(e2)) = r, we deduce that dC(e1, e2) = dG(e1, e2) = r − 1.
Since dL(G)(p(e1), p(e2)) = k ≤ r − 1, there exist edges a1, a2, . . . , ak−1 ∈ E(G) such that

[p(e1), p(a1)] ∪ [p(a1), p(a2)] ∪ · · · ∪ [p(ak−1), p(e2)] is a geodesic joining p(e1) and p(e2) in
L(G). Therefore, a1 ∪ a2 ∪ · · · ∪ ak−1 is a path joining e1 and e2 in G; this implies that
dG(e1, e2) ≤ k − 1 ≤ r − 2 < r − 1 = dG(e1, e2), which is the contradiction we were looking
for.

Now, Corollary 1.3.4 gives the result.
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Given any graph G we define, as usual, its girth g(G) as the infimum of the lengths of
the cycles in G. The following result (see [58, Theorem 17]) relates the girth of a graph and
its hyperbolicity constant.

Lemma 3.2.3. For any graph G

δ(G) ≥ g(G)

4
,

and the inequality is sharp.

Remark 3.2.4. One can think that the equality δ(G) = g(G)/4 holds if and only if every
cycle g in G verifies L(g) = g(G). However, this is false, as shows the following example.

Let us consider a graph G obtained from a cycle graph C6 (with edges of length 1) by
attaching three edges joining antipodal vertices. It is not difficult to check that diamV (G) =
2, diamG = 2, δ(G) = 1, g(G) = 4, and there exists a cycle with length 6.

Proposition 3.2.5 below gives a similar upper bound for δ(G). Let us define the circum-
ference c(G) of a graph G as the supremum of the lengths of its cycles.

The following result is a consequence of Corollary 1.3.4.

Proposition 3.2.5. For any graph G

δ(G) ≤ 1

4
c(G),

and this inequality is sharp.

Proof. Let us consider any fixed geodesic triangle T = {γ1, γ2, γ3} in G and p ∈ T . Without
loss of generality we can assume that p ∈ γ1 = [xy]. By Corollary 1.3.4 we can assume that
T is a cycle. Since L(T ) ≤ c(G), then L(γ1) ≤ c(G)/2 and d(p, γ2 ∪ γ3) ≤ d(p, {x, y}) ≤
L(γ1)/2 ≤ c(G)/4. Consequently, δ(G) ≤ c(G)/4.

The equality is attained in the cycle graph with n ≥ 3 vertices.

Proposition 3.2.6. For any graph G which is not a tree, we have

δ(G) ≥ g(L(G))

4
.

Proof. Since G is not a tree, we know that there is at least a cycle in G. By Lemma 3.2.3,
we have δ(G) ≥ g(G)/4. Then it suffices to note that g(L(G)) ≤ g(G), since for every cycle
in G we have a cycle in L(G) with the same length.

The following result, which is a consequence of Theorem 3.2.2, is a dual version of Propo-
sition 3.2.6.

Corollary 3.2.7. For any graph G, we have

δ(L(G)) ≥ g(G)

4
.
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The inequality in Corollary 3.2.7 is attained in the cycle graphs with n ≥ 3 vertices.

A matching in a finite graph G is a set of edges pairwise non adjacent. An independent
set in a finite graph G is a set of vertices pairwise non adjacent. We denote by M(G)
(respectively, I(G)) the maximum of the cardinal of matching (respectively, independent)
sets in G.

Theorem 3.2.8. For any finite graph G, we have δ(L(G)) ≤ M(G).

Proof. Note thatM(G) = I(L(G)). It is not difficult to check that 2I(L(G)) ≥ diamV (L(G))
+ 1 ≥ diamL(G). Then, Lemma 1.3.8 gives 2δ(L(G)) ≤ 2M(G).

Let G be any graph. We define

σ2(G) := min{degG(x) + degG(y) : x, y ∈ V (G), dG(x, y) ≥ 2k}.

In [61] we find the following result.

Lemma 3.2.9. Let G be any graph with σ2(L(G)) ≥ 7. Suppose that, for some r ≥ 3, L(G)
has an r-cycle C but no (r − 1)-cycle. Then C is an isometric subgraph of L(G).

Proposition 3.2.10. Let G be any graph with degG(x) + degG(y) ≥ 6 for every [x, y] ∈
E(G). Suppose that, for some r ≥ 3, L(G) has an r-cycle C but no (r − 1)-cycle. Then
δ(L(G)) ≥ rk/4.

Proof. Note that if [x, y] ∈ E(G) then degL(G)(p([x, y])) = degG(x)+degG(y)−2 ≥ 4. Hence,
σ2(L(G)) ≥ 8. Therefore Lemma 3.2.9 gives that C is an isometric subgraph of L(G), and
then Lemma 1.3.2 and Theorem 1.3.19 give that δ(L(G)) ≥ δ(C) = L(C)/4 = rk/4.

We deduce the following direct consequence.

Corollary 3.2.11. Let G be any graph with degG(x) ≥ 3 for every x ∈ V (G). Suppose that,
for some r ≥ 3, L(G) has an r-cycle but no (r − 1)-cycle. Then δ(L(G)) ≥ rk/4.

3.3 T-decompositions and T-edge-decompositions.

We have a similar result to Theorem 1.3.7 for {L(Gn)}n if {Gn}n is a T-edge-decomposition
of G.

Theorem 3.3.1. If {Gn}n is any T-edge-decomposition of any graph G, then δ(L(G)) =
supn δ(L(Gn)).

Proof. Note that if {Gn}n is a T-edge-decomposition ofG, then {L(Gn)}n is a T-decomposition
of L(G). Then, Lemma 1.3.7 gives the result.
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Proposition 3.3.2. Let T be any tree with maximum degree ∆. Then

δ(L(T )) =





k, if ∆ ≥ 4 ,

3k/4, if ∆ = 3 ,

0, if ∆ ≤ 2 .

Proof. The canonical T-decomposition {Gn}n of L(T ) has an edge for each vertex v ∈ V (T )
with degT (v) = 2 and a graph isomorphic to Km for each vertex v ∈ V (T ) with degT (v) =
m ≥ 3. Lemma 1.3.7 gives δ(L(T )) = supn δ(Gn). Besides, [72, Theorem 11] gives

δ(Km) =

{
k, if m ≥ 4 ,

3k/4, if m = 3 .

These facts give the result.

From Proposition 1.3.14 and Theorem 1.3.15 we deduce the following results.

Lemma 3.3.3. If G is any graph with a cycle g with length L(g) ≥ 3k, then δ(G) ≥ 3k/4.
If there exists a cycle g in G with length L(g) ≥ 4k, then δ(G) ≥ k.

Corollary 3.3.4. Let G be any graph with maximum degree ∆. If ∆ ≥ 3, then δ(L(G)) ≥
3k/4. If ∆ ≥ 4, then δ(L(G)) ≥ k.

Corollary 3.3.5. If G is any graph with a cycle g with length L(g) ≥ 3k, then δ(L(G)) ≥
3k/4. If there exists a cycle g in G with length L(g) ≥ 4k, then δ(L(G)) ≥ k.

In [55], the authors characterize the bridged graphs with edges of length 1 which have
hyperbolicity constant 1, for a different definition of hyperbolicity constant.

An interesting question is how to characterize the graphs G with edges of length k and
δ(L(G)) = k, but it seems very difficult to give a description of such graphs in a simple way.
However, the following theorem allows to characterize the graphs with δ(L(G)) < k.

Theorem 3.3.6. If G is any graph with δ(L(G)) < k, then there are just two possibilities:
δ(L(G)) = 0 or δ(L(G)) = 3k/4. Furthermore,

• δ(L(G)) = 0 if and only if G is a tree with maximum degree ∆ ≤ 2,

• δ(L(G)) = 3k/4 if and only if G is either a tree with maximum degree ∆ = 3 or
isomorphic to C3.
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Proof. First of all, Theorem 1.3.16 gives that if δ(L(G)) < k, then we have either δ(L(G)) = 0
or δ(L(G)) = 3k/4.

Proposition 3.3.2 gives that if G is a tree with maximum degree ∆ ≤ 2, then δ(L(G)) = 0.
It is well known that if δ(L(G)) = 0, then L(G) is a tree. Since every cycle in G

corresponds with a cycle in L(G) with the same length, G is a tree. If a vertex of G has
degree greater or equal than 3, then there is a cycle g in L(G) with length L(g) ≥ 3k, and
Lemma 3.3.3 gives that δ(G) ≥ 3k/4; then the maximum degree of G verifies ∆ ≤ 2.

If G is a tree with maximum degree ∆ = 3, then Proposition 3.3.2 gives that δ(L(G)) =
3k/4. If G is isomorphic to C3, then L(G) is also isomorphic to C3 and Theorem 1.3.19 gives
δ(L(G)) = 3k/4.

If δ(L(G)) = 3k/4, then Lemma 3.3.3 gives that every cycle in L(G) has length 3k. If a
vertex of G has degree greater or equal than 4, then Corollary 3.3.4 gives that δ(L(G)) ≥ k,
which is a contradiction; then the maximum degree of G verifies ∆ ≤ 3. If G is a tree, then
Proposition 3.3.2 gives ∆ = 3 and we have the result. If G has a cycle, then it has length
3k by Corollary 3.3.5; assume that G is not isomorphic to C3; therefore, G contains a cycle
isomorphic to C3 with a vertex of degree at least 3; then L(G) contains a cycle with length
at least 4k, and Lemma 3.3.3 gives that δ(L(G)) ≥ k, which is a contradiction; hence, G is
isomorphic to C3.

If {Gn}n is a T-decomposition of G, {L(Gn)}n is not (in general) a T-decomposition of
L(G); however, it is possible to obtain information about δ(L(G)) from δ(L(Gn)).

Theorem 3.3.7. If {Gn}n is any T-decomposition of any graph G, then

sup
n

δ(L(Gn)) ≤ δ(L(G)) ≤ sup
n

δ(L(Gn)) + k .

Proof. First of all note that if a connection vertex v belongs toGn1
, Gn2

, . . . , Gnr
, degGnj

(v) =

dj for j = 1, . . . , r, and degG(v) = d =
∑r

j=1 dj , then the set of edges starting in v corresponds
to a subgraph Γ of L(G) isomorphic to the complete graph Kd; furthermore, the subgraph
Γ ∩ L(Gnj

) is isomorphic to Kdj for j = 1, . . . , r. Hence, for each n, L(Gn) is an isometric
subgraph of L(G); then Lemma 1.3.2 gives supn δ(L(Gn)) ≤ δ(L(G)).

In order to prove the upper bound of δ(L(G)), let us consider any geodesic triangle
T = {γ1, γ2, γ3} in L(G) and p ∈ T . By Corollary 1.3.4 we can assume that T is a cycle and
that each vertex of T is either a vertex in V (L(G)) or a midpoint of some edge in E(L(G)).

Without loss of generality we can assume that p ∈ γ1. Assume first that p ∈ L(Gm) for
some fixed m.

Since L(Gm) is an isometric subgraph of L(G), γm
j := γj ∩ L(Gm) is a (connected)

geodesic in L(Gm) for j = 1, 2, 3. We are going to construct a geodesic triangle Tm in L(Gm)
containing γm

1 , γm
2 , γm

3 . Note that p ∈ γm
1 . We also have that (γm

2 ∪ γm
3 ) ∩ L(Gm) 6= ∅

since {Gn}n is a T-decomposition in G. Since T is a cycle, if some endpoint of γm
j is not

an endpoint of γj, then there exists an edge eji ∈ E(L(Gm)) connecting xj ∈ γm
j with some

xi ∈ γm
i (i 6= j).
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The vertices xj, xi of the edge eji ∈ E(L(Gm)) correspond to two edges e1, e2 ∈ E(Gm)
starting in a connection vertex v ∈ V (Gm). Therefore, v belongs to Gm1

, . . . , Gmr
; if

degG(v) = d, then the set of edges in G starting in v corresponds to a subgraph Γ of
L(G) isomorphic to the complete graph Kd, and eji ∈ E(L(Gm)) ∩ E(Γ).

Let us denote by U the closure of the connected component of T \ {L(Gm)} which joins
xj and xi (the endpoints of the edge eji). Assume first that L(U) ≥ 3k.

If there is just a vertex of T in U , then there exist vertices yj, yi ∈ V (Γ) with yj 6= yi,
[xj , yj] ⊂ γj ∩ Γ and [xi, yi] ⊂ γi ∩ Γ. Let us define w′ as the midpoint of the edge eji,
gmj := γm

j ∪ [xj , w
′] and gmi := γm

i ∪ [xi, w
′]. We will show that gmj and gmi are geodesics in

L(Gm).
In fact, we prove that if γm

j = [xjzj ], then dL(G)(xj , zj) ≤ dL(G)(xi, zj). Seeking for a
contradiction, assume that dL(G)(xj , zj) > dL(G)(xi, zj). Then

dL(G)(yj, zj) ≤ dL(G)(yj, xi) + dL(G)(xi, zj) < k + dL(G)(xj , zj) = L([yj, xj ]) + L(γm
j ),

and this implies that γj is not a geodesic. This is the contradiction we were looking for.
Therefore, dL(G)(xj , zj) ≤ dL(G)(xi, zj).

Hence, gmj is a geodesic in L(Gm). With a similar argument we obtain that gmi is a
geodesic in L(Gm).

If there are two vertices of T in U , let us define gmj := γm
j and gmi := γm

i ; in this case we
consider as third side of Tm the edge eji = [xi, xj].

Assume now that L(U) = 2k. Then U ⊂ Γ.
If there is just a vertex of T in U , let us denote by w this vertex of T . If w ∈ V (L(G)),

then let us define w′ as the midpoint of the edge eji, g
m
j := γm

j ∪[xj , w
′] and gmi := γm

i ∪[xi, w
′];

we have that gmj and gmi are geodesics in L(Gm). If w is a midpoint of some edge in E(Γ),
without loss of generality we can assume that it is the midpoint of [xj , a], with a ∈ V (Γ); let
us define w′ = xj , g

m
j := γm

j and gmi := γm
i ∪ [xi, xj]; we have that gmj and gmi are geodesics

in L(Gm).
If there are two vertices of T in U , let us define gmj := γm

j and gmi := γm
i ; in this case we

consider as third side of Tm the edge eji = [xi, xj].
Iterating this process at most three times, we obtain a geodesic triangle Tm in L(Gm)

with sides γm∗
1 , γm∗

2 , γm∗
3 , containing γm

1 , γm
2 , γm

3 , respectively.
Furthermore, dL(G)(p, γ2 ∪ γ3) ≤ dL(Gm)(p, γ

m∗
2 ∪ γm∗

3 ) + k ≤ δ(L(Gm)) + k.
Assume now that p /∈ ∪nL(Gn). Then p belongs to a subgraph Γ of L(G) isomorphic to

the complete graph Kd. Since the distance from any vertex in Kd to any point in Kd is less
or equal than 3k/2, then dL(G)(p, γ2 ∪ γ3) ≤ 3k/2.

Consequently,

δ(T ) ≤ max
{
sup
n

δ(L(Gn)) + k,
3k

2

}
.

Since T is arbitrary, we conclude

δ(G) ≤ max
{
sup
n

δ(L(Gn)) + k,
3k

2

}
.
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In order to finish the proof, assume first that G is a tree; Proposition 3.3.2 gives that
δ(L(G)) ≤ k, and then δ(L(G)) ≤ supn δ(L(Gn)) + k.

Assume now that G is not a tree; then there exists a cycle g in G with LG(g) ≥ 3k. Note
that g is in Gn0

for some n0, since {Gn} is a T-decomposition of G. The corresponding cycle
g′ to g in L(Gn0

) verifies LL(G)(g
′) = LG(g) ≥ 3k, and Lemma 3.3.3 gives that δ(L(Gn0

)) ≥
3k/4. Consequently, δ(L(Gn0

)) + k > 3k/2 and δ(L(G)) ≤ supn δ(L(Gn)) + k.

The lower bound in Theorem 3.3.7 is attained in any cycle graph Cn with n ≥ 3, and the
upper bound is attained in any star graph Sn with n ≥ 5.

Theorem 3.3.8. If G is any graph such that each graph Gn in its canonical T-decomposition
is either a cycle or an edge, then

δ(G) ≤ δ(L(G)) ≤ δ(G) + k,

and δ(G) = 1
4
sup{L(g) : g is a cycle in G }.

Proof. If G is a tree, then we just need to check that 0 ≤ δ(L(G)) ≤ k, and this is a
consequence of Proposition 3.3.2.

Assume now that G has at least a cycle.
We prove now the formula for δ(G). Lemma 1.3.7 and Theorem 1.3.19 give

δ(G) = sup
n

δ(Gn) =
1

4
sup{L(g) : g is a cycle in G }.

By hypothesis each graph Gn is either a cycle (and then δ(Gn) = δ(L(Gn)) = L(Gn)/4)
or an edge (and then δ(Gn) = δ(L(Gn)) = 0). Since G has at least a cycle, there exists n
such that Gn (and consequently L(Gn)) is not a tree. These facts and Theorem 3.3.7 give
the result.

The lower bound in Theorem 3.3.8 is attained in any cycle graph Cn with n ≥ 3, and the
upper bound is attained in any star graph Sn with n ≥ 5.

In particular, we can bound directly the hyperbolicity constant of the line of an unicycle
graph.

Corollary 3.3.9. If G is any unicycle graph and we denote by g its cycle, then

1

4
L(g) ≤ δ(L(G)) ≤ 1

4
L(g) + k.

We can improve the upper bound of δ(L(G)) in Corollary 3.3.9.

Theorem 3.3.10. If G is any unicycle graph and we denote by g its cycle, then

1

4
L(g) ≤ δ(L(G)) ≤ 1

4
L(g) +

k

2
.
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Proof. We know that the first inequality holds from Corollary 3.3.9.
We prove now the second inequality. The graph G is the union of g and the trees

T1, . . . , Tr. If we denote by G0 the subgraph of G defined as G0 := {x ∈ G : dG(x, g) ≤ k},
then {G0, T1, . . . , Tr}n is a T-edge-decomposition of G, and Theorem 3.3.1 gives δ(L(G)) =
max{δ(L(G0)), δ(L(T1)), . . . , δ(L(T1))}. Since Proposition 3.3.2 gives δ(L(Tj)) ≤ k, we have
δ(L(G)) ≤ max{δ(L(G0)), k}. Since L(g)/4 + k/2 ≥ 3k/4 + k/2 > k, it suffices to prove
that δ(L(G0)) ≤ L(g)/4 + k/2.

In order to do that, we just need to construct the geodesic triangle T0 in L(g) with
sides γ0∗

1 , γ0∗
2 , γ0∗

3 , following the proof of Theorem 3.3.7 (replacing L(Gm) by L(g)). In this
case, if p ∈ L(g), then dL(G0)(p, γ2 ∪ γ3) ≤ δ(L(g)) + k/2. Furthermore, if p /∈ L(g), then
dL(G0)(p, γ2 ∪ γ3) ≤ 5k/4. Hence, we conclude

δ(L(G0)) ≤ max
{
δ(L(g)) + k

2
,
5k

4

}
,

and, since δ(L(g)) = δ(g) = L(g)/4 by Theorem 1.3.19, we deduce δ(L(g)) + k/2 ≥ 3k/4 +
k/2 = 5k/4 and

δ(L(G0)) ≤ δ(L(g)) + k

2
=

1

4
L(g) +

k

2
.

Both inequalities in Theorem 3.3.10 are sharp: the first one is attained in the cycle graphs
Cn; the second one is attained in the cycle graphs C2n with two edges attached in antipodal
vertices.

We also have the following result.

Theorem 3.3.11. If G is any graph with δ(G) < k, then δ(L(G)) ≤ 7k/4.

Proof. If G is a tree, then Proposition 3.3.2 gives that δ(L(G)) ≤ k < 7k/4. Assume now
that G has a cycle. Since δ(G) < k, Lemma 3.3.3 gives that every cycle g in G has length
L(g) = 3k. Then each graph Gn in the canonical T-decomposition of G is either a cycle with
length 3k or an edge, and Theorem 3.3.8 gives δ(G) = 3k/4 and L(G) ≤ 7k/4.

The following theorem is a similar result to Proposition 3.2.5 for line graphs.

Theorem 3.3.12. For any graph G, we have

g(G)

4
≤ δ(L(G)) ≤ c(G)

4
+ 2k.

Proof. The first inequality is just Corollary 3.2.7.
In order to prove the second inequality, let us consider the canonical T-decomposition

{Gn}n of G. Fix any geodesic triangle T = {γ1, γ2, γ3} in L(G) and p ∈ T . By Corollary
1.3.4 we can assume that T is a cycle. Without loss of generality we can assume that p ∈ γ1.
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If p /∈ ∪nL(Gn), we have seen in the proof of Theorem 3.3.7 that dL(G)(p, γ2∪γ3) ≤ 3k/2.
Assume now that p ∈ L(Gm) for some fixed m. Since L(Gm) is an isometric subgraph

of L(G), γm
j := γj ∩ L(Gm) is a (connected) geodesic in L(Gm) for j = 1, 2, 3. Then

p ∈ γm
1 = [xy]. Note that, since {Gn}n is a T-decomposition in G, 2 diamGm ≤ c(Gm).

Furthermore, diamV (L(Gm)) ≤ diamV (Gm) + k and thus diamL(Gm) ≤ diamGm + 2k.
Hence,

dL(G)(p, γ2 ∪ γ3) ≤ dL(Gm)(p, γ
m
2 ∪ γm

3 ) + k ≤ dL(G)(p, {x, y}) + k

≤ 1

2
L(γm

1 ) + k ≤ 1

2
diamL(Gm) + k ≤ 1

2
diamGm + 2k

≤ 1

4
c(Gm) + 2k ≤ 1

4
c(G) + 2k.

Therefore, in any case we have

δ(L(G)) ≤ 1

4
c(G) + 2k.

The lower bound in Theorem 3.3.12 is attained in the cycle graphs with n ≥ 3 vertices.
We show now by two examples that the upper bound in Theorem 3.3.12 is very precise:
IfG is the star graphG = K1,4, then L(G) = K4, δ(G) = 0 and δ(L(G)) = k = c(G)/4+k.
If G is the cycle C2n with two edges attached in antipodal vertices, then L(G) is the

cycle C2n with two graphs isomorphic to C3 attached in antipodal edges. It is not difficult
to check that δ(G) = nk/2 and δ(L(G)) = nk/2 + k/2 = c(G)/4 + k/2.



Chapter 4

Hyperbolicity of line graph with edges
of arbitrary length.

In Chapter 4, we deal with graphs with edges with arbitrary lengths. It is a remarkable fact
that the constants appearing in many results in the theory of hyperbolic spaces depend just
on a small number of parameters (also, this is a common place in the theory of negatively
curved surfaces and manyfolds). Usually, there is no explicit expression for these constants
(see, e.g., Theorem 1.3.5). Even though sometimes it is possible to estimate the constants,
those explicit values obtained, in general, are far from being sharp (see, e.g., (3.1)). Al-
though there are important results stating that the hyperbolicity constant of a graph T (G)
(obtained from an original graph G via some transformation T ), is bounded in terms of
the hyperbolicity constant of G, there is still no known example of non-trivial transforma-
tion that is monotonous for the hyperbolicity constants, i.e., such that δ(G) ≤ δ(T (G)) (or
δ(G) ≥ δ(T (G))) for every graph G.

The main result of this Chapter is the inequality δ(G) ≤ δ(L(G)) for the line graph L(G)
of every graph G (see Theorem 4.1.10).

Theorem 4.1.10 allows to obtain the main qualitative result: the line graph of G is
hyperbolic if and only if G is hyperbolic. Although the multiplicative and additive constants
appearing in (3.1) allow to prove this main result, it is a natural problem to improve the
inequalities in (3.1). In this chapter we also improve the second inequality; in fact, Theorem
4.1.10 states

δ(G) ≤ δ(L(G)) ≤ 5 δ(G) + 3 sup
e∈E(G)

L(e),

where here the edges of G can have arbitrary lengths. The second inequality in (1) can be
improved for graphs with edges of length k (see Corollary 4.1.12) in the following way:

δ(G) ≤ δ(L(G)) ≤ 5δ(G) + 5k/2.

50
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We obtain some relations involving δ(G) and δ(L(G)) for graphs with edges of length k,
as the following: if G is a graph with n vertices v1, . . . , vn, then

δ(L(G)) + δ(G) ≤ k

8

n∑

i=1

(degG(vi))
2.

(see Theorem 4.1.14).

4.1 Inequalities involving the hyperbolicity constant of

line graphs.

We obtain in this section the results on the hyperbolicity constant of a line graph with edges
of arbitrary lengths. The main result in this Chapter is Theorem 4.1.10, which states

δ(G) ≤ δ(L(G)) ≤ 5δ(G) + 3lmax,

with lmax = supe∈E(G) L(e).
For the sake of clarity and readability, we have opted to state and prove several prelimi-

nary lemmas. This makes the proof of Theorem 4.1.10 much more understandable.
Let G be a graph such that its edges E(G) = {ei}i∈I have arbitrary lengths. The line

graph L(G) of G is a graph which has a vertex Vei ∈ V (L(G)) for each edge ei of G, and an
edge joining Vei and Vej when ei ∩ ej 6= ∅. Note that we have a complete subgraph Kn in
L(G) corresponding to one vertex v of G with degree degG(v) = n.

Let us consider Pm(e) the midpoint of e ∈ E(G); also, we denote by PM(G) the set of
the midpoints of the edges of G, i.e., PM(G) := {Pm(e)/e ∈ E(G)}. Besides, let us consider
PmL([Vei, Vej ]) the point in [Vei, Vej ] ∈ E(L(G)) with L([VeiPmL([Vei, Vej ])]) = L(ei)/2

(
and

then L([PmL([Vei , Vej ])Vej ]) = L(ej)/2
)
. Analogously, we denote PML(L(G)) the set of

these points in each edge of L(G), i.e., PML(L(G)) := {PmL(e)/e ∈ E(L(G))}. Note that
PmL([Vei, Vej ]) is the midpoint of [Vei, Vej ] when L(ei) = L(ej); thus, if every edge of G has
the same length then PML(L(G)) is the set of midpoints of the edges of L(G).

Let us consider the sets PMV (G) := PM(G)∪ V (G) (defined previously in Section 1.3)
and PMLV (L(G)) := PML(L(G)) ∪ V (L(G)).

We define a function h : PMLV (L(G)) −→ PMV (G) as follows: for every vertex Ve of
V (L(G)), the image via h of Ve is Pm(e), and for every PmL([Vei, Vej ]) in PML(L(G)), the
image via h of PmL([Vei, Vej ]) is the vertex ei ∩ ej in V (G), i.e.,

h(x) :=

{
Pm(e), if x = Ve ∈ V (L(G)),
ei ∩ ej, if x = PmL([Vei, Vej ]) ∈ PML(L(G)).

(4.1)

Remark 4.1.1. If x ∈ PM(G), then h−1(x) is a single point, but otherwise, h−1(x) can
have more than one point (see Figure 4.1).
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h :L(G) G

Figure 4.1: Graphical view of h.

The function h defined in (4.1) can be extended to L(G). Note that every point x0 ∈
L(G) \ PMLV (L(G)) is located in L(G) between one vertex Ve and one point PmL(VeVe0).
For each x0 ∈ int([VePmL([VeVe0])]) we define h(x0) as the point x ∈ int[Pm(e)h(PmL([VeVe0 ]))]
such that L([xPm(e)]) = L([x0Ve]); hence, L([x0Ve]) = L([h(x0)h(Ve)]) and
L([x0PmL(VeVe0)]) = L([h(x0)h(PmL(VeVe0))]).

In what follows we denote by h this extension.

We call half-edge in G a geodesic contained in an edge with an endpoint in V (G) and an
endpoint in PM(G); similarly, a half-edge in L(G) is a geodesic contained in an edge with
an endpoint in V (L(G)) and an endpoint in PML(L(G)).

Proposition 4.1.2. h is an 1-Lipschitz continuous function, i.e.,

dG(h(x), h(y)) ≤ dL(G)(x, y) , ∀ x, y ∈ L(G). (4.2)

Proof. First of all note that, by definition of L(G), we have for every x′ ∈ h(L(G)) ∩
PMV (G),

|h−1(x′)| =
{

1, if x′ ∈ PM(G),
degG(x

′)(degG(x
′)− 1)/2, if x′ ∈ V (G).

In order to prove (4.2), we verify that

dG(x
′, y′) = dL(G)(h

−1(x′), h−1(y′)) , ∀ x′, y′ ∈ h(L(G)) ∩ PMV (G). (4.3)

We study separately the different cases of x′, y′ ∈ h(L(G)) ∩ PMV (G).

Case 1 x′, y′ ∈ PM(G).

Let us consider x′ := Pm(ei) and y′ := Pm(ej) with ei, ej ∈ E(G), and define d :=
dG(Pm(ei), Pm(ej)) ≥ 0.
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If d = 0, then ei = ej, so, h−1(Pm(ei)) = h−1(Pm(ej)) and
dL(G)(h

−1(x′), h−1(y′)) = 0.

If d > 0, then ei 6= ej and dG(Pm(ei), Pm(ej)) = (L(ei) + L(ej))/2 + dG(ei, ej). Note
that, if dG(ei, ej) = 0 and ei 6= ej , then dG(x

′, y′) = (L(ei)+L(ej))/2 = dL(G)(Vei, Vej) =
dL(G)(h

−1(x′), h−1(y′)). If dG(ei, ej) > 0, then a geodesic γ joining ei and ej in G
contains the edges ei1 , . . . , eir in this order, with r ≥ 1. Now, we have that dG(ei, ej) =∑r

k=1 L(eik); hence, VeiVei1
. . . Veir

Vej is a path joining Vei and Vej with length d. So,
dL(G)(h

−1(x′), h−1(y′)) ≤ d.

We prove now that dL(G)(h
−1(x′), h−1(y′)) = d. Seeking for a contradiction, assume

that dL(G)(h
−1(x′), h−1(y′)) = dL(G)(Vei, Vej) < d. Hence, there exists Vej1

, . . . , Vejm

such that VeiVej1
. . . Vejm

Vej is a geodesic in L(G) joining Vei and Vej with length
(L(ei) +L(ej))/2+

∑m

k=1L(ejk) < d. Since d = (L(ei) +L(ej))/2+ dG(ei, ej), we have∑m
k=1 L(ejk) < dG(ei, ej). By definition of L(G) we have that γ∗ := ej1 ∪ . . . ∪ ejm

is a path in G joining ei and ej with length
∑m

k=1 L(ejk) < dG(ei, ej). This is the
contradiction we were looking for; so we have dL(G)(h

−1(x′), h−1(y′)) = dG(x
′, y′).

Case 2 x′ ∈ PM(G) and y′ ∈ V (G).

Let us consider x′ := Pm(e) with e ∈ E(G) and y′ ∈ V (G)\{w ∈ V (G)/ degG(w) = 1},
and define d := dG(e, y

′); then dG(Pm(e), v) = d+L(e)/2. Note that if y′ ∈ V (G) and
degG(y

′) = 1, then y′ /∈ h(L(G)).

If d = 0, then y is an endpoint of e and dL(G)(Ve, h
−1(y′)) = L(e)/2; note that

|h−1(y′)| = degG(y
′)[degG(y

′)− 1]/2, where |A| denotes the cardinality of the set A.

If dG(e, y
′) = d > 0, then there exist ei1 , . . . , eir ∈ E(G) such that γ := ei1 ∪ . . . ∪ eir

is a geodesic joining e and y′ in G with length d =
∑r

k=1L(eik). Note that e, ei1 are
different and adjacent edges. So, we have that VeVei1

. . . Veir
is a path in L(G) joining

Ve and Veir
with length L(e)/2+

∑r
k=1L(eik)−L(eir)/2. Since y

′ is an endpoint of eir ,
we have dL(G)(h

−1(y′), Veir
) = L(eir)/2 and dL(G)(h

−1(y′), Ve) ≤ d+ L(e)/2.

We prove now that dL(G)(h
−1(y′), Ve) = d + L(e)/2. Seeking for a contradiction, as-

sume that dL(G)(h
−1(y′), Ve) < d+L(e)/2. Hence, there exists Vej1

, . . . , Vejm
such that

VeVej1
. . . Vejm

∪ [Vejm
z] is a geodesic of L(G) joining Ve and z ∈ h−1(y′) with length

L(e)/2+
∑m

k=1L(ejk) < d+L(e)/2. We have z = PmL([Vejm
, Ves]) with ejm, es edges in

G starting in y′. By definition of L(G) we have that γ∗ := ej1∪ . . .∪ejm contains a path
in G joining e and y′ with length at most

∑m

k=1L(ejk) < d. This is the contradiction
we were looking for; so we have dL(G)(h

−1(x′), h−1(y′)) = dG(x
′, y′).

Case 3 x′, y′ ∈ V (G).

Let us consider x′, y′ ∈ V (G)\{v ∈ V (G)/ degG(v) = 1}, and define d := dG(x
′, y′) ≥ 0.

If d = 0, then x′ = y′, so dL(G)(h
−1(x′), h−1(y′)) = 0.
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If dG(x
′, y′) = d > 0, then there exists ei1 , . . . , eir ∈ E(G) such that γ := ei1 ∪ . . . ∪ eir

is a geodesic joining x′ and y′ in G with length d =
∑r

k=1L(eik). So, we have that
there exist a ∈ h−1(x′) and b ∈ h−1(y′) such that [aVei1

] ∪ Vei1
. . . Veir

∪ [Veir
b] is

a path in L(G) joining a and b with length
∑r

k=1 L(eik) = d. Then, we have that
dL(G)(h

−1(x′), h−1(y′)) ≤ d.

We prove now that dL(G)(h
−1(x′), h−1(y′)) = d. Seeking for a contradiction, assume

that dL(G)(h
−1(x′), h−1(y′)) < d. Hence, there exist α ∈ h−1(x′), β ∈ h−1(y′) and

Vej1
, . . . , Vejm

vertices in L(G) such that [αVej1
] ∪ Vej1

. . . Vejm
∪ [Vejm

β] is a geodesic
joining α and β in L(G) with length

∑m
k=1 L(ejk) < d. We have α = PmL([Ve1s

, Vej1
])

with ej1 , e
1
s edges in G starting in x′, and β = PmL([Vejm

, Ve2s
]) with ejm, e

2
s edges in G

starting in y′. By definition of L(G) we have that γ∗ := ej1 ∪ . . .∪ ejm contains a path
in G joining x′ and y′ with length at most

∑m
k=1L(ejk) < d. This is the contradiction

we were looking for; so we have dL(G)(h
−1(x′), h−1(y′)) = dG(x

′, y′).

This prove (4.3) and guarantees (4.2) for x, y ∈ PMLV (L(G)) when we take x :=
h(x′) and y := h(y′). We know that there exist X1, X2, Y1, Y2 ∈ PMLV (L(G)) with
x ∈ [X1, X2] and y ∈ [Y1, Y2] such that dL(G)(x,X1) = εx, dL(G)(x,X2) = δx, dL(G)(y, Y1) =
εy, dL(G)(y, Y2) = δy and [X1X2], [Y1Y2] are two half-edges in L(G). Hence, we have
h(x) ∈ [h(X1)h(X2)], h(y) ∈ [h(Y1)h(Y2)] with dG(h(x), h(X1)) = εx, dG(h(x), h(X2)) = δx,
dG(h(y), h(Y1)) = εy and dG(h(y), h(Y2)) = δy; besides [h(X1)h(X2)] and [h(Y1)h(Y2)] are
two half-edges in G.

Note that if [X1X2] = [Y1Y2], then dG(h(x), h(y)) = dL(G)(x, y). Otherwise, we have

dL(G)(x, y) = min





dL(G)(X1, Y1) + εx + εy,
dL(G)(X1, Y2) + εx + δy,
dL(G)(X2, Y1) + δx + εy,
dL(G)(X2, Y2) + δx + δy





(4.4)

and

dG(h(x), h(y)) = min





dG(h(X1), h(Y1)) + εx + εy,
dG(h(X1), h(Y2)) + εx + δy,
dG(h(X2), h(Y1)) + δx + εy,
dG(h(X2), h(Y2)) + δx + δy





. (4.5)

Let us consider Xi, Yj with i, j ∈ {1, 2}, α ∈ {εx, δx} and β ∈ {εy, δy} such that
dL(G)(x, y) = dL(G)(Xi, Yj) + α + β. Hence, by (4.3) we have

dL(G)(x, y) = dL(G)(Xi, Yj) + α + β,

≥ dG(h(Xi), h(Yj)) + α + β,

≥ dG(h(x), h(y)).
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The following result is a consequence of Proposition 4.1.2.

Remark 4.1.3. Let x and y be in V (L(G)), then we have that

dL(G)(x, y) = dG(h(x), h(y)).

We also have a kind of reciprocal of Proposition 4.1.2.

Lemma 4.1.4. For every x, y ∈ L(G) we have

dL(G)(x, y) ≤ dG(h(x), h(y)) + 2lmax, (4.6)

where lmax := supe∈E(G) L(e).

Proof. First of all, we prove (4.6) for x, y ∈ PMLV (L(G)). In order to prove it, we
can assume that diamL(G) h

−1(h(x)), diamL(G) h
−1(h(y)) > 0 (i.e., h(x), h(y) ∈ V (G) and

degG(h(x)), degG(h(x)) > 2), since otherwise the argument is easier. Thus, by defini-
tion of L(G) we have a complete subgraph Kdeg(v) associated to v ∈ V (G) and h−1(v) =
PML(L(G)) ∩ Kdeg(v). Let us choose x′′ ∈ h−1(h(x)), y′′ ∈ h−1(h(y)) with dL(G)(x

′′, y′′) =
dL(G)(h

−1(h(x)), h−1(h(y))). Consider a geodesic γ joining x′′ and y′′ in L(G). Let V1 (re-
spectively, V2) be the closest vertex to x′′ (respectively, y′′) in γ. It is easy to check that,
since h−1(v) = PML(L(G)) ∩Kdeg(v) and L([Vei, Vej ]) = (L(ei) + L(ej))/2, we have

dL(G)(V1, x) ≤ dL(G)(V1, x
′′) + sup

e∈E(G)

L(e),

dL(G)(V2, y) ≤ dL(G)(V2, y
′′) + sup

e∈E(G)

L(e),

and since

dL(G)(x
′′, V1) + dL(G)(V1, V2) + dL(G)(V2, y

′′) = dL(G)(x
′′, y′′),

we deduce (4.6) for x, y ∈ PMLV (L(G)).
Now, let us consider Xi′ , Yj′ with i′, j′ ∈ {1, 2}, α′ ∈ {εx, δx} and β ′ ∈ {εy, δy} such that

dG(h(x), h(y)) = dG(h(Xi′), h(Yj′)) + α′ + β ′. Hence, we have

dG(h(x), h(y)) = dG(h(Xi′), h(Yj′)) + α′ + β ′,

≥ dL(G)(Xi′, Yj′)− 2lmax + α′ + β ′,

finally, (4.4) gives the condition.

It is easy to see that G \ h(L(G)) is the union of the half-edges of G such that one of its
vertices has degree 1; thus the following fact holds.

Remark 4.1.5. h is a (lmax/2)-full (1, 2lmax)-quasi-isometry with lmax = supe∈E(G) L(e).
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Now, let us consider a cycle C in G. We define gC : C −→ L(G) in the following way;
gC(Pm(e)) := Ve for e ∈ E(G)∩C; if C∗ is the cycle in L(G) with vertices ∪e∈E(G)gC(Pm(e)),
then one can check that h|C∗ : C∗ −→ C is a bijection; we define

gC := (h|C∗)−1 : C −→ C∗. (4.7)

Corollary 4.1.6. Let C be a geodesic polygon in a graph G that is a cycle and let gC be the
function defined by (4.7). Then, C∗ := gC(C) is a geodesic polygon in L(G) with the same
number of edges than C.

Furthermore, if γ is a geodesic in C, then gC(γ) is a geodesic in L(G) with L(gC(γ)) =
L(γ).

Proof. First of all, note that L(C) = L(C∗) since if E(C) = {e1, . . . , en} with e1 ∩ en 6= ∅

and ei ∩ ei+1 6= ∅ for 1 ≤ i < n, then L(C) =

n∑

i=1

L(ei) and L(C∗) = L(e1)/2 +

n−1∑

i=1

(L(ei) +

L(ei+1))/2 + L(en)/2.
Now, let us consider a geodesic γ in C joining x and y. Since gC(γ) is a path joining gC(x)

and gC(y), we have that dL(G)(gC(x), gC(y)) ≤ dC∗(gC(x), gC(y)) = dG(x, y); Proposition
4.1.2 gives dL(G)(gC(x), gC(y)) ≥ dG(h(gC(x)), h(gC(y))) = dG(x, y). Then we obtain that

dL(G)(gC(x), gC(y)) = dG(x, y).

Since γ is an arbitrary geodesic in C we obtain that gC maps geodesics in G (contained
in C) in geodesics in L(G) (contained in C∗).

Now, we deal with the geodesics in L(G).

Lemma 4.1.7. Let γ∗ be a geodesic joining x and y in L(G). Then h(γ∗) is a path in G
joining h(x) and h(y), which is the union of three geodesics γ1, γ2, γ3 in G, with h(x) ∈ γ1,
h(y) ∈ γ3 and 0 ≤ L(γ1), L(γ3) < supe∈E(G) L(e).

Proof. Note that if x, y are contained in one edge [V1, V2] of L(G), then γ∗ ⊂ [V1, V2] and
h(γ∗) is a geodesic in G joining h(x) and h(y), since h(γ∗) ⊂ γ := [h(V1)h(PmL([V1, V2]))]∪
[h(PmL([V1, V2]))h(V2)] and γ is a geodesic in G by Remark 4.1.3.

If x, y are not contained in the same edge of L(G), then let us consider Vα as the closest
vertex in γ∗ to α, for α ∈ {x, y} (it is possible to have Vx = x or Vy = y). By Remark
4.1.3, we have that h([VxVy]) = [h(Vx)h(Vy)] is a geodesic joining h(Vx) and h(Vy) in G;
moreover, h(γ∗) = [h(x)h(Vx)]∪ [h(Vx)h(Vy)]∪ [h(Vy)h(y)] where [h(x)h(Vx)] and [h(Vy)h(y)]
are geodesics in G since x, Vx (respectively y, Vy) are contained in the same edge of L(G).
This finishes the proof, since L(e∗) ≤ supe∈E(G) L(e) for every e∗ ∈ E(L(G)).

The arguments in the proof of Lemma 4.1.7 give the following result.
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Lemma 4.1.8. Let G be a graph with edges of length k and γ∗ be a geodesic of L(G) joining
x and y with x, y ∈ PMLV (L(G)). Then h(γ∗) is the union of three geodesics γ∗

1 , γ
∗
2 , γ

∗
3 in

G with h(x) ∈ γ∗
1, h(y) ∈ γ∗

3 and 0 ≤ L(γ∗
1), L(γ

∗
3) ≤ k/2.

Also, we shall need a property of geodesic quadrilaterals in G.

Lemma 4.1.9. For every x, y, u, v in the graph G, let us define Γ := [xu] ∪ [uv] ∪ [vy]. If
L([xu]), L([vy]) ≤ supe∈E(G) L(e), then

∀ α ∈ Γ , ∃ β ∈ [xy] : dG(α, β) ≤ 2δ(G) + sup
e∈E(G)

L(e). (4.8)

Proof. Let us consider the geodesic quadrilateral Q = {[xy], [xu], [uv], [vy]} and α ∈ Γ. If α ∈
[xu]∪ [vy], then there exists β ∈ {x, y} ⊂ [xy] such that dG(α, β) ≤ max{L([xu]), L([vy])} ≤
supe∈E(G) L(e). If α ∈ [uv], then there exists α′ ∈ [xy]∪[xu]∪[vy] such that dG(α, α

′) ≤ 2δ(G)
since Q is a geodesic quadrilateral in G. So, there exists β ∈ [xy] such that dG(α

′, β) ≤
supe∈E(G) L(e). Then, we obtain that dG(α, β) ≤ dG(α, α

′)+dG(α
′, β) ≤ 2δ(G)+supe∈E(G) L(e).

Theorem 4.1.10. Let G be a graph and consider L(G) the line graph of G. Then

δ(G) ≤ δ(L(G)) ≤ 5δ(G) + 3lmax, (4.9)

with lmax = supe∈E(G) L(e). Furthermore, the first inequality is sharp: the equality is attained
by every cycle graph.

Proof. First, let us consider a geodesic triangle T = [xy] ∪ [yz] ∪ [zx] in G that is a cy-
cle. Hence, if gT is defined by (4.7), then Corollary 4.1.6 gives that T ∗ = [gT (x)gT (y)] ∪
[gT (y)gT (z)] ∪ [gT (z)gT (x)] is a geodesic triangle in L(G); besides, by Proposition 4.1.2 we
have that dG(u, v) ≤ dL(G)(gT (u), gT (v)) for every u, v ∈ T .

Let Γ = (γ1, γ2, γ3) be a permutation of ([xy], [yz], [zx]). So, by Proposition 4.1.2 we have

sup
a∈γ1

inf
b∈γ2∪γ3

dG(a, b) ≤ sup
a∈γ1

inf
b∈γ2∪γ3

dL(G)(gT (a), gT (b))

≤ sup
a∗∈gT (γ1)

inf
b∗∈gT (γ2)∪gT (γ3)

dL(G)(a
∗, b∗).

Since Γ is an arbitrary permutation, we obtain

δ(T ) ≤ δ(T ∗) ≤ δ(L(G)).

This finishes the proof of the first inequality by Corollary 1.3.4.

Now, let us consider a geodesic triangle T ∗ = {[x∗y∗], [y∗z∗], [z∗x∗]} in L(G) that is a
cycle, and a permutation Γ = (γ∗

1 , γ
∗
2 , γ

∗
3) of ([x

∗y∗], [y∗z∗], [z∗x∗]). So, by Lemma 4.1.4 we
have
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sup
a∗∈γ∗

1

inf
b∗∈γ∗

2
∪γ∗

3

dL(G)(a
∗, b∗) ≤ sup

a∗∈γ∗

1

inf
b∗∈γ∗

2
∪γ∗

3

dG(h(a
∗), h(b∗)) + 2lmax

≤ sup
a∈h(γ∗

1
)

inf
b∈h(γ∗

2
)∪h(γ∗

3
)
dG(a, b) + 2lmax,

sup
a∗∈γ∗

1

dL(G)(a
∗, γ∗

2 ∪ γ∗
3) ≤ sup

a∈h(γ∗

1
)

dG(a, h(γ
∗
2) ∪ h(γ∗

3)) + 2lmax.

(4.10)

By Lemma 4.1.7 we know that h([x∗y∗]) is the union of three geodesics [α1
zPα1

z
], [Pα1

z
Pα2

z
]

and [Pα2
z
α2
z] in G:

h([x∗y∗]) = [α1
zPα1

z
] ∪ [Pα1

z
Pα2

z
] ∪ [Pα2

z
α2
z].

Analogously, h([y∗z∗]) and h([z∗x∗]) are the union of three geodesics in G:

h([y∗z∗]) = [α1
xPα1

x
] ∪ [Pα1

x
Pα2

x
] ∪ [Pα2

x
α2
x],

h([z∗x∗]) = [α1
yPα1

y
] ∪ [Pα1

y
Pα2

y
] ∪ [Pα2

y
α2
y].

Now, let us consider a geodesic triangle T := {[h(x∗)h(y∗)], [h(y∗)h(z∗)], [h(z∗)h(x∗)]} in
G. Without loss of generality we can assume that γ∗

1 = [x∗y∗], γ∗
2 = [y∗z∗] and γ∗

3 = [z∗x∗].
Hence, by Lemma 4.1.9 we have that, if α ∈ h(γ∗

1) then there exists β ∈ [h(x∗)h(y∗)] such
that

dG(α, β) ≤ 2δ(G) + lmax.

Since β ∈ [h(x∗)h(y∗)], there exists β ′ ∈ [h(y∗)h(z∗)] ∪ [h(z∗)h(x∗)] such that

dG(β, β
′) ≤ δ(G).

Without loss of generality we can assume that β ′ ∈ [h(y∗)h(z∗)]. If we consider the
geodesic quadrilateral {[α1

xα
2
x], [α

1
xPα1

x
], [Pα1

x
Pα2

x
], [Pα2

x
α2
x]}, then there exists α′ ∈ h([y∗z∗])

such that

dG(β
′, α′) ≤ 2δ(G).

Thus, since dG(α, h(γ
∗
2) ∪ h(γ∗

3)) ≤ dG(α, β) + dG(β, β
′) + dG(β

′, α′) we obtain that

dG(α, h(γ
∗
2) ∪ h(γ∗

3)) ≤ 5δ(G) + lmax. (4.11)

Then, by (4.10) and (4.11) we obtain

sup
a∗∈γ∗

1

dL(G)(a
∗, γ∗

2 ∪ γ∗
3) ≤ 5δ(G) + 3lmax.

Finally, since Γ is an arbitrary permutation of any triangle that is a cycle, Corollary 1.3.4
gives
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δ(L(G)) ≤ 5δ(G) + 3lmax.

Theorem 1.3.19 gives that δ(G) = δ(L(G)) = L(G)/4 for every cycle graph G.

Remark 4.1.11. The cycle graphs are not the only graphs G with δ(L(G)) = δ(G), as the
following example shows. Let Cn be the cycle graph with n vertices and every edge with length
k, and u, v ∈ V (Cn) with dCn

(u, v) = 2k; if G is the graph obtained by adding the edge [u, v]
(also with length k) to Cn, one can check that δ(L(G)) = δ(G) = kn/4.

G L(G)

Figure 4.2: Family of graphs such that δ(L(G)) = δ(G).

Let us consider now graphs with edges of length k. We will improve Theorem 4.1.10 in
this case.

Corollary 4.1.12. Let G be any graph such that every edge has length k and consider L(G)
the line graph of G. Then

δ(G) ≤ δ(L(G)) ≤ 5δ(G) +
5k

2
.

Proof. We just need to prove the second inequality. By Theorem 1.3.23 it suffices to con-
sider geodesic triangles in L(G) with vertices in PMLV (L(G)) = PMV (L(G)). Then the
arguments in the proof of Theorem 4.1.10, replacing Lemma 4.1.7 by Lemma 4.1.8, give the
result.

Theorem 4.1.13. Let G be any graph such that every edge has length k, with n vertices and
maximum degree ∆. Then

δ(L(G)) ≤ nk∆(∆− 1)/8,

and the equality is attained if and only if G is a cycle graph.
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Proof. It is well known that 2(m(L(G)) + m(G)) =
∑n

i=1(degG(vi))
2, where degG(vi) are

the degrees of the vertices of G. Since 2m(G) =
∑n

i=1 degG(vi), Lemma 1.3.10 gives the
inequality, and the equality is attained if and only if G is a cycle graph.

Using the argument in the proof of Theorem 4.1.13 we also obtain the following inequality.

Corollary 4.1.14. If G is any graph such that every edge has length k, with n vertices
v1, . . . , vn, then

δ(L(G)) + δ(G) ≤ k

8

n∑

i=1

(degG(vi))
2,

and the equality is attained if and only if G is a cycle graph.



Chapter 5

Hyperbolicity of planar graphs and
CW complexes.

In this Chapter we obtain information about either the hyperbolicity or the non-hyperbolicity
of a wide class of planar graphs: the graphs which are the “boundary” (the 1-skeleton) of a
tessellation of the Euclidean plane. The edges of such a tessellation graph are just rectifiable
paths in R2 and have the length induced by the metric in R2 (they may or may not be
geodesics in R2).

In fact, in Section 5.1 we provide several criteria in order to conclude that many tes-
sellation graphs of the Euclidean plane R2 are non-hyperbolic. One can think that the
tessellation graphs of the Euclidean plane R2 are always non-hyperbolic, since the plane is
non-hyperbolic (and then the theory would be trivial); however, there exists a hyperbolic
tessellation graph of R2 (see [65]).

These tessellation graphs are the 1-skeleton (i.e., the set of 1-cells and 0-cells) of a CW
2-complex contained in the Euclidean plane. In Section 5.2 we deal with a wider class of
graphs: the graphs which are the 1-skeleton of an abstract CW 2-complex (not necessarily
contained in R2 or in some Riemannian surface). In fact, we prove that a graph obtained as
the 1-skeleton of a CW 2-complex is hyperbolic if and only if its dual graph is hyperbolic,
under some reasonable hypotheses (see Theorem 5.2.4). This result improves [65, Theorem
4.1] about a particular kind of CW 2-complexes: the ones that are a tessellation of some
complete Riemannian surface without boundary (in this special case every edge belongs
exactly to two faces). Furthermore, Section 5.2 contains Theorem 5.2.9, which is a stronger
version of Theorem 5.2.4.

5.1 Hyperbolicity of planar graphs.

We obtain in this section results on the hyperbolicity of the 1 skeleton of tessellation graphs
of R2. The main results in this section are Theorems 5.1.2 and 5.1.8, since they are the key

61
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tools in order to prove the other results.
We will need the following result (see [65, Theorem 3.1]):

Lemma 5.1.1. Let S be a Riemannian surface with curvature satisfying K ≥ −k2 for some
constant k. Suppose that a graph G is the 1-skeleton of a tessellation of S with tiles {Fn}
such that there exist sets L1,L2 which are a partition of the sets of indices n, and positive
constants c1, c2, verifying the following properties: diamG ∂Fn ≤ c1, diamS Fn ≤ c1 and
AS(Fn) ≥ c2 for every n ∈ L1, and d∂Fn

(x, y) ≤ c1dS(x, y) for every x, y ∈ ∂Fn and for
every n ∈ L2. If S is hyperbolic, then G is hyperbolic, quantitatively.

Furthermore, if diamS Fn ≤ c1 for every n ∈ L2, then S is hyperbolic if and only if G is
hyperbolic, quantitatively.

We denote by int(F ) the topological interior of the set F .

Theorem 5.1.2. Suppose that a graph G is the 1-skeleton of a tessellation of R2 with
tiles {Fn}. Denote by cn the shortest cycle in G homotopic to ∂Fn in R2 \ int(Fn). If
supn L(cn) = ∞, then G is not hyperbolic.

Proof. First, we prove that cn is an isometric subgraph of G for every n. Seeking for a
contradiction assume that there exists n such that cn is not an isometric subgraph of G.
Then there exist x, y ∈ cn and a curve γ in G joining them with L(γ) < dcn(x, y); therefore, if
g1, g2 are the two curves joining x and y with g1∪g2 = cn, we have L(γ) < min{L(g1), L(g2)}.
Since cn is homotopic to ∂Fn in R2 \ int(Fn), we have that either γ∪g1 or γ∪g2 is homotopic
to ∂Fn in R2 \ int(Fn). Since max{L(γ ∪ g1), L(γ ∪ g2)} < L(cn), we have the contradiction
we were aiming for, and we conclude that cn is an isometric subgraph of G for every n.

Let us fix n. If γ1, γ2 are two curves with γ1∪γ2 = cn and L(γ1) = L(γ2) = L(cn)/2, then
B = {γ1, γ2} is a geodesic bigon (a geodesic triangle such that two of its vertices are the
same point) in cn. If we denote by z the midpoint of γ1, then δ(B) ≥ dcn(z, γ2) = L(cn)/4.
Lemma 1.3.2 gives δ(G) ≥ δ(cn) ≥ δ(B) ≥ L(cn)/4 for every n, and we deduce that G is not
hyperbolic.

Corollary 5.1.3. Suppose that a graph G is the 1-skeleton of a tessellation of R2 with tiles
{Fn}. Let us assume that there exists a subsequence of tiles {Fnk

}k such that they are all
convex tiles and, besides, supk L(∂Fnk

) = ∞. Then G is not hyperbolic.

Proof. Since each Fnk
is a convex polygon, we have cnk

= ∂Fnk
, where cnk

are the shortest
cycles mentioned in Theorem 5.1.2. Applying that theorem, the conclusion is straightfor-
ward.

Corollary 5.1.4. Suppose that a graph G is the 1-skeleton of a tessellation of R2 with tiles
{Fn}. If there exists a sequence of balls {Bn} with radius rn such that Bn ⊆ Fn for every n
and supn rn = ∞, then G is not hyperbolic.
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Proof. Let us consider the cycles cn as in Theorem 5.1.2. For each n it is obvious that L(cn) ≥
L(∂Bn) = 2πrn. Therefore, supn L(cn) = ∞ and Theorem 5.1.2 gives the conclusion.

Theorem 5.1.5. Suppose that a graph G is the 1-skeleton of a tessellation of R2 with tiles
{Fn}. Assume that every tile Fn can be obtained from a finite set of tiles F̂1, F̂2, . . . , F̂m by
means of translations, rotations and dilations. Then, G is not hyperbolic.

Proof. Since every tile Fn can be obtained from a finite set of tiles F̂1, F̂2, . . . , F̂m by means of
translations, rotations and dilations, there exists a positive constant k1 such that d∂Fn

(x, y) ≤
k1 dR2(x, y) for every x, y ∈ ∂Fn and for every n.

Let us consider the cycles cn as in Theorem 5.1.2. If supn L(∂Fn) = ∞, then supn L(cn) =
∞ and Theorem 5.1.2 gives the result. Assume now that supn L(∂Fn) < ∞. Since

sup
n

diamR2 Fn = sup
n

diamR2 ∂Fn ≤ sup
n

diamG ∂Fn ≤ 1

2
sup
n

L(∂Fn) < ∞,

and R2 is not hyperbolic, Lemma 5.1.1 (with Λ1 = ∅) gives that G is not hyperbolic.

Theorem 5.1.6. Suppose that a graph G is the 1-skeleton of a tessellation of R2 with convex
tiles {Fn}. If infnA(Fn) > 0, then G is not hyperbolic.

Proof. If supn L(∂Fn) = ∞, then Theorem 5.1.2 gives the result. Assume now that supn L(∂Fn) =
c1 < ∞. Since

diamR2 Fn = diamR2 ∂Fn ≤ diamG ∂Fn ≤ 1

2
L(∂Fn) ≤

c1
2
,

infn A(Fn) > 0 and R2 is not hyperbolic, Lemma 5.1.1 (with Λ2 = ∅) gives that G is not
hyperbolic.

In order to prove our next theorem, we will need the following well-known (and non-
trivial) result.

Lemma 5.1.7. Given any open convex set C ⊂ R2 and any curve g ⊂ R2 \ C joining two
points x, y ∈ ∂C, there exists a curve γ ⊂ ∂C joining x and y with L(γ) ≤ L(g).

Theorem 5.1.8. Suppose that a graph G is the 1-skeleton of a tessellation of R2 with
convex tiles {Fn}. Let us assume that there exist balls Bn ⊂ Fn with radius rn such that
L(∂Fn) ≤ c1rn for some positive constant c1 and for every n. Then G is not hyperbolic.

Proof. By Corollary 5.1.3, we can assume that there exists a constant k1 with L(∂Fn) ≤ 2k1
for every n. Note that diamR2 Fn ≤ L(∂Fn)/2 =: Rn ≤ k1 for every n. If we denote by B∗

n

the closed ball with the same center as Bn and radius Rn, then we have Bn ⊂ Fn ⊂ B∗
n and

Rn

rn
≤ L(∂Fn)/2

c−1
1 L(∂Fn)

=
c1
2
. (5.1)
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Let us consider z, w ∈ ∂Fn. We want to show that there exists a constant c, which just
depends on c1, such that d∂Fn

(z, w) ≤ c dR2(z, w). If z and w belong to the same edge, then
d∂Fn

(z, w) = dR2(z, w). Assume now that z and w belong to different edges. On the one
hand, if dR2(z, w) ≥ rn, then

d∂Fn
(z, w) ≤ 1

2
L(∂Fn) ≤

1

2
L(∂Fn)

dR2(z, w)

rn
≤ c1

2
dR2(z, w).

On the other hand, let us consider the case dR2(z, w) < rn. Without loss of generality we
can assume that the origin O is the center of Bn and B∗

n. Since dR2(z, w) < rn, we have that
|arg z − argw| < π/3. Let us consider straight lines Sz and Sw containing the edges in ∂Fn

which contain z and w, respectively; let ζ be the point ζ := Sz ∩ Sw (note that if the edges
in ∂Fn which contain z and w are not adjacent, then may be have [zζ ] * G and [ζw] * G).

Since Fn is convex, Lemma 5.1.7 gives that

d∂Fn
(z, w)

dR2(z, w)
≤ L([zζ ] ∪ [ζw])

dR2(z, w)
.

Let us denote by α the angle at ζ of [zζ ] and [ζw] (0 < α < π). Note that

d∂Fn
(z, w)

dR2(z, w)
≤ L([zζ ] ∪ [ζw])

dR2(z, w)
≤ max

{L([uζ ] ∪ [ζv])

dR2(u, v)
: u ∈ [zζ ], v ∈ [ζw]

}
=

1

sin(α/2)
.

(5.2)

z

Sz

w

Sw

α α′

O

s1 ∩ ∂B∗
n

s2 ∩ ∂B∗
n

Figure 5.1: Auxiliary graphic of Theorem 5.1.8.

In order to obtain a lower bound for α, consider two straight lines s1 and s2 tangent
to ∂Bn such that dR2(s1 ∩ ∂B∗

n, s2 ∩ ∂B∗
n) = rn and s1 ∩ s2 /∈ B∗

n. One can check that if
α′ is the angle between s1 and s2, then α ≥ α′, since Fn is a convex tile. Applying now a
dilation (or a contraction) we obtain two straight lines s′1 and s′2 tangent to the unit circle
such that dR2(s′1∩∂(B∗

n)
′, s′2∩∂(B∗

n)
′) = 1, where (B∗

n)
′ is the ball centered at O with radius
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Rn/rn ≤ c1/2. Then α′ is the angle between s′1 and s′2, and it is clear that α′ = f(Rn/rn)
for some positive decreasing function. Hence, α ≥ α′ = f(Rn/rn) ≥ f(c1/2) =: α0 > 0 and
by (5.2) we conclude that

d∂Fn
(z, w)

dR2(z, w)
≤ 1

sin(α/2)
≤ 1

sin(α0/2)
.

Therefore,

d∂Fn
(z, w) ≤ max

{c1
2
,

1

sin(α0/2)

}
dR2(z, w),

for every z, w ∈ ∂Fn and for every n. Now, since diamR2 Fn ≤ k1 for every n, Lemma 5.1.1
(with L1 = ∅) finishes the proof.

This theorem has the following consequence.

Corollary 5.1.9. Suppose that a graph G is the 1-skeleton of a tessellation of R2 with tiles
{Fn}. If every tile Fn is a regular polygon, then G is not hyperbolic.

Proof. Let us fix n, and we define kn as the number of edges in Fn, ωn as the incircle
of Fn, rn as the inradius of Fn and Rn as the circumradius of Fn. It is well known that
rn = Rn cos(π/kn), and since kn ≥ 3 we have cos(π/kn) ≥ 1/2. Then, by Lemma 5.1.7 we
have

L(∂Fn) ≤ 2πRn =
2π

cos(π/kn)
rn ≤ 4πrn.

Thus, by taking ωn as Bn in Theorem 5.1.8, we obtain the result.

Suppose that a graph G is the 1-skeleton of a tessellation of R2 with convex tiles {Fn}.
Let us define

ln := min{LG(e) | e ∈ E(G), e ⊂ ∂Fn},
Ln := max{LG(e) | e ∈ E(G), e ⊂ ∂Fn},
αn := min{interior angles at the vertices in ∂Fn},
Nn := card{e ∈ E(G) | e ⊂ ∂Fn}.

Theorem 5.1.10. Suppose that a graph G is the 1-skeleton of a tessellation of R2 with convex
tiles {Fn}. Let us assume that L(∂Fn) ≤ c1ln and αn ≥ c2 for some positive constants c1, c2
and for every n. Then G is not hyperbolic.

Proof. For each fixed n, let us consider two adjacent edges e1n, e
2
n contained in ∂Fn such that

αn is attained at the point Vn := e1n ∩ e2n. We have that Nn ≤ c1, since L(∂Fn) ≤ c1ln. So,
we have that αn ≤ (Nn − 2)π/Nn, since Fn is a convex polygon. Let us consider u1 ∈ e1n
and u2 ∈ e2n such that dR(u1, Vn) = dR(Vn, u2) = ln. If An is the Euclidean convex hull in
R2 of {u1, Vn, u2} and Bn the incircle of An with radius rn, then L(∂An) ≤ 6rn cotan(α/2)
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with α = min{c2, π/c1}, since min{interior angles at the vertices of ∂An} ≥ min{c2, π/Nn}.
Therefore, we have L(∂Fn) ≤ c1ln < (c1/2)L(∂An) ≤ 3c1 cotan(α/2) rn. Then Theorem 5.1.8
gives the result.

From Theorem 5.1.10 we obtain directly the following result.

Corollary 5.1.11. Suppose that a graph G is the 1-skeleton of a tessellation of R2 with
convex tiles {Fn}. Let us assume that Ln ≤ c1ln, Nn ≤ c1 and αn ≥ c2 for some positive
constants c1, c2 and for every n. Then G is not hyperbolic.

We obtain the following results from Corollary 5.1.11.

Corollary 5.1.12. Suppose that a graph G is the 1-skeleton of a tessellation of R2 with
triangular tiles {Fn}. Let us assume that αn ≥ c2 for some positive constant c2 and for
every n. Then G is not hyperbolic.

Corollary 5.1.13. Suppose that a graph G is the 1-skeleton of a tessellation of R2 with
rectangular tiles {Fn}. Let us assume that Ln ≤ c1ln for some positive constant c1 and for
every n. Then G is not hyperbolic.

Open problem. At the light of these results we conjecture that every tessellation graph
of R2 with convex tiles is non-hyperbolic. The proof of this conjecture would use different
arguments, since some tessellation graphs of R2 with convex tiles are not quasi-isometric to
R2.

5.2 Hyperbolicity of dual graphs.

In this section we get results for a class of geodesic metric spaces wider than the tessellation
graphs of the plane. First of all we give the precise definition of CW complex.

Definition 5.2.1. Let Dn be the closed unit ball in Rn. An n-cell (n ≥ 1) is a space
homeomorphic to the open n-ball int(Dn); a 0-cell is a single point. A cell is a space which
is an n-cell for some n ≥ 0.

Note that int(Dm) and int(Dn) are homeomorphic if and only if m = n. Thus we can
talk about the dimension of a cell. An n-cell will be said to have dimension n.

Definition 5.2.2. A cell-decomposition of a space X is a family ξ = {eα|α ∈ I} of subspaces
of X such that each eα is a cell and

X =
⋃

α∈I

eα

(disjoint union of sets). The n-skeleton of X is the subspace Xn = ∪α∈I:dim(eα)≤n eα.
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Definition 5.2.3. A pair (X, ξ) consisting of a Hausdorff space X and a cell-decomposition
ξ of X is called a CW-complex if the following axioms are satisfied:

Axiom 1 (Characteristic Maps) For each n-cell e ∈ ξ (n ≥ 1) there is a map Φe : D
n −→ X

restricting to a homeomorphism Φe|int(Dn) : int(D
n) −→ e and taking Sn−1 into Xn−1.

Axiom 2 (Closure Finiteness) For any cell e ∈ ξ the closure e intersects only a finite
number of other cells in ξ.

Axiom 3 (Weak Topology) A subset A ⊆ X is closed if and only if A∩ e is closed in X for
each e ∈ ξ.

If the largest dimension of any of the cells is n, then the CW complex is said CW n-
complex.

We consider in this section a very large class of graphs which contains the tessellation
graphs of complete Riemannian surfaces (with or without boundary): the set of all graphs
G which are the 1-skeleton (the set of 0-cells and 1-cells) of some connected CW 2-complex.
The dual graph G∗ of such a graph G is a graph which has a vertex pj ∈ V (G∗) for each face
(2-cell) Pj of the CW 2-complex, and an edge joining pi and pj for each edge of G in Pi ∩Pj

(if there are k edges in Pi ∩ Pj, then [pi, pj] is a multiple edge of order k). By definition,
every edge of G∗ has length 1.

Note that a CW 2-complex is a very general structure: if an edge e belongs to the closure
ofme faces, thenme can be any non-negative integer number; also, two edges in the boundary
of a face can be “identified” in the CW complex.

Next, we deal with the main result of this section.

Theorem 5.2.4. Let G be the 1-skeleton of a connected CW 2-complex C and G∗ be its
dual graph. Assume that every edge e ∈ E(G) is included in the closure of a face of C and
satisfies k1 ≤ L(e) ≤ k2, every vertex v ∈ V (G) satisfies deg(v) ≤ ∆, every face of C has
at most M edges and G∗ is a connected graph. Then G is δ-hyperbolic if and only if G∗ is
δ∗-hyperbolic, quantitatively.

Proof. If ∆ = 2, then C is just a face, G is a cycle with δ(G) ≤ k2 M/4 and G∗ is a vertex
with δ(G∗) = 0; hence, the result is trivial. Therefore without loss of generality we can
assume that ∆ ≥ 3. Let G0 be a graph isomorphic to G such that every edge of G0 has
length 1. Note that any isomorphism g : G → G0 is a bijective (max{k2, k−1

1 }, 0)-quasi-
isometry; therefore, by Lemma 1.3.5, without loss of generality we can assume that every
edge of G has length 1.

First of all, assume that G∗ is a connected graph. We prove the result by proving that
there exists a (3/2)-full (max{2∆−2,M/2},max{4∆−4,M})-quasi-isometry f : G −→ G∗.

Since the graph G is the 1-skeleton of a CW 2-complex C with faces {Pn}, then {pn} =
V (G∗). If an edge e is contained in Pi ∩ Pj, we denote by w(i,j)(e) the midpoint of the edge
in G∗ corresponding to e ∈ E(G), i.e., w(i,j)(e) ∈ [pi, pj] with dG∗(pi, w

(i,j)(e)) = 1/2 =
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dG∗(w(i,j)(e), pj). If e belongs to Pi for just one i, then we define W (e) := pi; otherwise,
we define W (e) as the set of midpoints of the edges in G∗ corresponding to e ∈ E(G), i.e.,
W (e) := {w(i,j)(e) ∈ [pipj] | e ⊂ Pi ∩ Pj}. Note that, if there are k ≥ 2 faces containing the
edge e in their closures, then |W (e)| = k(k− 1)/2. For each n, we write ∂Pn = e1n ∪ · · · ∪ ejnn
(note that jn ≤ M by hypothesis). We denote by Wn(e

k
n) the set of midpoints of the edges in

G∗ starting in pn and corresponding to ekn, and let Ik
n be a set of indices such that we may write

Wn(e
k
n) = {w(i,j)

n (ekn) | i ∈ Ik
n}; note that Wn(e

k
n) ⊂ W (ekn) and that Wn(e

k
n) = ∅ if and only

if ekn belongs to the closure of just one face. We define now P ∗
n := ∪jn

k=1

(
∪i∈Ik

n
[pnw

(i,j)
n (ekn)]

)
.

It is clear that G∗ = ∪nP
∗
n .

We define a function f : G −→ G∗ as follows: if e belongs to Pi for just one i, then we
define f(x) = pi for every x ∈ int(e); otherwise, we choose two faces Pi,Pj with e ⊂ Pi ∩ Pj

and we define f(x) = w(i,j)(e) for every x ∈ int(e); for each vertex v ∈ V (G), let us choose
an edge e ∈ E(G) starting in v, and define f(v) as the image via f of the interior of e.

Let us consider x, y ∈ ∂Pn. If f(x), f(y) ∈ P ∗
n , then dG∗(f(x), f(y)) ≤ diamG∗(P ∗

n) = 1. If
we have f(x) ∈ P ∗

n and f(y) /∈ P ∗
n , then y is a vertex of G or y ∈ e with f(y) ∈ W (e)∩ (P ∗

n)
c.

Note that if Pi ∩ Pj ∩ V (G) 6= ∅, then dG∗(pi, pj) ≤ ∆ − 2 since ∆ ≥ 3. Therefore, if
f(x) ∈ P ∗

n , f(y) /∈ P ∗
n and y is a vertex of G, then dG∗(f(x), f(y)) ≤ ∆ − 1. Also, if

f(x) ∈ P ∗
n , f(y) /∈ P ∗

n and y ∈ e with f(y) ∈ W (e) ∩ (P ∗
n)

c, then dG∗(pn, f(y)) = 3/2 and
dG∗(f(x), f(y)) ≤ 2. By the same arguments, we have that if f(x) ∈ P ∗

n , f(y) /∈ P ∗
n or

f(x) /∈ P ∗
n , f(y) ∈ P ∗

n , then dG∗(f(x), f(y)) ≤ ∆− 1, since ∆ ≥ 3. If f(x), f(y) /∈ P ∗
n , then

dG∗(f(x), f(y)) ≤ dG∗(f(x), pn) + dG∗(pn, f(y)) ≤ 2∆− 2. Hence,

dG∗(f(x), f(y)) ≤ 2∆− 2 , for every n and for all x, y ∈ ∂Pn. (5.3)

Fix now x, y ∈ G and a geodesic γ in G joining x with y (then, LG(γ) = dG(x, y)). Let
P be the set of collections of faces P = {Pj1, Pj2, . . . , Pjr} with γ ⊂ ∪r

m=1∂Pjm and γ ∩ ∂Pjm

connected for every m; we say that r is the size of the collection P and we denote it by
s(P ) = r. Let us consider P ′ ∈ P with s(P ′) = minP∈P s(P ) =: k. Denote by Pi1 , Pi2, . . . , Pik

the faces in P ′; without loss of generality we can assume that γ meets Pi1 , Pi2, . . . , Pik in this
order (with x ∈ ∂Pi1 , y ∈ ∂Pik); note that it is possible to have ia = ib with a 6= b. Define
γj as the connected subgeodesic of γ such that γj ⊆ γ ∩ ∂Pij (1 ≤ j ≤ k), γi ∩ γi+1 6= ∅
(1 ≤ j ≤ k − 1) if k > 1, and γ = γ1 ∪ · · · ∪ γk. Note that LG(γj) ≥ 1 for 1 < j < k,
LG(γ1) > 0 and LG(γk) > 0.

If k = 1, then (5.3) gives dG∗(f(x), f(y)) ≤ 2∆− 2.
If k = 2 and z ∈ γ1 ∩ γ2, then we have

dG∗(f(x), f(y)) ≤ dG∗(f(x), f(z)) + dG∗(f(z), f(y)) ≤ 2∆− 2 + 2∆− 2 = 4∆ − 4.



CHAPTER 5. HYPERBOLICITY OF PLANAR GRAPHS AND CW COMPLEXES. 69

If k ≥ 3 and zj ∈ γj ∩ γj+1 for 1 ≤ j ≤ k − 2 then, we have dG(zj , zj+1) ≥ 1 and

dG∗(f(x), f(y)) ≤ dG∗(f(x), f(z1)) +

k−2∑

j=1

dG∗(f(zj), f(zj+1)) + dG∗(f(zk−1), f(y))

≤ 2∆− 2 +

k−2∑

j=1

(2∆− 2) + 2∆− 2 ≤ 4∆ − 4 + (2∆− 2)

k−2∑

j=1

dG(zj , zj+1)

= 4∆ − 4 + (2∆− 2) dG(z1, zk−1) ≤ 4∆ − 4 + (2∆− 2) dG(x, y).

Let us consider a geodesic γ∗ inG∗ joining f(x) with f(y) (then, LG∗(γ∗) = dG∗(f(x), f(y))).
Note that f(x) (respectively, f(y)) is either a midpoint of one edge in E(G∗) or a vertex in
V (G∗). If f(x) = f(y) then there exists i such that x, y ∈ ∂Pi; since every face of G has at
most M edges, we have dG(x, y) ≤ M/2. Then, dG∗(f(x), f(y)) = 0 ≥ dG(x, y)−M/2. We
assume now that there exist pi1 , pi2, ..., pim ∈ V (G∗) such that γ∗ meets f(x), pi1, ..., pim, f(y)
in this order (with 0 ≤ dG∗(f(x), pi1), dG∗(pin , f(y)) ≤ 1/2) and we have dG∗(f(x), f(y)) = m
(if f(x), f(y) are midpoints of edges), dG∗(f(x), f(y)) = m + 1/2 (if just one is a midpoint
of some edge) or dG∗(f(x), f(y)) = m− 1 (if f(x), f(y) ∈ V (G∗)).

If m = 1, then we have that f(x), f(y) ∈ P ∗
i and x, y ∈ ∂Pi; so, we have dG(x, y) ≤ M/2.

Therefore, dG∗(f(x), f(y)) ≥ 0 ≥ dG(x, y)−M/2.
Assume now that m ≥ 2. Let wn := w(in,in+1) ∈ γ∗ be the midpoint of the edge [pinpin+1

],
for 1 ≤ n ≤ m−1. Let us consider an edge en ⊆ Pin ∩Pin+1

, for 1 ≤ n ≤ m−1; let zn be the
midpoint of en, for 1 ≤ n ≤ m− 1. Then, for 1 ≤ n ≤ m− 1, we have dG(zn, zn+1) ≤ M/2,
dG∗(wn, wn+1) = 1, and

dG∗(f(x), f(y)) = dG∗(f(x), w1) +

m−2∑

n=1

dG∗(wn, wn+1) + dG∗(wm−1, f(y))

= dG∗(f(x), w1) +

m−2∑

n=1

1 + dG∗(wm−1, f(y))

≥ dG(x, z1)−
M

2
+

2

M

m−2∑

n=1

M

2
+ dG(zm−1, y)−

M

2

≥ 2

M
dG(x, z1) +

2

M

m−2∑

n=1

dG(zn, zn+1) +
2

M
dG(zm−1, y)−M

≥ 2

M
dG(x, y)−M.

Consequently, f is a (max{2∆− 2,M/2},max{4∆− 4,M})-quasi-isometric embedding.
Furthermore, f is (3/2)-full, since for every e ∈ E(G) we have

diamG∗(W (e)) ≤ 1 , W (e) ∩ f(G) 6= ∅ and sup
x∈G∗

dG∗(x,∪e∈E(G∗)W (e)) = 1/2.
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This finishes the proof by Lemma 1.3.5.

The following examples show that the conclusion of Theorem 5.2.4 does not hold if we
remove any hypothesis from its statement.

Example 5.2.5. Let us consider the sequence of wheel graphs {Wn}∞n=4 (Wn has n ver-
tices). Choose two vertices ann, b

n
n ∈ V (Wn) (different from the central vertex of Wn) with

dWn
(ann, b

n
n) = 1 for n ≥ 5, and two vertices ann+1, b

n
n+1 ∈ V (Wn) (different from the central

vertex of Wn) with dWn
(ann+1, b

n
n+1) = 1 for n ≥ 4 and {ann+1, b

n
n+1}∩ {ann, bnn} = ∅ for n ≥ 5.

We define G as the union of {Wn}∞n=4 obtained by identifying [ann+1, b
n
n+1] with [an+1

n+1, b
n+1
n+1] for

n ≥ 4. Since the central vertex of each Wn has degree n− 1, the degree of G is not bounded.
It is clear that G is quasi-isometric to the graph G′ obtained as the union of {Wn}∞n=4 by
identifying ann+1 with an+1

n+1 for n ≥ 4. Lemmas 1.3.7 and 1.3.19 give that G′ is hyperbolic,
since δ(G′) = supn δ(Wn) = 3/2. Hence, G is also hyperbolic by Lemma 1.3.5.

Its dual graph G∗ is isometric to a union of cycle graphs {Cn}∞n=3 such that each Cn is
joined with Cn+1 by a graph isometric to the path graph P2 for n ≥ 3. Lemmas 1.3.7 and
1.3.19 give that G∗ is not hyperbolic, since δ(G∗) = supn δ(Cn) = supn n/4 = ∞, although G
is hyperbolic.

G

G∗

Figure 5.2: Infinite graph obtained by wheels graphs and its dual graphs.

Recall that given graphs G1 and G2, the cartesian product of its graphs, denoted by
G12G2, is the graph with vertices V (G12G2) = V (G1) × V (G2) and [(u1, u2), (v1, v2)] ∈
E(G12G2) if and only if we have either u1 = v1 ∈ V (G1) and [u2, v2] ∈ E(G2) or u2 = v2 ∈
V (G2) and [u1, v1] ∈ E(G1).
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Example 5.2.6. Let us consider the sequence of graphs {Cn × P2}∞n=3 represented in R2 by
an “exterior” copy of Cn joined with an “interior” copy of Cn by n edges. Choose two vertices
ann, b

n
n ∈ V (Cn × P2) (in the exterior copy of Cn) with dCn×P2

(ann, b
n
n) = 1 for n ≥ 4, and two

vertices ann+1, b
n
n+1 ∈ V (Cn×P2) (in the exterior copy of Cn) with dCn×P2

(ann+1, b
n
n+1) = 1 for

n ≥ 3 and {ann+1, b
n
n+1}∩{ann, bnn} = ∅ for n ≥ 4. We define G as the union of {Cn×P2}∞n=3

obtained by identifying [ann+1, b
n
n+1] with [an+1

n+1, b
n+1
n+1] for n ≥ 3. Note that the “central face”

of each Cn × P2 (whose boundary is the interior copy of Cn) has n edges, and therefore
there is not an upper bound for the number of edges of the faces in G. It is clear that G is
quasi-isometric to the graph G′ which is the union of {Cn × P2}∞n=3 obtained by identifying
ann+1 with an+1

n+1 for n ≥ 3. Since Cn × P2 has an isometric subgraph which is isomorphic to
Cn, Lemma 1.3.2 gives that δ(Cn × P2) ≥ δ(Cn). Lemmas 1.3.7 and 1.3.19 give that G′ is
not hyperbolic, since δ(G′) = supn δ(Cn × P2) ≥ supn δ(Cn) = supn n/4 = ∞. Hence, G is
not hyperbolic.

Its dual graph G∗ is isometric to a union of wheel graphs {Wn}∞n=4 such that each Wn

is joined with Wn+1 by a graph isometric to the path graph P2 for n ≥ 3. Lemmas 1.3.7
and 1.3.19 give that G∗ is hyperbolic, since δ(G∗) = supn δ(Wn) = 3/2, although G is not
hyperbolic.

Example 5.2.7. Let us consider the CW 2-complex with only one 2-cell, the open unit
square {(x, y) ∈ R2 | 0 < x < 1, 0 < y < 1}, and with 1-skeleton equal to the Cayley
graph of Z2, i.e., the planar graph G with V (G) := Z2 and unit edges defined by E(G) :=
{[(a, b), (c, d)]

∣∣ |a− c|+ |b− d| = 1} (each edge is represented by a straight line). Let G∗ be
the dual graph of G. Since G is quasi-isometric to R2, G is not hyperbolic by Lemma 1.3.5.
Note that just 4 edges of G belong to the closure of the single face. However, G∗ is connected
and 0-hyperbolic, since it is a graph with just one vertex.

Example 5.2.8. Let us consider the Hausdorff space X ⊂ R2 defined by {(x, y) ∈ R2 | p ≤
x ≤ p + 1, q ≤ y ≤ q + 1, for every p, q ∈ Z such that p + q is even} (X looks like an
infinite chessboard). Now, consider the natural CW 2-complex associated to X and let G be
its 1-skeleton. Note that G∗ is not connected and each connected component of G∗ is a single
vertex (and then 0-hyperbolic) since E(G∗) = ∅; however, G is not hyperbolic, since it is
equal to the graph in the previous example.

Theorem 5.2.4 and Lemma 1.3.7 allow to deduce the following result.

Theorem 5.2.9. Let G be the 1-skeleton of a connected CW 2-complex C and G∗ be its
dual graph. Assume that every edge e ∈ E(G) is included in the closure of a face of C
and satisfies k1 ≤ L(e) ≤ k2, every vertex v ∈ V (G) satisfies deg(v) ≤ ∆, every face of C
has at most M edges and there exists a T-decomposition {Gn} of G such that {G∗

n} are the
connected components of G∗. Then G is δ-hyperbolic if and only if G∗

n is δ∗-hyperbolic for
every n, quantitatively.

Proof. Since {Gn} is a T-decomposition ofG, we have by Lemma 1.3.7 that δ(G) = supn δ(Gn).
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Assume first that G is δ-hyperbolic. Then Gn is δ-hyperbolic for every n. Since G∗
n is

connected for every n, Theorem 5.2.4 gives that G∗
n is δ∗-hyperbolic for every n, where δ∗

depends just on k1, k2,∆,M and δ.
Assume now that G∗

n is δ∗-hyperbolic for every n. Then Theorem 5.2.4 gives that Gn

is δ-hyperbolic for every n, where δ depends just on k1, k2,∆,M and δ∗. Then G is δ-
hyperbolic.



Chapter 6

Chordal and Gromov hyperbolic
graphs.

One of the main problems on the theory of hyperbolic graphs is to relate the hyperbolic-
ity with other properties on graph theory. In this Chapter we extend in two ways (edge-
chordality and path-chordality) the classical definition of chordal graphs in order to relate
this property with Gromov hyperbolicity.

We prove in Section 6.1 that every edge-chordal graph is hyperbolic; in fact, Theorem
6.1.3 states

if G is a (k,m)-edge-chordal graph, then it is (m+ k/4)-hyperbolic.

Also in this Section, we prove that every hyperbolic graph is path-chordal; in fact, The-
orem 6.1.8 states

every δ-hyperbolic graph is 90δ-path-chordal.

Although the converse of these two Theorems do not hold (see Examples 6.1.6 and 6.1.9),
the path-chordality is a very close condition to hyperbolicity, in the following sense: in Sec-
tion 6.2 we prove that every path-chordal cubic graph (with small path-chordality constant)
is hyperbolic (recall that, in order to study Gromov hyperbolicity, general graphs are equiv-
alent to cubic graphs, see Chapter 1).

6.1 Edge-chordal and path-chordal graphs

Definition 6.1.1. A shortcut in a cycle C of a graph G is a path σ joining two vertices
p, q ∈ C such that LG(σ) < dC(p, q).

An edge-shortcut in a cycle C is an edge of G which is a shortcut of C.

73
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Given two constants k,m ≥ 0, we say that a graph G is (k,m)-edge-chordal if for any
cycle C in G with length L(C) ≥ k there exists an edge-shortcut e with length L(e) ≤ m. The
graph G is edge-chordal if there exist constants k,m ≥ 0 such that G is (k,m)-edge-chordal.

We say that a graph G is r-path-chordal if in every cycle C in G with LG(C) ≥ r there
exists at least a shortcut σ with L(σ) ≤ r/2.

Note that every (k,m)-edge-chordal graph G is max{k, 2m}-path-chordal.
Usually a graph (with edges of length 1) is said chordal if it is (4, 1)-edge-chordal according

to Definition 6.1.1. In [13] the authors prove that chordal graphs are hyperbolic. In [81] the
authors introduce k-chordal graphs generalizing the chordality (a graph with edges of length
1 is k-chordal if it does not contain any induced n-cycle for n > k; then chordal graphs
are 3-chordal) and they prove that k-chordal graphs are hyperbolic. Our concept of edge-
chordality generalizes the k-chordality; in fact, k-chordal graphs are (k + 1, 1)-edge-chordal.
We prove in this Section that every edge-chordal graph is hyperbolic (see Theorem 6.1.3)
and that every hyperbolic graph is path-chordal (see Theorem 6.1.8).

We need some previous lemmas.

Lemma 6.1.2. Given a (k,m)-edge-chordal graph G, a cycle C in G with length L(C) ≥ k
and a geodesic [ab] ⊂ C with L([ab]) ≥ k/2, there exist two vertices v ∈ V (G)∩ ([ab] \ {a, b})
and w ∈ V (G) ∩ (C \ [ab]) with e = [v, w] ∈ E(G), L(e) < dC(v, w) and L(e) ≤ m.

Proof. Since [ab] is a geodesic contained in C, we have L(C \ [ab]) ≥ L([ab]) and L(C) ≥
2L([ab]).

Assume first that L(C) = 2L([ab]). In this case L(C \ [ab]) = L([ab]) and then (C \ [ab])∪
{a, b} is also a geodesic joining a and b. Since L(C) ≥ k and G is a (k,m)-edge-chordal graph,
there exists an edge e = [x, y] with x, y ∈ V (G)∩C such that L(e) < dC(x, y) and L(e) ≤ m.
It is not possible for e to join two vertices of [ab], since [ab] is a geodesic. Similarly, it is
not possible for e to join two vertices of (C \ [ab]) ∪ {a, b}, since (C \ [ab]) ∪ {a, b} is also a
geodesic. Therefore, the conclusion of the lemma holds in this case.

Assume now that L(C) > 2L([ab]). Since L(C) ≥ k and G is a (k,m)-edge-chordal
graph, there exists an edge e = [x, y] with x, y ∈ V (G) ∩ C such that L(e) < dC(x, y) and
L(e) ≤ m. It is not possible for e to join two vertices of [ab], since [ab] is a geodesic. If either
x or y belongs to [ab] \ {a, b}, then the conclusion of the lemma also holds in this case. If
x, y /∈ [ab] \ {a, b}, then we consider the cycle C1 obtained by pasting e with the connected
component of C \{x, y} which contains [ab]\{a, b}. It is clear that L(C1) < L(C), [ab] ⊂ C1

and V (G) ∩ C1 ⊆ V (G) ∩ C.
Now we can apply the previous argument to C1. If we do not obtain the conclusion of

the Lemma, then we obtain a new cycle C2 with L(C2) < L(C1) < L(C), [ab] ⊂ C2 and
V (G)∩C2 ⊆ V (G)∩C. Iterating this process we obtain either the conclusion of the Lemma
or a sequence of cycles C1, C2, . . . , Cj, . . . with [ab] ⊂ Cj, V (G) ∩ Cj ⊆ V (G) ∩ C for every
j ≥ 1, and

L(Cj) < · · · < L(C2) < L(C1) < L(C) . (6.1)
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Since G is locally finite and we have (6.1), this process must stop in some finite step by
compactness; therefore, the conclusion of the Lemma holds.

The following results give a necessary and a sufficient condition (which are close) for the
hyperbolicity of graphs. In fact, we prove that edge-chordality implies hyperbolicity and
that hyperbolicity implies path-chordality.

Theorem 6.1.3. If G is a (k,m)-edge-chordal graph, then it is (m+ k/4)-hyperbolic.

Proof. Let us consider any fixed geodesic triangle T = {x, y, z} in G. By Corollary 1.3.4, in
order to compute δ(G) we can assume that T is a cycle. Without loss of generality we can
assume also that there exists p ∈ [xy] with δ(T ) = d(p, [xz]∪ [yz]). If δ(T ) ≤ k/4, then there
is nothing to prove. If δ(T ) > k/4, then d(p, {x, y}) > k/4, L([xy]) ≥ k/2 and L(T ) ≥ k.
Let us consider a, b ∈ [xy], with a 6= b and d(a, p) = d(b, p) = k/4; then p ∈ [ab] ⊂ [xy] and
L([ab]) = k/2. Lemma 6.1.2 gives that there exist two vertices v ∈ V (G)∩ ([ab] \ {a, b}) and
w ∈ V (G) ∩ (T \ [ab]) with e = [v, w] ∈ E(G), L(e) < dT (v, w) and L(e) ≤ m. Note that
w /∈ [xy] since L([v, w]) < dT (v, w). Therefore,

d(p, [xz] ∪ [yz]) ≤ d(p, w) ≤ d(p, v) + d(v, w) ≤ k

4
+m.

Then G is (m+ k/4)-hyperbolic.

The inequality in Theorem 6.1.3 is sharp, Example 6.1.4 provides a family of graphs for
which the equality is attained for m ≤ k/4.

wn

vn

kn

3k
4 − 2m− kn

2

m

Pn

Figure 6.1: Infinite (k,m)-edge-chordal graph G with δ(G) = m+ k/4.

Example 6.1.4. Let us fix a positive number k. Consider an increasing sequence of positive
numbers {kn}∞n=1 such that limn→∞ kn = k/2 and m ≤ k/4. Let Gn be the graph obtained
from graph P52P2 distorting its edges as follows: any edge of Gn which is a copy of P2 has
length m and both copies of P5 in G alternating edges of length kn and 3k/4 − 2m − kn/2
such that all cycle with length 4 has three edges of different length (see Figure 6.1). Consider
the vertices vn, wn ∈ V (Gn) for n ≥ 1 such that dGn

(vn, wn) = diamGn. We define G as the
union of {Gn}∞n=1 obtained by identifying vn with wn and vn+1 with wn+1, respectively for
n ≥ 1.
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Clearly, G is a (k,m)-edge-chordal graph. By Theorem 1.3.7 δ(G) = supn δ(Gn) since
{Gn}∞n=1 is the canonical T-decomposition of G. Besides, Theorem 6.1.3 gives that δ(G) ≤
m + k/4. Consider γ, γ′ the geodesics in Gn joining vn and wn such that B := γ ∪ γ′

is a cycle (these geodesics are drawn blue and gray, respectively in Figure 6.1). So, we
have δ(Gn) ≥ δ(B) ≥ kn/2 + m since there is Pn ∈ γ (shown red in Figure 6.1) with
dG(p, γ

′) = kn/2 +m. Thus, δ(G) = k/4 +m.

We have the following consequences of Theorem 6.1.3.

Corollary 6.1.5. If G is a (k,m)-edge-chordal graph with edges of integer length, then G is(
⌊(k − 1)/2⌋ /2 +m

)
-hyperbolic.

Proof. Let us consider any fixed geodesic triangle T = {x, y, z} in G. By Corollary 1.3.4
we can assume that T is a cycle. Consider γ a geodesic in T , without loss of generality
we can suppose that γ = [xy]. We may list the vertices in [xy] with edge-shortcuts of
length at most m as a sequence {vi}ni=1 such that [xy] = [xv1] ∪

(
∪n−1
i=1 [vivi+1]

)
∪ [vny].

Denote v0 = x, vn+1 = y and S[xy] = {vi}n+1
i=0 . Notice that if L([xy]) < k then S[xy] may

be has exactly two elements x and y. By Lemma 6.1.2 we have L([vivi+1]) < k/2 for
0 ≤ i ≤ n. Then, for every p ∈ [xy] there is i such that such that p ∈ [vivi+1], and so, we
have dG(p, [yz]∪ [zx]) ≤ dG(p, {vi, vi+1}) +m ≤

(
⌊(k − 1)/2⌋ /2 +m

)
. This finish the proof

since [xy] is an arbitrary geodesic of T .

The following example shows that the converse of Theorem 6.1.3 does not hold, i.e.,
hyperbolicity does not imply edge-chordality.

Example 6.1.6. Let P3 be the path graph with (adjacent) vertices v1, v2, v3, and G the
Cartesian product graph G = Z2P3 with L(e) = 1 for every e ∈ E(G). Since G and
Z are quasi-isometric, G is hyperbolic. One can check that G is 5-path-chordal, but it is
not edge-chordal, since for every natural number r ≥ 2 the geodesic squares with vertices
(0, v1), (r, v1), (r, v3), (0, v3) do not have edge-shortcuts (see Figure 6.2).

Theorem 6.1.8 below is a kind of reciprocal of Theorem 6.1.3. In order to prove it, we
need the following technical result.

Theorem 6.1.7. [37, p.92] Let us consider constants δ ≥ 0, r > 0, a δ-hyperbolic geodesic
metric space X and a finite sequence {xj}0≤j≤n in X with

dX(xj−1, xj+1) ≥ max{dX(xj−1, xj), dX(xj , xj+1)}+ 18δ + r

for every 0 < j < n. Then dX(x0, xn) ≥ rn.

Theorem 6.1.8. Every δ-hyperbolic graph is 90δ-path-chordal.

Proof. Seeking for a contradiction, assume that G is a δ-hyperbolic graph which is not 90δ-
path-chordal. Then there exists a cycle C in G with L(C) ≥ 90δ without shortcuts σ with
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0 r
v1

v3

Figure 6.2: Cartesian product graph G = Z2P3.

L(σ) ≤ 45δ. Consequently, any subcurve g of C with L(g) ≤ 45δ is a geodesic in G. Let us
define an integer n and a positive number ℓ by

n :=

⌈
2L(C)

45δ

⌉
, ℓ :=

L(C)

n
.

Since
2L(C)

45δ
≤

⌈
2L(C)

45δ

⌉
<

2L(C)

45δ
+ 1,

we deduce that

18δ < ℓ ≤ 45δ

2
.

Choose a finite sequence {xj}0≤j≤n in C with dX(xj , xj+1) = dC(xj , xj+1) = ℓ for every
0 ≤ j < n, and dX(xj−1, xj+1) = 2 dC(xj , xj+1) = 2ℓ for every 0 < j < n; then x0 = xn.

If we define r := ℓ− 18δ, then

2ℓ = ℓ+ 18δ + r,

dX(xj−1, xj+1) = max{dX(xj−1, xj), dX(xj , xj+1)}+ 18δ + r,

for every 0 < j < n. Then Theorem 6.1.7 gives 0 = dX(x0, xn) ≥ rn > 0, which is the
contradiction we were looking for; hence, we conclude that G is 90δ-path-chordal.

The following example shows that the reciprocal of Theorem 6.1.8 does not hold, i.e.,
path-chordality does not imply hyperbolicity.

Example 6.1.9. First of all, we assume that 0 ∈ N. Let
∑∞

n=0 an be a fixed convergent series
of positive real numbers such that a0 = 1 and

∑∞
n=0 an = S < ∞. Now, Let us consider

{Sn}∞n=0 the sequence of partial sums. Let G be the Cartesian product graph G = N×N with
L([(p, q), (p+ 1, q)]) = Sp+q = L([(p, q), (p, q + 1)]).
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Note that G is a path chordal graph, since each cycle C of G with L(C) > 4S has a vertex
v = (p+1, q+1) ∈ C such that [(p+1, q), v], [(p, q+1), v] ∈ E(G) are contained in C (i.e., v
is an upper-right vertex of C); then C has a shortcut σ ⊆ [(p+1, q), (p, q)]∪ [(p, q), (p, q+1)],
since Sp+q < Sp+q+1.

Let G0 be the Cartesian product graph G = N × N with L(e) = 1 for every e ∈ E(G0).
Since G0 and G are quasi-isometric, G is not hyperbolic.

6.2 Chordality in cubic graphs

We want to remark that by Theorems 1.3.5, 1.3.20 and 1.3.21, the study of the hyperbolicity
of graphs can be reduced to the study of the hyperbolicity of cubic graphs. Along this
Section we just consider (finite or infinite) graphs with edges of length 1.

In this section we obtain several results which guarantee the hyperbolicity of many path-
chordal cubic graphs (see Theorems 6.2.4 and 6.2.9).

A proper shortcut in C is a shortcut σ joining two vertices p, q ∈ C ∩ V (G) such that
σ ∩ C = {p, q} and σ is a geodesic. Note that in any cycle C of a r-path-chordal graph G
such that L(C) ≥ r there is a proper shortcut with length at least r/2. Therefore, we may
replace proper shortcut by shortcut in the definition of path-chordal graph.

Note that, since we just consider graphs with edges of length 1, every edge-shortcut is a
proper shortcut.

Theorem 6.2.1. Let G be any cubic graph. Then G is 4-path-chordal if and only if it is a
chordal.

Proof. If G is a chordal graph, then it is 4-path-chordal.
Assume now that G is a 4-path-chordal graph. Seeking for a contradiction, assume that

there exists a cycle C in G with L(C) ≥ 4 and such that C has no shortcut with length
1. Since L(C) ≥ 4 and G is 4-path-chordal, the set VC := {(u, v)| u, v ∈ V (G) ∩ C and
[uv] is a shortcut in C with length 2} is non-empty. Let (x, y) ∈ VC with dC(x, y) =
min{dC(u, v)| (u, v) ∈ VC}. Let g1 be a path joining x and y contained in C such that
L(g1) = dC(x, y). Define C1 := g1 ∪ [xy]; then L(C1) ≥ 2L([xy]) ≥ 4 and there exists a
proper shortcut ρ = [zw] in C1. Since it is not possible to have {z, w} ⊂ [xy] or {z, w} ⊂ g1,
without loss of generality we can assume that z ∈ g1 \ {x, y} and w ∈ [xy] \ {x, y}; since
L([xy]) = 2, then w is the midpoint of [xy].

Note that we have either L(ρ) = 1 or L(ρ) = 2.
If L(ρ) = 1, then dC(z, x) ≤ 2 and dC(z, y) ≤ 2, since [x, w]∪ [w, z] and [y, w]∪ [w, z] are

not shortcuts in C. We prove now that dC(z, x) = dC(z, y) = 1. Otherwise, by symmetry,
we can assume that dC(z, x) = 2; then the cycle C2 = [x, w] ∪ ρ ∪ [zx] has length 4 and
there exists a shortcut in C2; but since x, z, w have “full degree”, there is just one vertex in
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C2 that can be an endpoint of the shortcut. This is a contradiction and we conclude that
dC(z, x) = dC(z, y) = 1. Then dC(x, y) = 2 = L([xy]) and [xy] is not a shortcut in C, which
is a contradiction.

If L(ρ) = 2, then we have a shortcut in each of the two induced cycles on C1 by ρ; if v is
the midpoint of ρ, then v is an endpoint of the two shortcuts. Since G is a cubic graph, the
two shortcuts are [v, v0]∪ [v0, v1] and [v, v0]∪ [v0, v2] for some vertices v0 ∈ V (G) and v1, v2 ∈
V (G) ∩ g1. If g2 is the path contained in g1 joining v1 and v2, then γ = [v1, v0] ∪ [v0, v2] ∪ g2
is a cycle with L(γ) ≥ 4. Since γ does not have a shortcut, we obtain a contradiction.

Hence, we conclude that G is a chordal graph.

Lemma 6.2.2. Let G be a 4-path-chordal cubic graph and let C be any cycle in G with two
different shortcuts with length 1. Then, G is isomorphic to the complete graph with 4 vertices
K4.

Proof. By Theorem 6.2.1 any cycle of G with length grater than 3 has an edge-shortcut.
Let σ1 := [x, x′] and σ2 := [y, y′] be two different edge-shortcuts in C. Let g (respectively,
g′) be a subcurve of C joining x and y (respectively, x′ and y′) such that g ∩ g′ = ∅; then
C1 := σ1 ∪ g′ ∪ σ2 ∪ g is a cycle with L(C1) ≥ 4. The cycle C can be oriented either by:

(1) x → y → y′ → x′,

or
(2) x → y → x′ → y′.

Assume that C is oriented by (1). Then C1 has an edge-shortcut e1 joining g \ {x, y}
and g′ \ {x′, y′}. Let C2 be a cycle obtained by joining e1 with a path contained in C1.
Proceeding this way, we obtain a finite sequence of cycles C1, C2, . . . , Ck such that L(C) >
L(C1) > L(C2) > · · · > L(Ck) = 4 and the four vertices of Ck have full degree; then there is
no shortcut in Ck, which is a contradiction.

Assume now that C is oriented by (2). Let γ1, γ2 be two curves with γ1 ∪ γ2 = C and
γ1 ∩ γ2 = {x, x′}. If max{L(γ1), L(γ2)} > 2, then without loss of generality we can assume
that L(γ1) > 2; hence, γ1 ∪ [x, x′] is a cycle with L(γ1 ∪ [x, x′]) ≥ 4 and there is an edge-
shortcut e1 in γ1 ∪ [x, x′]; since x and x′ have full degree, [x, x′] ∩ e1 = ∅; consequently,
[x, x′] and e1 are two edge-shortcuts in C in the case (1), and we have proved that this is a
contradiction. Therefore, max{L(γ1), L(γ2)} ≤ 2; we conclude that L(γ1) = L(γ2) = 2, and
then G is isomorphic to K4.

Corollary 6.2.3. If G is a 4-path-chordal cubic graph, then G does not have cycles with
length greater than 4.

Proof. Seeking for a contradiction, assume that there exists a cycle C with length r > 4.
If r = 5, then there is an edge-shortcut [x, y] with dC(x, y) = 2. If g is the path in C

joining x and y with length 3, then [x, y]∪ g is a cycle with length 4 and there is no shortcut
in it since x and y have full degree. This is the contradiction we were looking for.
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If r > 5, then there is an edge-shortcut [x, y]. Let g1, g2 be two paths with g1 ∪ g2 = C
and g1 ∩ g2 = {x, y}. Without loss of generality we can assume that L(g1) ≥ L(g2); then
[x, y] ∪ g1 is a cycle with L([x, y] ∪ g1) ≥ 4 and there exists an edge-shortcut e in [x, y] ∪ g1.
Hence, [x, y] and e are two edge-shortcuts in C, and G is isometric to K4 by Lemma 6.2.2.
This is a contradiction.

Corollary 6.2.3 and Proposition 3.2.5 have the following consequence.

Theorem 6.2.4. If G is a 4-path-chordal cubic graph, then G is 1-hyperbolic.

The following result provides a simple and explicit formula for the hyperbolicity constant
of the 4-path-chordal cubic graphs.

Theorem 6.2.5. If G is a 4-path-chordal cubic graph, then δ(G) = c(G)/4.

Proof. By Proposition 3.2.5, δ(G) ≤ c(G)/4.
Let us prove the converse inequality. By Corollary 6.2.3 we have c(G) ≤ 4. If c(G) ≤ 3,

then δ(G) ≥ c(G)/4 by Lemma 3.2.2. Assume now that c(G) = 4 and consider a cycle g
with length 4. Let x, y be midpoints of edges in g with d(x, y) = 2 and paths g1, g2 with
g1 ∪ g2 = g and g1 ∩ g2 = {x, y}. Then {g1, g2} is a geodesic bigon in G. If p is the midpoint
of g1, then δ(G) ≥ d(p, g2) = d(p, {x, y}) = 1 = c(G)/4.

Recall that given an edge e = [u, v] in a graph G the edge contraction of G (relative
to e) is the graph obtained as follows: the edge e is removed and its two incident vertices
are merged into a new vertex w, where the edges incident to w each correspond to an edge
incident to either u or v. The following result characterizes in a simple and precise way the
4-path-chordal cubic graphs.

Theorem 6.2.6. G is a 4-path-chordal cubic graph if and only if G is isomorphic to one
of the following graphs:

1. a complete graph with 4 vertices K4,

2. a graph with exactly 2 vertices and a 3-multiple edge joining them,

3. a graph obtained from any tree with vertices of degree at most 3 such that we replace

• each vertex of degree 1 by a loop or a cycle graph with 3 vertices and a double
edge,

• each vertex of degree 2 by a complete graph with 4 vertices without one edge, or a
graph with two vertices and two multiple edges,

• each vertex in an arbitrary subset of vertices with degree 3 by a cycle graph C3.
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Proof. Assume that G is a 4-path-chordal cubic graph. If G is isomorphic to the graphs in
(1) or (2), then we have finished. Assume now that G is not isomorphic to the graphs in
(1) or (2). By Corollary 6.2.3 we have c(G) ≤ 4. Since G is a 4-path-chordal cubic graph,
the cycles with length 4 are pairwise disjoint, and the induced graph by the vertices of each
cycle with length 4 is isomorphic to a complete graph with 4 vertices without one edge.

Let G1 be the graph obtained by the contraction of every edge in every cycle with length
4; then G1 has a vertex of degree 2 corresponding to each cycle in G with length 4. Since
G1 is a graph with vertices of degree at most 3 and c(G) ≤ 3, its cycles with length 3 are
pairwise disjoint (except the cycles with different edges of the same double edge).

Let G2 be the graph obtained by the contraction of every edge in every cycle with length
3; then G2 has a vertex of degree 1 corresponding to each cycle graph with 3 vertices and a
double edge, and a vertex of degree 3 corresponding to each cycle graph with 3 vertices and
simple edges. Since G2 is a graph with vertices of degree at most 3 and c(G) ≤ 2, its cycles
with length 1 or 2 are pairwise disjoint.

Let G3 be the graph obtained by the contraction of every double edge and every loop;
then G3 has a vertex of degree 1 corresponding to each loop, and a vertex of degree 2
corresponding to each double edge. Then G3 is a tree with vertices of degree at most 3.

One can check easily the converse implication.

Lemma 6.2.7. If G is a 5-path-chordal cubic graph, then there are not proper shortcuts with
length 2 in any cycle of G.

Proof. We prove the Lemma by complete induction. It is clear that on every cycle in G with
length 5 the proper shortcuts have length 1. Now, we assume that

any cycle in G with length at most k does not have proper shortcuts with length 2.

Consider a cycle C in G with k + 1 vertices. Seeking for a contradiction, assume that C
has a proper shortcut σ := [xy] with length 2, and let v be the midpoint of σ. Let g1, g2 be
two paths in G joining x and y such that C = g1∪g2 and g1∩g2 = {x, y}. Consider the cycles
C1 := g1 ∪ σ and C2 := g2 ∪ σ. Let ρ1 be a proper shortcut in C1; by hypothesis, L(ρ1) = 1.
If ρ1 joins two vertices u and v in g1, then denote by g′1 the path joining u, v contained in C
and which contains g2; the cycle ρ1 ∪ g′1 verifies L(ρ1 ∪ g′1) ≤ k and has the proper shortcut
σ with length 2, which is a contradiction. Hence, ρ1 does not join two vertices in g1. Since x
and y have full degree, ρ1 = [v, z] with z ∈ g1 \ {x, y}. In a similar way, there exists another
shortcut [v, w] with w ∈ g2 \ {x, y}. Hence, deg(v) ≥ 4; this is the contradiction we were
looking for and we conclude that C does not have proper shortcuts with length 2.

By Lemma 6.2.7 any 5-path-chordal cubic graph G is (5, 1)-edge-chordal, and Corollary
6.1.5 gives that δ(G) ≤ 2. However, Theorem 6.2.9 below improves this inequality.

In order to obtain the hyperbolicity of any 5-path-chordal cubic graph we prove the
following result.
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Lemma 6.2.8. Let C be a cycle in a 5-path-chordal cubic graph G and [xy] a geodesic
contained in C. If there are two edge-shortcuts ρ1 := [x, u], ρ2 := [y, v] in C and there is no
other edge-shortcut in C starting in [xy], then [x, y], [u, v] ∈ E(G).

Furthermore, the cycle obtained by joining the shortcuts ρ1 and ρ2 with paths contained
in C has length 4.

Proof. Denote by γ the path contained in C which joins u and v such that x, y /∈ γ. Denote
by C1 the cycle C1 := ρ1∪[xy]∪ρ2∪γ. Notice that is suffices to prove that L(C1) = 4. Seeking
for a contradiction, assume that L(C1) > 4. Then, there is an edge-shortcut σ := [u1, v1] in
C1 joining two points of γ such that dγ(u1, v1) is maximum. Without loss of generality we
can suppose that γ can be oriented by u → u1 → v1 → v. Since G is a cubic graph, we have
ρi ∩ σ = ∅ for i ∈ {1, 2}; then we have that the cycle C2 := ρ1 ∪ [uu1] ∪ σ ∪ [v1v] ∪ ρ2 ∪ [xy]
has length grater than 5; since C2 does not have edge-shortcuts, we obtain the contradiction
we were looking for. Therefore, we conclude that L(C1) = 4 and [x, y], [u, v] ∈ E(G).

Theorem 6.2.9. If G is a 5-path-chordal cubic graph, then G is (3/2)-hyperbolic.

Proof. Fix a geodesic triangle T = {x, y, z} in G. By Theorem 1.3.23, in order to study δ(G)
we can assume that T is a cycle with x, y, z ∈ J(G). If L(T ) ≤ 6, then the three geodesic
sides of T have length at most 3 and, consequently, δ(T ) ≤ 3/2. Assume now that L(T ) ≥ 7.
By Lemma 6.2.7 there exists an edge-shortcut in T . By symmetry, it suffices to prove that
for every p ∈ [xy] we have dG(p, [yz] ∪ [zx]) ≤ 3/2.

Assume first that there is no edge-shortcut in T starting in [xy]. Since G is (5, 1)-edge-
chordal, by Lemma 6.1.2 we have that L([xy]) ≤ 2; therefore, we have for every p ∈ [xy],

dG(p, [yz] ∪ [zx]) ≤ dG(p, {x, y}) ≤ 1.

Assume now that there is an edge-shortcut in T joining [xy] and [xz], but there is no
edge-shortcut joining [xy] and [yz]. Let σ1 be an edge-shortcut in T joining P1 and Q1, where
P1 ∈ [xy], Q1 ∈ [xz] and P1 is the closest vertex to x with an edge-shortcut. Consider the
cycle C := [xP1] ∪ σ1 ∪ [Q1x]. Then, C does not have edge-shortcuts; therefore, L(C) ≤ 4
and L([xP1]) + L([xQ1]) ≤ 3. Hence, since L([xP1]) ≤ 1 + L([xQ1]), we have L([xP1]) ≤ 2,
L([xP1])+L([P1Q1]) ≤ 3 and we obtain dG(p, [yz]∪[zx]) ≤ dG(p, [zx]) ≤ dG(p, {x,Q1}) ≤ 3/2
for every p ∈ [xP1]. Let n be the exact number of edge-shortcuts in T joining [xy] and [xz].
Let P1, . . . , Pn ∈ [xy], Q1, . . . , Qn ∈ [xz] with [Pi, Qi] ∈ E(G) for 1 ≤ i ≤ n and L([xPi]) <
L([xPi+1]) for 1 ≤ i < n. Hence, by Lemma 6.2.8 we have that [Pi, Pi+1], [Qi, Qi+1] ∈ E(G)
for every 1 ≤ i < n; thus, for every p ∈ [PiPi+1], we obtain dG(p, [yz] ∪ [zx]) ≤ dG(p, [zx]) ≤
dG(p, {Qi, Qi+1}) ≤ 3/2.

Furthermore, since there is no edge-shortcut in T from [Pny], by Lemma 6.1.2 we have that
L([Pny]) ≤ 2; therefore, for every p ∈ [Pny] we have dG(p, [yz]∪ [zx]) ≤ dG(p, {Qn, y}) ≤ 3/2.
Hence, we obtain

dG(p, [yz] ∪ [zx]) ≤ 3/2, for every p ∈ [xy].
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Finally, assume that there are shortcuts in T joining [xy] with [xz], and [xy] with [yz]. Let
m be the exact number of edge-shortcuts in T joining [xy] and [yz]. Let R1, . . . , Rm ∈ [xy],
S1, . . . , Sm ∈ [yz] with [Ri, Si] ∈ E(G) for 1 ≤ i ≤ m and L([yRi]) < L([yRi+1]) for
1 ≤ i < m. Let 1 ≤ k ≤ m with [PnRk]∩ {R1, . . . , Rm} = Rk; by Lemma 6.2.8 we have that
[PnRk] is an edge. So, a similar argument to the one in the previous case gives

dG(p, [yz] ∪ [zx]) ≤ 3/2, for every p ∈ [xy].

The equality in Theorem 6.2.9 is attained by the Cartesian product graphs P22Pn for
n ≥ 4 with the appropriated addition of two multiple edges (see Figure 6.3).

Figure 6.3: Graphs P22Pn with appropriated addition of two multiple edges

The following example shows that the converse of Theorem 6.1.8 does not hold even for
cubic graphs, i.e., path-chordality does not imply hyperbolicity in cubic graphs.

Example 6.2.10. Consider a graph G which is the 1-skeleton of the semiregular tessellation
of the plane obtained by octagons and squares, see Figure 6.4.

Clearly, G is a cubic graph; we show now that G is a 18-path-chordal graph. Let us
consider a cycle C in G with length greater than 17. Let RC be the compact region in R2

whose boundary is C. We pay attention to the relative position of the octagons contained
in RC . Notice that we have either:

1. there is an octagon E in RC intersecting C such that either (a) neither of the two
octagons which are horizontal neighbors of E are contained in RC or (b) neither of the
two octagons which are vertical neighbors of E are contained in RC or (c) both of the
above, simultaneously,

2. there are three octagons in RC intersecting C to form a “right angle” (i.e., there is a
octagon E in RC intersecting C, the “corner”, such that one of the octagons which are
horizontal neighbors of E is contained in RC and the other one is not contained in RC ,
and one of the octagons which are vertical neighbors of E is contained in RC and the
other one is not contained in RC) and (1) does not hold,
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Figure 6.4: Semiregular tessellation of R2 whose it 1-skeleton is a cubic 18-path-chordal
graph.

3. there are four octagons in RC intersecting C to form a “right angle without the corner”,
and (1) and (2) do not hold.

If (1) holds, then E \C is a shortcut in C with length at most 3. If (2) holds, then C has a
shortcut of length at most 5 (delimiting the octagon at the corner). If (3) holds, then C has
a shortcut of length at most 9 (delimiting the two octagons closest to the corner). This prove
that G is 18-path-chordal. Finally, by Theorem 5.1.6 we have that G is not hyperbolic.



Chapter 7

Hyperbolicity in graph join and
corona of graphs.

Throughout this Chapter, G = (V,E) denotes a simple graph (not necessarily connected)
such that every edge has length 1. These properties guarantee that any connected graph
(or any connected component) is a geodesic metric space. We denote the degree of a vertex
v ∈ V in G by deg(v) ≤ ∞, and the maximum degree of G by ∆G := supv∈V deg(v). If x, y
are in different connected components of G, we define dG(x, y) = ∞.

Since deciding whether or not a graph is hyperbolic is usually very difficult, it is interest-
ing to study the hyperbolicity of particular classes of graphs. The papers [7, 13, 16, 17, 24,
59, 63, 65, 69, 77] study the hyperbolicity of, respectively, complement of graphs, chordal
graphs, strong product graphs, lexicographic product graphs, line graphs, Cartesian product
graphs, cubic graphs, tessellation graphs, short graphs and median graphs.

In [16, 17, 59] the authors characterize the hyperbolic product graphs (for strong product,
lexicographic product and Cartesian product) in terms of properties of the factor graphs. In
this Chapter we characterize the hyperbolic product graphs for graph join G1 ⊎G2 and the
corona G1 ⋄G2: G1 ⊎G2 is always hyperbolic, and G1 ⋄G2 is hyperbolic if and only if G1 is
hyperbolic (see Corollaries 7.2.1 and 7.3.3). Furthermore, we obtain simple formulae for the
hyperbolicity constant of the graph join G1⊎G2 and the corona G1⋄G2 (see Theorems 7.2.14
and 7.3.2). In particular, Theorem 7.3.2 states that δ(G1 ⋄ G2) = max{δ(G1), δ(G2 ⊎ E1)},
where E1 is a graph with just one vertex. We want to remark that it is not usual at all to
obtain explicit formulae for the hyperbolicity constant of large classes of graphs.

7.1 Distance in graph join

In order to estimate the hyperbolicity constant of the graph join G1 ⊎G2 of G1 and G2, we
will need an explicit formula for the distance between two arbitrary points. We will use the
definition given by Harary in [41].

85
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Definition 7.1.1. Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) two graphs with
V (G1)∩V (G2) = ∅. The graph join G1⊎G2 of G1 and G2 has V (G1⊎G2) = V (G1)∪V (G2)
and two different vertices u and v of G1 ⊎G2 are adjacent if u ∈ V (G1) and v ∈ V (G2), or
[u, v] ∈ E(G1) or [u, v] ∈ E(G2).

From the definition, it follows that the graph join of two graphs is commutative. Figure
7.1 shows the graph join of two graphs.

⊎
=

Figure 7.1: Graph join of two graphs C3 ⊎ P3.

Remark 7.1.2. For every graphs G1, G2 we have that G1 ⊎G2 is a connected graph with a
subgraph isomorphic to a complete bipartite graph with V (G1) and V (G2) as its parts.

Note that, from a geometric viewpoint, the graph join G1⊎G2 is obtained as an union of
the graphs G1, G2 and the complete bipartite graph K(G1, G2) linking the vertices of V (G1)
and V (G2).

The following result allows to compute the distance between any two points in G1 ⊎G2.
Furthermore, this result provides information about the geodesics in the graph join.

Proposition 7.1.3. For every graphs G1, G2 we have:

(a) If x, y ∈ Gi (i ∈ {1, 2}), then

dG1⊎G2
(x, y) = min

{
dGi

(x, y), dGi

(
x, V (Gi)

)
+ 2 + dGi

(
V (Gi), y

)}
.

(b) If x ∈ Gi and y ∈ Gj with i 6= j, then

dG1⊎G2
(x, y) = dGi

(
x, V (Gi)

)
+ 1 + dGj

(
V (Gj), y

)
.

(c) If x ∈ Gi and y ∈ K(G1, G2), then

dG1⊎G2
(x, y) = min

{
dGi

(x, Yi) + dG1⊎G2
(Yi, y), dGi

(
x, V (Gi)

)
+ 1 + dG1⊎G2

(Yj, y)
}
,

where y ∈ [Y1, Y2] with Yi ∈ V (Gi) and Yj ∈ V (Gj).
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(d) If x, y ∈ K(G1, G2), then

dG1⊎G2
(x, y) = min{dK(G1,G2)(x, y),M},

where x ∈ [X1, X2], y ∈ [Y1, Y2] with X1, Y1 ∈ V (G1) and X2, Y2 ∈ V (G2), and
M = min{dG1⊎G2

(x,X1) + dG1
(X1, Y1) + dG1⊎G2

(Y1, y), dG1⊎G2
(x,X2) + dG2

(X2, Y2) +
dG1⊎G2

(Y2, y)}.
Proof. We will prove each item separately. In item (a), if i 6= j, we may consider the two
shortest possible paths to go from x to y such that either is contained in Gi or intersects Gj

(and then it intersects Gj just in a single vertex). In item (b), since any path in G1 ⊎ G2

joining x and y contains at less one edge in K(G1, G2), we have a geodesic when the path
contains an edge joining a closest vertex to x in V (Gi) and a closest vertex to y in V (Gj).
In item (c) we may consider the two shortest possible paths from x to y that contain either
Y1 or Y2. Finally, in item (d) we may consider the three shortest possible paths from x to y
such that either is contained in K(G1, G2) or contains at lest an edge in E(G1) or contains
at lest an edge in E(G2).

Proposition 7.1.3 gives the following result.

Proposition 7.1.4. Let G1, G2 be two graph and let Γ1,Γ2 be isometric subgraphs to G1 and
G2, respectively. Then, Γ1 ⊎ Γ2 is an isometric subgraph to G1 ⊎G2.

The following result allows to compute the diameter of the set of vertices in a graph join.

Proposition 7.1.5. For every graphs G1, G2 we have 1 ≤ diamV (G1 ⊎ G2) ≤ 2. Further-
more, diamV (G1 ⊎G2) = 1 if and only if G1 and G2 are complete graphs.

Proof. Since V (G1), V (G2) 6= ∅, diamV (G1 ⊎ G2) ≥ 1. Besides, if u, v ∈ V (G1 ⊎ G2), we
have dG1⊎G2

(u, v) ≤ dK(G1,G2)(u, v) ≤ 2.
In order to finish the proof note that on the one hand, if G1 and G2 are complete graphs,

then G1 ⊎ G2 is a complete graph with at least 2 vertices and diamV (G1 ⊎ G2) = 1. On
the other hand, if diamV (G1 ⊎ G2) = 1, then for every two vertices u, v ∈ V (G1) we have
[u, v] ∈ E(G1); by symmetry, we have the same result for every u, v ∈ V (G2).

Since diamV (G) ≤ diamG ≤ diamV (G)+1 for every graph G, the previous proposition
has the following consequence.

Corollary 7.1.6. For every graphs G1, G2 we have 1 ≤ diamG1 ⊎G2 ≤ 3.

Proposition 7.1.3 and Corollary 7.1.6 give the following results. Given a graph G, we say
that x ∈ G is a midpoint (of an edge) if dG(x, V (G)) = 1/2.

Corollary 7.1.7. Let G1, G2 be two graphs. If dG1⊎G2
(x, y) = 3, then x, y are two midpoints

in Gi with dGi
(x, y) ≥ 3 for some i ∈ {1, 2}.

Corollary 7.1.8. Let G1, G2 be two graphs. Then, diamG1 ⊎ G2 = 3 if and only if there
are two midpoints x, y in Gi with dGi

(x, y) ≥ 3 for some i ∈ {1, 2}.
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7.2 Hyperbolicity constant of the graph join of two

graphs

In this section we obtain some bounds for the hyperbolicity constant of the graph join of two
graphs. These bounds allow to prove that the joins of graphs are always hyperbolic with a
small hyperbolicity constant.

We have the following consequence of Corollary 7.1.6 and Theorem 1.3.8.

Corollary 7.2.1. For every graphs G1, G2, the graph join G1⊎G2 is hyperbolic with δ(G1⊎
G2) ≤ 3/2, and the inequality is sharp.

Theorem 7.2.13 characterizes the graph join of two graphs for which the equality in the
previous corollary is attained.

Theorem 7.2.2. For every graphs G1, G2, we have

δ(G1 ⊎G2) = max{δ(Γ1 ⊎ Γ2) : Γi is isometric to Gi for i = 1, 2}.

Proof. By Proposition 7.1.4 and Lemma 1.3.2 we have δ(G1 ⊎ G2) ≥ δ(Γ1 ⊎ Γ2) for any
isometric subgraph Γi of Gi for i = 1, 2. Besides, since any graph is an isometric subgraph
of itself we obtain the equality by taking Γ1 = G1 and Γ2 = G2.

We have the following consequence for the hyperbolicity constant of the joins of graphs.

Proposition 7.2.3. For every graphs G1, G2 the graph join G1 ⊎ G2 is hyperbolic with
hyperbolicity constant δ(G1 ⊎G2) in {0, 3/4, 1, 5/4, 3/2}.

If G1 and G2 are isomorphic, then we write G1 ≃ G2. It is clear that if G1 ≃ G2, then
δ(G1) = δ(G2). The n-vertex edgeless graph (n ≥ 1) or empty graph is a graph without
edges and with n vertices, and it is commonly denoted as En.

The following result allows to characterize the joins of graphs with hyperbolicity constant
less than one in terms of its factor graphs.

Theorem 7.2.4. Let G1, G2 be two graphs.

(1) δ(G1⊎G2) = 0 if and only if G1 and G2 are empty graphs and one of them is isomorphic
to E1.

(2) δ(G1 ⊎G2) = 3/4 if and only if G1 ≃ E1 and ∆G2
= 1, or G2 ≃ E1 and ∆G1

= 1.

Proof.
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(1) By Theorem 1.3.16 it suffices to characterize the joins of graphs which are trees. If G1

and G2 are empty graphs and one of them is isomorphic to E1, then it is clear that
G1 ⊎G2 is a tree. Assume now that G1 ⊎G2 is a tree. If G1 and G2 have at least two
vertices then G1 ⊎ G2 has a cycle with length four. Thus, G1 or G2 is isomorphic to
E1. Without loss of generality we can assume that G1 ≃ E1. Note that if G2 has at
least one edge then G1 ⊎ G2 has a cycle with length three. Then, G2 ≃ En for some
n ∈ N.

(2) By Theorem 1.3.16 it suffices to characterize the joins of graphs with circumference
three. If G1 ≃ E1 and ∆G2

= 1, or G2 ≃ E1 and ∆G1
= 1, then it is clear that

c(G1 ⊎ G2) = 3. Assume now that c(G1 ⊎ G2) = 3. If G1, G2 both have at least
two vertices then G1 ⊎ G2 contains a cycle with length four and so c(G1 ⊎ G2) ≥ 4.
Therefore, G1 or G2 is isomorphic to E1. Without loss of generality we can assume
that G1 ≃ E1. Note that if ∆G2

≥ 2 then there is an isomorphic subgraph to E1 ⊎ P3

in G1 ⊎ G2; thus, G1 ⊎ G2 contains a cycle with length four. So, we have ∆G2
≤ 1.

Besides, since G2 is a non-empty graph by (1), we have ∆G2
≥ 1.

Theorems 1.3.19 and 7.2.4 show that the family of graphs E1 ⊎ G when G belongs to
the set of graphs is a representative collection of joins of graphs since their hyperbolicity
constants take all possible values.

Theorem 1.3.18 has the following consequence for joins of graphs.

Lemma 7.2.5. Let G1, G2 be two graphs. If δ(G1) > 1, then δ(G1 ⊎G2) > 1.

Proof. By Theorem 1.3.18, there exist a cycle σ in G1 ⊎ G2 (contained in G1) with length
L(σ) ≥ 5 and a vertex w ∈ σ such that degσ(w) = 2. Thus, Theorem 1.3.18 gives δ(G1 ⊎
G2) > 1.

Note that the converse of Lemma 7.2.5 does not hold, since δ(E1) = δ(P4) = 0 and we
can check that δ(E1 ⊎ P4) = 5/4.

Corollary 7.2.6. Let G1, G2 be two graphs. Then δ(G1⊎G2) ≥ min
{
5/4,max{δ(G1), δ(G2)}

}
.

Proof. By symmetry, it suffices to show δ(G1 ⊎ G2) ≥ min{5/4, δ(G1)}. If δ(G1) > 1, then
the inequality holds by Lemma 7.2.5. If δ(G1) = 1, then there exists a cycle isomorphic
to C4 in G1 ⊂ G1 ⊎ G2; hence, δ(G1 ⊎ G2) ≥ 1. If δ(G1) = 3/4, then there exists a cycle
isomorphic to C3 in G1 ⊂ G1 ⊎ G2; hence, δ(G1 ⊎ G2) ≥ 3/4. The inequality is direct if
δ(G1) = 0.

The following results allow to characterize the joins of graphs with hyperbolicity constant
one in terms of G1 and G2.
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Lemma 7.2.7. Let G be any graph. Then, δ(E1⊎G) ≤ 1 if and only if every path η joining
two vertices of G with L(η) = 3 satisfies degη(w) ≥ 2 for every vertex w ∈ V (η).

Note that if every path η joining two vertices of G with L(η) = 3 satisfies degη(w) ≥ 2
for every vertex w ∈ V (η), then the same result holds for L(η) ≥ 3 instead of L(η) = 3.

Proof. Let v be the vertex in E1.
Assume first that δ(E1 ⊎ G) ≤ 1. Seeking for a contradiction, assume that there is a

path η joining two vertices of G with L(η) = 3 and one vertex w′ ∈ V (η) with degη(w
′) = 1.

Consider now the cycle σ obtained by joining the endpoints of η with v. Note that w′ ∈ σ
and degσ(w

′) = 2; therefore, Theorem 1.3.18 gives δ(E1 ⊎G) > 1, which is a contradiction.
Assume now that every path η joining two vertices of G with L(η) = 3 satisfies degη(w) ≥

2 for every vertex w ∈ V (η). Note that if G does not have paths isomorphic to P4 then there
is no cycle in E1 ⊎ G with length greater than 4 and so, δ(E1 ⊎ G) ≤ 1. We are going
to prove now that for every cycle σ in G with L(σ) ≥ 5 we have degσ(w) ≥ 3 for every
vertex w ∈ V (σ). Let σ be any cycle in E1 ⊎ G with L(σ) ≥ 5. If v ∈ σ, then σ ∩ G is a
subgraph of G isomorphic to Pn for n = L(σ)−1, and degσ(v) = n ≥ 4. Since L(σ∪G) ≥ 3,
degσ∩G(w) ≥ 2 for every w ∈ V (σ ∩ G) by hypothesis, and we conclude degσ(w) ≥ 3 for
every w ∈ V (σ) \ {v}. If v /∈ σ, let w be any vertex in σ and let P (w) be a path with length
3 contained in σ and such that w is an endpoint of P (w). By hypothesis degP (w)(w) ≥ 2;
since w has a neighbor w′ ∈ V (σ \ P (w)), degσ(w) ≥ 3 for any w ∈ V (σ). Then, Theorem
1.3.18 gives the result.

Note that if a graph G verifies diamG ≤ 2 then every path η joining two vertices of G
with L(η) = 3 satisfies degη(w) ≥ 2 for every vertex w ∈ V (η). The converse does not hold,
since in the disjoint union C3 ∪ C3 of two cycles C3 any path with length 3 is a cycle and
diamC3 ∪ C3 = ∞. However, these two conditions are equivalent if G is connected.

If G is a graph with connected components {Gj}, we define

diam∗G := sup
j

diamGj .

Note that diam∗G = diamG if G is connected; otherwise, diamG = ∞. Also, diam∗G > 1
is equivalent to ∆G ≥ 2. We also have the following result:

Lemma 7.2.8. Let G be any graph. Then diam∗G ≤ 2 if and only if every η joining two
vertices of G with L(η) = 3 satisfy degη(w) ≥ 2 for every w ∈ V (G).

Lemma 7.2.9. Let G1 and G2 be two graphs with at least two vertices. Then, δ(G1⊎G2) = 1
if and only if diamGi ≤ 2 or Gi is an empty graph for i = 1, 2.

Proof. Assume that δ(G1⊎G2) = 1. Seeking for a contradiction, assume that diamG1 ≥ 5/2
and G1 is a non-empty graph or diamG2 ≥ 5/2 and G2 is a non-empty graph. By symmetry,
without loss of generality we can assume that diamG1 ≥ 5/2 and G1 is a non-empty graph;
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hence, there are a vertex v ∈ V (G1) and a midpoint p ∈ [w1, w2] with dG1
(v, p) ≥ 5/2.

Consider a cycle σ in G1 ⊎G2 containing the vertex v, the edge [w1, w2] and two vertices of
G2, with L(σ) = 5. We have degσ(v) = 2. Thus, Theorem 1.3.18 gives δ(G1 ⊎G2) > 1. This
contradicts our assumption, and so, we obtain diamG1 ≤ 2.

Assume now that diamGi ≤ 2 or Gi is an empty graph for i = 1, 2. Since G1 and G2

have at least two vertices, there exists a cycle isomorphic to C4 in G1 ⊎G2.
First of all, if G1 and G2 are empty graphs then Theorem 1.3.19 gives δ(G1 ⊎G2) = 1.
Without loss of generality we can assume that G1 is a non-empty graph, then G1 satisfies

diamG1 ≤ 2.
Assume that G2 is an empty graph. Let σ be any cycle in G1 ⊎ G2 with L(σ) ≥ 5.

Since σ contains at least three vertices in G1, we have degσ(v) = |V (G1) ∩ σ| ≥ 3 for every
v ∈ V (G2) ∩ σ. Besides, if |V (G2) ∩ σ| ≥ 3 then degσ(w) ≥ |V (G2) ∩ σ| ≥ 3 for every
w ∈ V (G1) ∩ σ. If |V (G2) ∩ σ| = 1, then η := σ ∩ G1 is a path in G1 with L(η) ≥ 3, and
so, degη(w) ≥ 2 and degσ(w) ≥ 3 for every w ∈ V (η). If |V (G2) ∩ σ| = 2, then σ ∩ G1 is
the union of two paths and |V (G1)∩ σ| ≥ 3; since diamG1 ≤ 2, we have degG1∩σ(w) ≥ 1 for
every w ∈ V (G1)∩σ (otherwise there are a vertex w ∈ V (G1)∩σ and a midpoint p ∈ G1∩σ
with dG1

(w, p) > 2). Then, we have degσ(v) ≥ 3 for every v ∈ V (σ) and so, we obtain
δ(G1 ⊎G2) = 1 by Theorem 1.3.17.

Finally, assume that diamG2 ≤ 2. By Theorem 1.3.23 it suffices to consider geodesic
triangles T = {x, y, z} in G1 ⊎ G2 that are cycles with x, y, z ∈ J(G1 ⊎ G2). So, since
diamG1, diamG2 ≤ 2, Proposition 7.1.3 gives that L([xy]), L([yz]), L([zx]) ≤ 2; thus, for
every α ∈ [xy], dG1⊎G2

(α, [yz] ∪ [zx]) ≤ dG1⊎G2
(α, {x, y}) ≤ L([xy])/2. Hence, δ(T ) ≤

max{L([xy]), L([yz]), L([zx])}/2 ≤ 1 and so, δ(G1 ⊎G2) ≤ 1. Since G1 and G2 have at least
two vertices, by Theorem 1.3.16 we have δ(G1⊎G2) ≥ 1 and we conclude δ(G1⊎G2) = 1.

The following result characterizes the joins of graphs with hyperbolicity constant one.

Theorem 7.2.10. Let G1, G2 be any two graphs. Then the following statements hold:

• Assume that G1 ≃ E1. Then δ(G1 ⊎G2) = 1 if and only if 1 < diam∗G2 ≤ 2.

• Assume that G1 and G2 have at least two vertices. Then δ(G1 ⊎G2) = 1 if and only if
diamGi ≤ 2 or Gi is an empty graph for i = 1, 2.

Proof. We have the first statement by Theorem 7.2.4 and Lemmas 7.2.7 and 7.2.8. The
second statement is just Lemma 7.2.9.

In order to compute the hyperbolicity constant of any graph join we are going to char-
acterize the joins of graphs with hyperbolicity constant 3/2.

Lemma 7.2.11. Let G1, G2 be any two graphs. If δ(G1 ⊎ G2) = 3/2, then each geodesic
triangle T = {x, y, z} in G1 ⊎G2 that is a cycle with x, y, z ∈ J(G1 ⊎G2) and δ(T ) = 3/2 is
contained in either G1 or G2.
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Proof. Seeking for a contradiction assume that there is a geodesic triangle T = {x, y, z} in
G1 ⊎G2 that is a cycle with x, y, z ∈ J(G1 ⊎G2) and δ(T ) = 3/2 which contains vertices in
both factors G1, G2. Without loss of generality we can assume that there is p ∈ [xy] with
dG1⊎G2

(p, [yz]∪ [zx]) = 3/2, and so, L([xy]) ≥ 3. Hence, dG1⊎G2
(x, y) = 3 by Corollary 7.1.6,

and by Corollary 7.1.7 we have that x, y are midpoints either in G1 or in G2, and so, p is a
vertex in G1 ⊎ G2. Without loss of generality we can assume that x, y ∈ G1. Let Vx be the
closest vertex to x in [xz]∪ [zy]. If p ∈ V (G2) then dG1⊎G2

(p, [yz]∪ [zx]) ≤ dG1⊎G2
(p, Vx) = 1.

This contradicts our assumption. If p ∈ V (G1) then since T contains vertices in both factors,
we have dG1⊎G2

(p, [yz]∪ [zx]) ≤ dG1⊎G2

(
(p, V (G2)∩ {[yz]∪ [zx]}

)
= 1. This also contradicts

our assumption, and so, we have the result.

Corollary 7.2.12. Let G1, G2 be any two graphs. If δ(G1⊎G2) = 3/2, then max{δ(G1), δ(G2)} ≥
3/2.

The following families of graphs allow to characterize the joins of graphs with hyperbol-
icity constant 3/2. Denote by Cn the cycle graph with n ≥ 3 vertices and by V (Cn) :=

{v(n)1 , . . . , v
(n)
n } the set of their vertices such that [v

(n)
n , v

(n)
1 ] ∈ E(Cn) and [v

(n)
i , v

(n)
i+1] ∈ E(Cn)

for 1 ≤ i ≤ n − 1. Let us consider C(1)
6 the set of graphs obtained from C6 by addying a

(proper or not) subset of the set of edges
{
[v

(6)
2 , v

(6)
6 ], [v

(6)
4 , v

(6)
6 ]

}
. Let us define the set of

graphs

F6 := {G containing, as induced subgraph, an isomorphic graph to some element of C(1)
6 }.

Let us consider C(1)
7 the set of graphs obtained from C7 by addying a (proper or not) subset

of the set of edges
{
[v

(7)
2 , v

(7)
6 ], [v

(7)
2 , v

(7)
7 ], [v

(7)
4 , v

(7)
6 ], [v

(7)
4 , v

(7)
7 ]

}
. Define

F7 := {G containing, as induced subgraph, an isomorphic graph to some element of C(1)
7 }.

C(1)
6 C(1)

7

Figure 7.2: Generators of C(1)
6 and C(1)

7 .

Let us consider C(1)
8 the set of graphs obtained from C8 by addying a (proper or not)

subset of the set
{
[v

(8)
2 , v

(8)
6 ], [v

(8)
2 , v

(8)
8 ], [v

(8)
4 , v

(8)
6 ], [v

(8)
4 , v

(8)
8 ]

}
. Also, consider C(2)

8 the set
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of graphs obtained from C8 by addying a (proper or not) subset of
{
[v

(8)
2 , v

(8)
8 ], [v

(8)
4 , v

(8)
6 ],

[v
(8)
4 , v

(8)
7 ], [v

(8)
4 , v

(8)
8 ]

}
. Define

F8 := {G containing, as induced subgraph, an isomorphic graph to some element of C(1)
8 ∪C(2)

8 }.

Let us consider C(1)
9 the set of graphs obtained from C9 by addying a (proper or not) subset

of the set of edges
{
[v

(9)
2 , v

(9)
6 ], [v

(9)
2 , v

(9)
9 ], [v

(9)
4 , v

(9)
6 ], [v

(9)
4 , v

(9)
9 ]

}
. Define

F9 := {G containing, as induced subgraph, an isomorphic graph to some element of C(1)
9 }.

Finally, we define the set F by

F := F6 ∪ F7 ∪ F8 ∪ F9.

Note that F6, F7, F8 and F9 are not disjoint sets of graphs.

C(1)
8 C(2)

8 C(1)
9

Figure 7.3: Generators of C(1)
8 , C(2)

8 and C(1)
9 .

The following theorem characterizes the joins of graphs G1 and G2 with δ(G1⊎G2) = 3/2.
For any non-empty set S ⊂ V (G), the induced subgraph of S will be denoted by 〈S〉.

Theorem 7.2.13. Let G1, G2 be any two graphs. Then, δ(G1 ⊎ G2) = 3/2 if and only if
G1 ∈ F or G2 ∈ F .

Proof. Assume first that δ(G1 ⊎ G2) = 3/2. By Theorem 1.3.23 there is a geodesic triangle
T = {x, y, z} in G1 ⊎ G2 that is a cycle with x, y, z ∈ J(G1) and δ(T ) = 3/2. By Lemma
7.2.11, T is contained either in G1 or in G2. Without loss of generality we can assume that
T is contained in G1. Without loss of generality we can assume that there is p ∈ [xy] with
dG1⊎G2

(p, [yz] ∪ [zx]) = 3/2, and by Corollary 7.1.6, L([xy]) = 3. Hence, by Corollary 7.1.7
we have that x, y are midpoints in G1, and so, p ∈ V (G1). Since L([yz]) ≤ 3, L([zx]) ≤ 3
and L([yz]) + L([zx]) ≥ L([xy]), we have 6 ≤ L(T ) ≤ 9.

Assume that L(T ) = 6. Denote by {v1, . . . , v6} the vertices in T such that T =⋃6
i=1[vi, vi+1] with v7 := v1. Without loss of generality we can assume that x ∈ [v1, v2],
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y ∈ [v4, v5] and p = v3. Since dG1⊎G2
(x, y) = 3, we have that 〈{v1, . . . , v6}〉 contains neither

[v1, v4], [v1, v5], [v2, v4] nor [v2, v5]; besides, since dG1⊎G2
(p, [yz] ∪ [zx]) > 1 we have that

〈{v1, . . . , v6}〉 contains neither [v3, v1], [v3, v5] nor [v3, v6]. Note that [v2, v6], [v4, v6] may be
contained in 〈{v1, . . . , v6}〉. Therefore, G1 ∈ F6.

Assume that L(T ) = 7 and G1 /∈ F6. Denote by {v1, . . . , v7} the vertices in T such that
T =

⋃7
i=1[vi, vi+1] with v8 := v1. Without loss of generality we can assume that x ∈ [v1, v2],

y ∈ [v4, v5] and p = v3. Since dG1⊎G2
(x, y) = 3, we have that 〈{v1, . . . , v7}〉 does not contain

neither [v1, v4], [v1, v5], [v2, v4], [v2, v5]; besides, since dG1⊎G2
(p, [yz] ∪ [zx]) > 1 we have that

〈{v1, . . . , v7}〉 does not contain neither [v3, v1], [v3, v5], [v3, v6], [v3, v7]. Since G1 /∈ F6, [v1, v6]
and [v5, v7] are not contained in 〈{v1, . . . , v7}〉. Note that [v2, v6], [v2, v7], [v4, v6], [v4, v7] may
be contained in 〈{v1, . . . , v7}〉. Hence, G1 ∈ F7.

Assume that L(T ) = 8 and G1 /∈ F6 ∪ F7. Denote by {v1, . . . , v8} the vertices in T
such that T =

⋃8
i=1[vi, vi+1] with v9 := v1. Without loss of generality we can assume that

x ∈ [v1, v2], y ∈ [v4, v5] and p = v3. Since dG1⊎G2
(x, y) = 3, we have that 〈{v1, . . . , v8}〉 does

not contain neither [v1, v4], [v1, v5], [v2, v4], [v2, v5]; besides, since dG1⊎G2
(p, [yz]∪ [zx]) > 1 we

have that 〈{v1, . . . , v8}〉 does not contain neither [v3, v1], [v3, v5], [v3, v6], [v3, v7], [v3, v8]. Since
G1 /∈ F6 ∪F7, [v1, v6], [v1, v7], [v5, v7], [v5, v8] and [v6, v8] are not contained in 〈{v1, . . . , v8}〉.
Since T is a geodesic triangle we have that z ∈ {v6,7, v7, v7,8} with v6,7 and v7,8 the midpoints
of [v6, v7] and [v7, v8], respectively. If z = v7 then 〈{v1, . . . , v8}〉 does not contain neither
[v2, v7], [v4, v7]. Note that [v2, v6], [v2, v8], [v4, v6], [v4, v8] may be contained in 〈{v1, . . . , v8}〉.
If z = v6,7 then 〈{v1, . . . , v8}〉 does not contain neither [v2, v6], [v2, v7]. Note that [v2, v8],
[v4, v6], [v4, v7], [v4, v8] may be contained in 〈{v1, . . . , v8}〉. By symmetry, we obtain an
equivalent result for z = v7,8. Therefore, G1 ∈ F8.

Assume that L(T ) = 9 and G1 /∈ F6 ∪ F7 ∪ F8. Denote by {v1, . . . , v9} the vertices in T
such that T =

⋃9
i=1[vi, vi+1] with v10 := v1. Without loss of generality we can assume that

x ∈ [v1, v2], y ∈ [v4, v5] and p = v3. Since dG1⊎G2
(x, y) = 3, we have that 〈{v1, . . . , v9}〉 does

not contain neither [v1, v4], [v1, v5], [v2, v4], [v2, v5]; besides, since dG1⊎G2
(p, [yz] ∪ [zx]) > 1

we have that 〈{v1, . . . , v9}〉 does not contain neither [v3, v1], [v3, v5], [v3, v6], [v3, v7], [v3, v8],
[v3, v9]. Since T is a geodesic triangle we have that z is the midpoint of [v7, v8]. Since
dG1⊎G2

(y, z) = dG1⊎G2
(z, x) = 3, we have that 〈{v1, . . . , v9}〉 does not contain neither [v1, v7],

[v1, v8], [v2, v7], [v2, v8], [v4, v7], [v4, v8], [v5, v7], [v5, v8]. Since G1 /∈ F6 ∪ F7 ∪ F8, [v1, v6],
[v5, v9], [v6, v8], [v6, v9] and [v7, v9] are not contained in 〈{v1, . . . , v9}〉. Note that [v2, v6],
[v2, v9], [v4, v6], [v4, v9] may be contained in 〈{v1, . . . , v9}〉. Hence, G1 ∈ F9.

Finally, one can check that if G1 ∈ F or G2 ∈ F , then δ(G1 ⊎ G2) = 3/2, by following
the previous arguments.

These results allow to compute, in a simple way, the hyperbolicity constant of every
graph join:
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Theorem 7.2.14. Let G1, G2 be any two graphs. Then,

δ(G1⊎G2) =





0, if G1 and G2 are empty graphs and one of them is isomorphic to E1,
3/4, if G1 ≃ E1 and ∆G2

= 1, or G2 ≃ E1 and ∆G1
= 1,

1, if G1 ≃ E1 and 1 < diam∗G2 ≤ 2; or
G2 ≃ E1 and 1 < diam∗G1 ≤ 2; or
|V (G1)| ≥ 2, |V (G2)| ≥ 2 and diamGi ≤ 2 or
Gi is an empty graph for i = 1, 2;

3/2, if G1 ∈ F or G2 ∈ F ,
5/4, otherwise.

Corollary 7.2.15. Let G be any graph. Then,

δ(E1 ⊎G) =





0, if diam∗G = 0,
3/4, if diam∗G = 1,
1, if 1 < diam∗G ≤ 2,
5/4, if diam∗G > 2 and G /∈ F ,
3/2, if G ∈ F .

7.3 Hyperbolicity of corona of two graphs

In this section we study the hyperbolicity of the corona of two graphs, defined by Frucht
and Harary in 1970, see [35].

Definition 7.3.1. Let G1 and G2 be two graphs with V (G1)∩V (G2) = ∅. The corona of G1

and G2, denoted by G1 ⋄ G2, is defined as the graph obtained by taking one copy of G1 and
a copy of G2 for each vertex v ∈ V (G1), and then joining each vertex v ∈ V (G1) to every
vertex in the v-th copy of G2.

From the definition, it clearly follows that the corona product of two graphs is a non-
commutative and non-associative operation. Figure 7.4 show the corona of two graphs.

Many authors deal just with corona of finite graphs; however, our results hold for finite
or infinite graphs.

We remark that the corona G1 ⋄ G2 of two graphs is connected if and only if G1 is
connected.

The following result characterizes the hyperbolicity of the corona of two graphs and
provides the precise value of its hyperbolicity constant.

Theorem 7.3.2. Let G1, G2 be any two graphs. Then δ(G1 ⋄G2) = max{δ(G1), δ(E1⊎G2)}.
Proof. Assume first that G1 is connected. The formula follows from Theorem 1.3.7, since{
G1,

{
{v} ⊎G2

}
v∈V (G1)

}
is a T-decomposition of G1 ⋄G2. Finally, note that if G1 is a non-

connected graph, then we can apply the previous argument to each connected component.



⋄ =

Figure 7.4: Corona of two graphs C4 ⋄ C3.

Note that Corollary 7.2.15 provides the precise value of δ(E1 ⊎G2).

Corollary 7.3.3. Let G1, G2 be any two graphs. Then G1 ⋄ G2 is hyperbolic if and only if
G1 is hyperbolic.

Proof. By Theorem 7.3.2 we have δ(G1 ⋄G2) = max{δ(G1), δ(E1⊎G2)}. Then, by Corollary
7.2.1 we have δ(G1) ≤ δ(G1 ⋄G2) ≤ max{δ(G1), 3/2}.



Conclusions

Conclusions

In this PhD Thesis we obtain quantitative information about the distortion of the
hyperbolicity constant of the graph G\e obtained from the graph G by deleting an arbitrary
edge e from it. These inequalities allow to characterize in a quantitative way the hyperbolicity
of any graph in terms of local hyperbolicity.

We also obtain information about the hyperbolicity constant of the line graph L(G) in
terms of properties of the graphG. In particular, we prove qualitative results as the following:
a graph G is hyperbolic if and only if L(G) is hyperbolic; if {Gn} is a T-decomposition of G,
the line graph L(G) is hyperbolic if and only if supn δ(L(Gn)) is finite. Besides, we obtain
quantitative results when k is the length of the edges of G and L(G). Two of them are
quantitative versions of our qualitative results. We also prove that g(G)/4 ≤ δ(L(G)) ≤
c(G)/4 + 2k, where g(G) is the girth of G and c(G) is its circumference. We show that
δ(L(G)) ≥ sup{L(g) : g is an isometric cycle in G }/4. Besides, we obtain bounds for
δ(G) + δ(L(G)). Also, we characterize the graphs G with δ(L(G)) < k.

Furthermore, we consider G with edges of arbitrary lengths, and L(G) with edges of
non-constant lengths. In particular, we prove that δ(G) ≤ δ(L(G)) ≤ 5δ(G) + 3lmax, where
lmax := supe∈E(G) L(e). This result imply the monotony of the hyperbolicity constant under
a non-trivial transformation (the line graph of a graph).

Also, we obtain criteria which allow us to decide, for a large class of graphs, whether
they are hyperbolic or not. We are especially interested in the planar graphs which are the
“boundary” (the 1-skeleton) of a tessellation of the Euclidean plane. Furthermore, we prove
that a graph obtained as the 1-skeleton of a general CW 2-complex is hyperbolic if and only
if its dual graph is hyperbolic.

Besides, we extend in two ways (edge-chordality and path-chordality) the classical def-
inition of chordal graphs in order to relate this property with Gromov hyperbolicity. In
fact, we prove that every edge-chordal graph is hyperbolic and that every hyperbolic graph
is path-chordal. Furthermore, we prove that every path-chordal cubic graph (with small
path-chordality constant) is hyperbolic.

Finally, we characterize the hyperbolic product graphs for graph join G1 ⊎ G2 and the
corona G1 ⋄ G2: G1 ⊎ G2 is always hyperbolic, and G1 ⋄ G2 is hyperbolic if and only if G1
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is hyperbolic (see Corollaries 7.2.1 and 7.3.3). Furthermore, we obtain simple formulae for
the hyperbolicity constant of the graph join G1 ⊎G2 and the corona G1 ⋄G2. In particular,
δ(G1 ⋄G2) = max{δ(G1), δ(G2⊎E1)}, where E1 is a graph with just one vertex. We want to
remark that it is not usual at all to obtain explicit formulae for the hyperbolicity constant
of large classes of graphs.

Future Works

The papers [7, 13, 16, 17, 21, 24, 59, 63, 65, 69, 77] study the hyperbolicity of, respectively,
complement of graphs, chordal graphs, strong product graphs, lexicographic product graph,
join and corona of graphs, line graphs, Cartesian product graphs, cubic graphs, tessellation
graphs, short graphs and median graphs. These results have as a natural continuation of
our work in the following problems about hyperbolic graphs.

Characterization The main goal in this topic is to characterize the hyperbolic graphs in
terms of some classical concept appearing in graph theory.

• In [13, 81] the authors study the chordal graphs. In Chapter 6 we extend in
two ways (edge-chordality and path-chordality) the classical definition of chordal
graphs in order to relate this property with Gromov hyperbolicity. In fact, we
prove that every edge-chordal graph is hyperbolic and that every hyperbolic graph
is path-chordal. However, the converses do not hold: we obtain a hyperbolic graph
which is not edge-chordal and a path-chordal graph that is non-hyperbolic. We
hope to find an appropriate generalization of chordality equivalent to hyperbolic-
ity.

• In [69] the author characterizes the hyperbolic short graphs : an r-short graph G
is hyperbolic if and only if S9r(G) is finite, where SR(G) := sup{L(C) : C is an
R-isometric cycle in G} and we say that a cycle C is R-isometric if dC(x, y) ≤
dG(x, y)+R for every x, y ∈ C. We are trying to obtain a relation between S9r(G)
and S0(G). This would improve the characterization in [69] and we think that
this could give a characterization of general hyperbolic graphs.

Product graphs In [16, 17, 59] the authors characterize in a simple way the hyperbolicity
of Cartesian product, strong product and lexicographic product of graphs. Besides,
in Chapter 7 (see [21]) we study the hyperbolicity of graph join and corona of two
graphs characterizing their hyperbolicity. We propose to study the hyperbolicity of
other binary operations of graphs as:

• Cartesian sum of graphs.

• Kronecker product or tensor product of graphs.
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• Zig-zag product of regular graphs.

• Rooted product of graphs.

• Some others products.

Contraction of an edge In [9] the authors study the distortion of the hyperbolicity con-
stant when we delete loops and multi-edges. Besides, in Chapter 2 (see [18]) we study
the distortion of the hyperbolicity constant of a graph when we delete an edge. So, it
is natural to study the distortion of the hyperbolicity constant when we contract an
edge of a graph.

Others operations In [7] the authors study the hyperbolicity of the complement of a graph.
In Chapter 3 and Chapter 4 (see [24, 20]) we study the hyperbolicity of line graphs.
In Chapter 5 (see [19]) we study some class of planar graphs and also we obtain
results about their dual graphs. We propose to study the hyperbolicity for some unary
operations of graphs, for instance:

• Graph minor.

• Power of graphs.

• Mycielskian graph.

• Some others unary operations.

Parameters of graphs In [58] the authors relate the hyperbolicity of a graph with its
order and its girth, obtaining upper and lower bounds. In [72] the authors obtain
an upper bound of the hyperbolicity constant of a graph in terms of its diameter.
Besides, in Chapter 3 (see [24]) we obtain an upper bound in terms of its circumference.
Furthermore, in [70] the authors relate the hyperbolicity constant of a graph with
some known parameters of the graph, as its independence number, its maximum and
minimum degree and its domination number. We are trying to relate the hyperbolicity
with other natural parameter of graphs, as:

• Isoperimetric constants.

• Differential.

Convex tessellation of R2 In [65] and Chapter 5 (see [19]) the authors prove that a large
class of 1-skeletons of tessellations of the Euclidean plane are not hyperbolic. They
also find a non-hyperbolic 1-skeleton of a tessellation of R2 with non-convex tiles.
They conjecture that the 1-skeleton is not hyperbolic for any tessellation with convex
polygons. In [15] the authors show that in order to prove this conjecture it suffices
to consider tessellations graphs of R2 such that every tile is a triangle. This is an
interesting open problem.
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Particular classes of graphs In [7, 13, 63, 65, 69, 77] the authors study the hyperbolic-
ity of complement of graphs, chordal graphs, cubic graphs, tessellation graphs, short
graphs and median graphs. Furthermore, Chapter 5 (see [19]) study some planar graphs
and Chapter 6 (see [4]) study the hyperbolicity of some extended chordal graphs. We
propose to study the hyperbolicity for several classes of graphs, for instance:

• Cage’s graphs.

• Polytope graphs.

• Delaunay triangulations.

• Some other class of graphs.
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[30] Dirac, G .A., Généralisation du théorème de Menger, C .R. Acad. Sci. Paris 250 (26)
(1960), 4252-4253.

[31] Diestel, R., Graph Theory, Heidelberg Graduate Texts in Mathematics 173, Springer-
Verlag, 2010.

[32] Eppstein, D., Squarepants in a tree: sum of subtree clustering and hyperbolic pants
decomposition, SODA’ 2007.

[33] Fiedler, M., A property of eigenvectors of nonnegative symmetric matrices and its ap-
plication to graph theory, Czech. Math. J. 25 (100) (1975) 619-633.

[34] Frigerio, R. and Sisto, A., Characterizing hyperbolic spaces and real trees, Geom. Ded-
icata 142 (2009), 139-149.

[35] Frucht, R. and Harary, F., On the coronas of two graphs, Aequationes Math. 4(3) (1970),
322–324.

[36] Gavoille, C. and Ly, O., Distance labeling in hyperbolic graphs, In ISAAC 2005 pp.
171–179.

[37] Ghys, E. and de la Harpe, P., Sur les Groupes Hyperboliques d’après Mikhael Gromov.
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bolicity results for the hyperbolic and quasihyperbolic metrics, Complex Var. Elliptic
Eq. 55 (2010), 127-135.
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Denjoy domains through fundamental domains, Publ. Math. Debrecen. 80(3-4) (2012),
295-310.

[49] Jonckheere, E. and Lohsoonthorn, P., A hyperbolic geometry approach to multipath
routing, Proceedings of the 10th Mediterranean Conference on Control and Automation
(MED 2002), Lisbon, Portugal, July 2002. FA5-1.

[50] Jonckheere, E. A., Contrôle du traffic sur les réseaux à géométrie hyperbolique–Vers
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[67] Portilla, A., Rodŕıguez, J. M. and Touŕıs, E., Stability of Gromov hyperbolicity, J. Adv.
Math. Studies 2 (2009), 1-20.
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