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José Maŕıa Sigarreta Almira
Universidad Autónoma de Guerrero

January 8, 2017



Universidad Carlos III de Madrid

Graphs with small hyperbolicity constant and

hyperbolic minor graphs

Author: Omar Rosario Cayetano
Department of Mathematics
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Introduction

Hyperbolic spaces, defined by Gromov in [52], play an important role in geometric group
theory and in the geometry of negatively curved spaces (see [3, 19, 50, 52]). The concept
of Gromov hyperbolicity grasps the essence of negatively curved spaces like the classical
hyperbolic space, Riemannian manifolds of negative sectional curvature bounded away from
0, and of discrete spaces like trees and the Cayley graphs of many finitely generated groups.
It is remarkable that a simple concept leads to such a rich general theory (see [3, 19, 50, 52]).

The first works on Gromov hyperbolic spaces deal with finitely generated groups (see
[52]). Initially, Gromov spaces were applied to the study of automatic groups in the science of
computation (see, e.g., [72]); indeed, hyperbolic groups are strongly geodesically automatic,
i.e., there is an automatic structure on the group [34].

The concept of hyperbolicity appears also in discrete mathematics, algorithms and net-
working. For example, it has been shown empirically in [88] that the internet topology
embeds with better accuracy into a hyperbolic space than into an Euclidean space of com-
parable dimension (formal proofs that the distortion is related to the hyperbolicity can be
found in [91]); furthermore, it is evidenced that many real networks are hyperbolic (see, e.g.,
[1, 2, 39, 63, 69]. A few algorithmic problems in hyperbolic spaces and hyperbolic graphs
have been considered in recent papers (see [38, 45, 49, 62]). Another important application
of these spaces is the study of the spread of viruses through the internet (see [54, 56]). Fur-
thermore, hyperbolic spaces are useful in secure transmission of information on the network
(see [55, 54, 56, 71]). The hyperbolicity has also been used extensively in the context of
random graphs (see, e.g., [85, 86, 87]). For example, it was shown in [86, 87] that several
types of small-world networks and networks with given expected degrees are not hyperbolic
in some sense.

The study of Gromov hyperbolic graphs is a subject of increasing interest in graph theory;
see, e.g., [6, 12, 14, 20, 28, 35, 37, 41, 44, 53, 55, 54, 56, 63, 66, 68, 69, 71, 78, 83, 89, 93, 94]
and the references therein.

In our study on the hyperbolicity in graphs we use the notations of [50]. Now we present
the basic facts about Gromov’s spaces.

Definition 0.0.1. If γ : [a, b] −→ X is a continuous curve in a metric space (X, d), we can
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define the length of γ as

L(γ) := sup
{ n∑

i=1

d(γ(ti−1), γ(ti)) : a = t0 < t1 < · · · < tn = b
}
.

We say that a curve γ : [a, b] → X in a metric space X is a geodesic if we have L(γ|[t,s]) =
d(γ(t), γ(s)) = |t − s| for every s, t ∈ [a, b], where L and d denote length and distance,
respectively, and γ|[t,s] is the restriction of the curve γ to the interval [t, s] (then γ is equipped
with an arc-length parametrization). The metric space X is said geodesic if for every couple
of points in X there exists a geodesic joining them; we denote by [xy] any geodesic joining x
and y; this notation is ambiguous, since in general we do not have uniqueness of geodesics,
but it is very convenient. Consequently, any geodesic metric space is connected. If the metric
space X is a graph, then the edge joining the vertices u and v will be denoted by [u, v].

In order to consider a graph G as a geodesic metric space, we identify (by an isometry)
any edge [u, v] ∈ E(G) with the interval [0, 1] in the real line; then the edge [u, v] (considered
as a graph with just one edge) is isometric to the interval [0, 1]. Thus, the points in G are the
vertices and, also, the points in the interior of any edge ofG. In this way, any connected graph
G has a natural distance defined on its points, induced by taking shortest paths in G, and we
can see G as a metric graph. Throughout this paper, G = (V,E) = (V (G), E(G)) denotes a
connected graph such that every edge has length 1 and V ̸= ∅. These properties guarantee
that any connected graph is a geodesic metric space. We will work both with simple and
non-simple graphs. The difference between them is that the first type does not contain
either loops or multiple edges. Although the operation of contraction is naturally defined
for non-simple graphs, simple graphs are a more usual context in the study of hyperbolicity.

If X is a geodesic metric space and x1, x2, x3 ∈ X, the union of three geodesics [x1x2],
[x2x3] and [x3x1] is a geodesic triangle that will be denoted by T = {x1, x2, x3} and we will say
that x1, x2 and x3 are the vertices of T ; it is usual to write also T = {[x1x2], [x2x3], [x3x1]}.
We say that T is δ-thin if any side of T is contained in the δ-neighborhood of the union of
the two other sides. We denote by δ(T ) the sharp thin constant of T , i.e., δ(T ) := inf{δ ≥
0 : T is δ-thin }. The space X is δ-hyperbolic (or satisfies the Rips condition with constant
δ) if every geodesic triangle in X is δ-thin. We denote by δ(X) the sharp hyperbolicity
constant of X, i.e., δ(X) := sup{δ(T ) : T is a geodesic triangle in X }. We say that X is
hyperbolic if X is δ-hyperbolic for some δ ≥ 0; then X is hyperbolic if and only if δ(X) < ∞.
If we have a triangle with two identical vertices, we call it a “bigon”. Obviously, every bigon
in a δ-hyperbolic space is δ-thin. If X has connected components {Xi}i∈I , then we define
δ(X) := supi∈I δ(Xi), and we say that X is hyperbolic if δ(X) < ∞.

In the classical references on this subject (see, e.g., [19, 50]) appear several different def-
initions of Gromov hyperbolicity, which are equivalent in the sense that if X is δ-hyperbolic
with respect to one definition, then it is δ′-hyperbolic with respect to another definition (for
some δ′ related to δ). We have chosen this definition by its deep geometric meaning [50].



8

Trivially, any bounded metric space X is (diamX)-hyperbolic. A normed linear space is
hyperbolic if and only if it has dimension one. If a complete Riemannian manifold is simply
connected and its sectional curvatures satisfy K ≤ c for some negative constant c, then it is
hyperbolic. See the classical references [3, 19, 50] in order to find further results. We want to
remark that the main examples of hyperbolic graphs are the trees. In fact, the hyperbolicity
constant of a geodesic metric space can be viewed as a measure of how “tree-like” the space
is, since those spaces X with δ(X) = 0 are precisely the metric trees. This is an interesting
subject since, in many applications, one finds that the borderline between tractable and
intractable cases may be the tree-like degree of the structure to be dealt with (see, e.g.,
[36]).

Note that the hyperbolicity constant δ(X) of a geodesic metric space can be viewed as
a measure of how “tree-like” the space is, since those spaces with δ(X) = 0 are precisely
the metric trees. This is an interesting subject since, in many applications, one finds that
the borderline between tractable and intractable cases may be the tree-like degree of the
structure to be dealt with (see, e.g., [36]).

For a finite graph with n vertices it is possible to compute δ(G) in time O(n3.69) [47] (this
is improved in [39, 41]). Given a Cayley graph (of a presentation with solvable word problem)
there is an algorithm which allows to decide if it is hyperbolic [73]. However, deciding whether
or not a general infinite graph is hyperbolic is usually very difficult. Therefore, it is interesting
to study the invariance of the hyperbolicity of graphs under appropriate transformations
and the hyperbolicity of particular classes of graphs. The invariance of the hyperbolicity
under some natural transformations on graphs have been studied in previous papers, for
instance, removing edges of a graph is studied in [14, 28]. Moreover, the hyperbolicity of
some product graphs have been characterized: in [23, 24, 25, 26, 27, 30, 67] the authors
characterize in a simple way the hyperbolicity of strong product of graphs, direct product
of graphs, lexicographic product of graphs, Cartesian sum of graphs, graph join and corona,
and Cartesian product of graphs. Some other authors have obtained results on hyperbolicity
for particular classes of graphs: chordal graphs, vertex-symmetric graphs, bipartite and
intersection graphs, bridged graphs and expanders [20, 94, 66, 22, 42, 61, 65].

To remove and to contract edges of a graph are also very natural transformations. In [28]
the authors study the distortion of the hyperbolicity constant of the graph G \ e obtained
from a graph G by removing an edge e. These bounds allow to obtain the characterization,
in a quantitative way, of the hyperbolicity of many graphs in terms of local hyperbolicity.
A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from G
by contracting some edges, deleting some edges, and deleting some isolated vertices. Minor
graphs is an interesting class of graphs. This topic started with one well-known result on
planar graph, independently proved by Kuratowski and Wagner, which says that a graph
is planar if and only if it do not include as a minor neither the complete graph K5 nor the
complete bipartite graph K3,3 (see [64, 92]). There are previous works relating minor graphs
with tree-length and tree-width, which are parameters closely related to hyperbolicity (see
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[16, 51, 79, 80]).

Three main problems on Gromov hyperbolic graphs are the following:

I. To obtain inequalities relating the hyperbolicity constant and other parameters of graphs.

II. To study the hyperbolicity for important classes of graphs.

III. To study the invariance of the hyperbolicity of graphs under appropriate transforma-
tions.

In this work, we study:

1. The graphs with small hyperbolicity constant.

2. The relationship of hyperbolicity constant and effective diameter.

3. The invariance of the hyperbolicity on many minor graphs.

Note that problem 1 is related to II, problem 2 to I and problem 3 to III.

The structure of this work is as follows.

Chapter 1 is an introduction to graph theory. In Chapter 2 we give a brief introduction
to hyperbolic spaces in the Gromov sense and we consider some previous results regarding
hyperbolicity.

In Chapter 3, Section 3.1 we study the properties of graphs with small hyperbolicity
constants, i.e., the graphs which are like trees (in the Gromov sense). In Section 3.2 we give
a partial answer to the question: What is the structure of graphs with small hyperbolicity
constant? The answer relates the hyperbolicity constant to the effective diameter.

Finally, in Chapter 4 we obtain quantitative information about the distortion of the
hyperbolicity constant of the graph G \ e (respectively, G/e ) obtained from the graph G by
deleting (respectively, contracting) an arbitrary edge e from it.

Two of our main results in Chapter 3 are Theorems 3.1.8 and 3.2.14, which characterize
in two simple ways the graphs G with δ(G) = 1 (the case δ(G) < 1 is known, see Theorem
3.1.1). We also characterize the graphs G with δ(G) = 5

4
in Theorem 3.2.21. Note that

Theorems 3.1.2 and 3.2.9, Corollary 3.2.16 and Proposition 3.1.9 give necessary conditions
and a sufficient condition in order to have δ(G) = 5

4
. Proposition 3.1.10 gives a necessary

condition in order to have δ(G) = 3
2
. (Recall that Theorem 2.4.2 shows that δ(G) is a

multiple of 1
4
.) Although it is not possible to obtain bounds for the diameter of graphs with

small hyperbolicity constant, in Chapter 3 we obtain such bounds for the effective diameter
if δ(G) < 3

2
(see Proposition 3.2.5 and Theorems 3.2.9 and 3.2.14). This is the only case

where we can obtain them, since Remark 3.2.19 shows that it is not possible to obtain
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similar bounds if δ(G) ≥ 3
2
. Furthermore, Corollary 3.2.17 provides an explicit formula for

the hyperbolicity constant of many graphs.

In Chapter 4 we obtain the invariance of the hyperbolicity under the contraction of a
finite number of edges. Besides, we obtain quantitative information about the distortion of
the hyperbolicity constant of the graph G/e obtained from the graph G by contracting an
arbitrary edge e from it for simple and non-simple graphs, in Sections 4.1 and 4.3, respec-
tively. In Sections 4.2 and 4.3 we obtain the invariance of the hyperbolicity on many minor
graphs as a consequence of these results for simple and non-simple graphs, respectively.

This problem has attracted attention previously. There is an interesting work of Bandelt
and Chepoi [6] characterizing 1-hyperbolic graphs. There are several definitions of Gromov
hyperbolicity, these different definitions are equivalent in the sense that if X is δ-hyperbolic
with respect to the definition A, then it is δ′-hyperbolic with respect to the definition B for
some δ′ (see, e.g., [19, 50]). Since [6] uses the so called 4-point definition for hyperbolicity
instead of Rips condition, their result and ours are not equivalent. Furthermore, there is no
relation between the set of 1-hyperbolic graphs with respect to the 4-point condition and
the set of 1-hyperbolic graphs satisfying the Rips condition.

Note that, if we consider a graph G whose edges have length equal to one and a graph Gk

obtained from G stretching out their edges until length k, then δ(Gk) = kδ(G). Therefore,
all the results in this work can be generalized when the edges of the graph have length equal
to k.



Chapter 1

Introduction to graph theory

1.1 Graphs

The fundamental concept of graph theory is the graph, which (despite the name) is best
thought of as a mathematical object rather than a diagram, even though graphs have a very
natural graphical representation.

Many real-world situations can conveniently be described by means of a diagram consist-
ing of a set of points together with lines joining certain pairs of these points. For example,
computers, roads, railways or electric networks. Note that in this type of diagrams we are
interested mainly if two given points are connected by a line, the way they come together is
immaterial. The mathematical abstraction of situations of this type gives rise to the concept
of graphs.

A graph, usually denoted G(V (G), E(G)) or G = (V,E), consists of a set of vertices V (G)
together with a set E(G) of unordered pairs of vertices called edges. The number of vertices
in a graph is usually denoted n = |V (G)| while the number of edges is usually denoted
m = |E(G)|, these two basic parameters are called the order and size of G, respectively. We
say that a graph G is finite if and only if n < ∞ and m < ∞. Otherwise we say that the
graph is infinite. Since the edges are unordered pairs of vertices, we are always dealing with
non-oriented graphs.

An edge joining the vertices u ∈ V (G) and v ∈ V (G) on many occasions is denoted by
[uv], but we will use the notation [u, v] to denote this edge, since the notation [uv] will be
used in this work for geodesics, which will be discussed in Chapter 2.

Any graph with just one vertex is referred to as trivial graph. All other graphs are
non-trivial.

Graphs are so named because they can be represented graphically, and it is this graph-
ical representation which helps us to understand many of their properties. Each vertex is
indicated by a point, and each edge by a line joining the points representing its ends. Most

11



CHAPTER 1. INTRODUCTION TO GRAPH THEORY 12

of the definitions and concepts in graph theory are suggested by its graphical representation
as illustrated in Figure 1.1.

A

B

D

C

1

3

5

2 4

6 7

Figure 1.1: The graph of the bridges of Konigsberg.

We support us in this representation. We say that two vertices u ∈ V (G), v ∈ V (G) are
adjacent or neighbours if [u, v] ∈ E(G) and we also denote it by u ∼ v; likewise, two edges
are adjacent if they have one vertex in common; similarly, if e = [u, v] we say that the edge
e ∈ E(G) is incident to the vertices u and v. The set of neighbours of a vertex v in a graph
G is denoted by NG(v), i.e., NG(v) := {u ∈ V (G) : [u, v] ∈ E(G)}.
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1.2 Degree of a vertex

The degree of a vertex is the number of neighbors it has in the graph. The degree of v ∈ V (G)
is denoted by deg(v) := |NG(v)|.

The number ρ(G) := min{deg(v) : v ∈ V (G)} is the minimum degree of G and the
number ∆(G) := max{deg(v) : v ∈ V (G)} is its maximum degree. In Figure 1.2, ρ(G1) = 0
and ∆(G2) = 4.

If the degree of a vertex is 0, we say that is an isolated vertex. In Figure 1.2, the vertex
D in the graph G1 is an isolated vertex.

A D

B C

f
g

h

G1

A

B
c

d

e

G2

Figure 1.2: Simple graph G1 and non-simple graph G2.

Definition 1.2.1. (Loop, Link)
An edge with identical ends is called a loop, and an edge with distinct ends a link. Two

or more links with the same pair of ends are said to be multiple edges.

In the graph G2 of Figure 1.2, the edge c is a loop, and all other edges are links; the
edges e and d are multiple edges.

A simple graph is one that has a single edge joining any two adjacent vertices, i.e., a
graph without loops and multiple edges (see the graph G1 in Figure 1.2).

Although some authors consider non-simple graphs (allowing loops and multiple edges),
unless otherwise stated, we will work with simple graphs and then by graph we mean simple
graph.
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1.3 Subgraphs

Apart from the study of the characteristics or properties of a graph in its entirety, one can
also consider only a region or a part thereof. For example, we can study arbitrary sets of
vertices and edges of any graph. Moreover, in many cases, it is appropriate to consider
graphs that are included “within” other. We will call them subgraphs.

Definition 1.3.1. (Subgraph)
If G = (V,E) is a graph then G1 = (V1, E1) is a subgraph of G if ∅ ̸= V1 ⊆ V and

E1 ⊆ E where each edge in E1 is incident to vertices of V1.

See in Figure 1.3 the subgraphs G1 and G2 of the graph G. Particular types of subgraphs
are obtained by removing in some graph a vertex. We have formalized this idea in the
following definitions. Let v be a vertex of a graph G = (V (G), E(G)). The subgraph G− v
of G is that graph whose vertex set is V (G)−{v} and edge set is E(G− v) (all edges of the
graph G except the incident edges to v).

A relevant class of subgraphs are the induced subgraphs.

Definition 1.3.2. (Induced subgraph)
A subgraph obtained by vertex deletions only is called an induced subgraph. If X is the

set of vertices deleted, the resulting subgraph is denoted by G −X. Frequently, it is the set
Y := V \X of vertices which remain that is the focus of interest.

G G1 G2

Figure 1.3: A subgraph G1 and an induced subgraph G2 of the graph G.

In Figure 1.3, G2 is an induced subgraph of G. We can see graphically that it is the
result of removing a vertex in the graph G.
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1.4 Connectivity of graphs

One of the most significant properties that may have a graph, is connectivity. To understand
this concept, it is necessary to give some definitions that describe us which means going from
one vertex to another.

Definition 1.4.1. (Path)
A path of a graph G = (V,E) is a sequence of vertices P = {v0, v1, v2, . . . , vn} such that

vi−1 is adjacent to vi, for i = 1, 2, . . . , n; a simple path is a path in which all vertices are
different.

Definition 1.4.2. (Cycle)
By cycle we mean a simple closed curve, i.e., a path with different vertices, unless the

last one, which is equal to the first vertex.

The length of a path or a cycle is the number of its edges. We denote by L(g) the length
of the path g.

Definition 1.4.3. (Connectivity)
A graph is connected if, for every partition of its vertex set into two nonempty sets

X and Y , there is an edge with one end in X and one end in Y ; otherwise, the graph is
disconnected or non-connected.

Given a connected graph G = (V,A) and any two distinct vertices u, v ∈ V , we can find
a path that connects them. Examples of connected and disconnected graphs are displayed
in Figure 1.4.

G1 G2

Figure 1.4: Representation of a connected graph G1 and a disconnected graph G2.

A non-connected graph is formed by different “blocks” of vertices, each of which is a
connected graph, what we call a connected component.

Definition 1.4.4. (Connected component)
A connected component of a graph G is a connected subgraph of G which is not properly

contained on any other connected subgraph of G, that is, a connected component of G is a
subgraph that is maximal with respect to the property of being connected.
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In a graph G we define the distance of two vertices u, v denoted by dG(u, v) or d(u, v) as

dG(u, v) := inf{L(g) | g is a path joining u and v}.

If there is not a path joining u and v, we set d(u, v) := ∞. In a connected graph G, for
every u, v ∈ V (G) we have dG(u, v) < ∞. The greatest distance between any two vertices in
G is the diameter of V (G), denoted by diamV (G).
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1.5 Some special graphs

Some graphs appear frequently in many applications and, hence, they have standard names.

Definition 1.5.1. (Path graph)
A path graph is a graph P = (V,E) with V = {v1, v2, . . . , vn}, n ≥ 2 and E =

{[v1, v2], [v2, v3], . . . , [vn−1, vn]}. The path graph with n vertices is denoted by Pn. The vertices
v1 and vn are called its ends; the vertices v2, . . . , vn−1 are the inner vertices of Pn.

b b

b b

bb

b

b b

P2

P3

P4

bbbbb
Pn

Figure 1.5: Path graphs.

Definition 1.5.2. (Cycle graph)
A cycle graph of n vertices is a graph G = (V,E) with V = {v1, v2, . . . , vn}, n ≥ 3 and

E = {[v1, v2], [v2, v3], . . . , [vn−1, vn], [vn, v1]}. It is denoted by Cn.

b

b b

b

b

b b

b

b b

b b

C4

b
b

b
b

b

C5 CnC3

Figure 1.6: Cycle graphs.

Definition 1.5.3. (Complete graph)
A complete graph is a graph in which every pair of vertices are joined by exactly one edge,

i.e., all pairs of vertices of G are adjacent. The complete graph with n vertices is denoted by
Kn. At each vertex v ∈ V (G) we have degG(v) = n− 1.

b

b b

b

b b

b

b

b

b b

b

K3 K4 K5

Figure 1.7: Complete graphs.
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Definition 1.5.4. (Empty graph)
An empty graph is a graph whose edge set is empty. We denote by En the empty graph

with n vertices. In an empty graph all vertices have degree 0.

Definition 1.5.5. (Bipartite graph)
A graph is bipartite if its vertex set can be partitioned into two nonempty subsets V1 and

V2 so that no edge has both ends in V1 or both ends V2.

Definition 1.5.6. (Complete bipartite graph)
A bipartite graph is said to be a complete bipartite graph if each vertex of V1 is adjacent

with each vertex of V2. If |V1| = m and |V2| = n, then this graph is denoted by Km,n.

b

b

b

b

b b

b

b

b

b
b b b

b b b

K2,2 K2,4 K3,3

Figure 1.8: Complete bipartite graphs.

Definition 1.5.7. (Star graph)
The complete bipartite graph Kn−1,1 is called an n star graph and it is denote by Sn.

b

b

b

b

b

b

b

b

b b

b

b

b b

b

bb

bb

b

S5 S6 S9

Figure 1.9: Star graphs.

Definition 1.5.8. (Wheel graph)
The wheel graph Wn is a graph with n vertices formed by connecting a single vertex to

each vertex of a cycle Cn−1.

Definition 1.5.9. (Regular graph)
A graph G = (V,E) is regular if all vertices have the same degree k, and we say that it

is k-regular. Every regular graph G satisfies the equality ρ(G) = ∆(G). In fact, a graph G
is regular if and only if ρ(G) = ∆(G)

Definition 1.5.10. (Tree)
A tree is an acyclic and connected graph, i.e., a connected graph without cycles.
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Figure 1.10: Wheel graphs.

1.6 Operations with graphs

In this section we define some of the most usual operations in graph theory and we will
use them throughout the work. These operations produce new graphs from one or several
graphs. We have unitary operations also called graph editing operations. They create a new
graph from the original graph. Some examples of unitary operations are: adding or deleting
a vertex or an edge, the contraction of an edge, line graph or graph complement. There
are also binary operations that create a new graph from two initial graphs G1(V1, E1) and
G2(V2, E2), such as: union of graphs or several kinds of products of graphs based on the
Cartesian product of the set of vertices V1 × V2.

1.6.1 Unitary operations

Most of the subgraphs worthwhile studying are those that differ minimally from the initial
graphs, because they retain much of their properties and have small differences that show
important details.

The operations of deletion and contraction of an edge are essential in the study of many
properties of graphs.

The graph obtained by deleting an edge e ∈ E of a graph G = (E, V ), is the subgraph
of G denoted G − e or G \ e defined as G \ e = (V,E \ e). We say that a subgraph is
expansive when it contains all the vertices of the initial graph. Hence, every subgraph G \ e
is expansive.

The graph obtained by contracting an edge e in G, and denoted by G/e, results by
identifying the endpoints of e followed by removing e. When e is a loop, G/e is the same as
G \ e. It is not difficult to check that both deletion and contraction are commutative, and
thus, for a subset of edges X, both G \ X and G/X are well defined. Also, if e ̸= f , then
(G \ e)/f and (G/f) \ e are isomorphic; thus for disjoint subsets X, X

′ ⊆ E(G), the graph
(G \X)/X

′
is well-defined. A graph H isomorphic to (G \X)/X

′
for some choice of disjoint

edge sets X and X
′
is called a minor of G.

Let us introduce another operation: adding an edge e of a graph G is the result of adding
an edge to the set E(G) connecting two vertices in V (G); it is denoted by G+ e.

Given a graph G with a finite number of connected components, an edge e ∈ E(G) is a
bridge or cut edge of G if the subgraph G \ e has more connected components than G. We
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have that the edge e ∈ E(G) is a bridge if and only if e does not belong to any cycle of G.
As we have seen, remove a vertex in a graph is not as simple as delete an edge, because

when we remove a vertex all incident edges on it lose one end. Consequently, a good definition
of this action is necessary: Deleting a vertex v of a graph G is to remove v from the set
of vertices V (G) and all the incident edges on v from the set of edges E(G), obtaining a
subgraph of G denoted by G− v or G \ v.

Similarly, ifG is a graph with a finite number of connected components, a vertex v ∈ V (G)
is a cut vertex of G if G− v has more connected components than G.

We can obtain also the graph G ∪ {v} by adding to the graph G a single disjoint vertex
v (i.e., v /∈ V (G)). This operation is called vertex addition.

The complement G of the graph G = (V,E) is the graph whose vertex set is V and whose
edges are the pairs of non-adjacent vertices of G.

If E = {[u, v]|u, v ∈ V, u ̸= v} is the set of all possible edges and E = E\E denotes the
complement with respect to E, then G = (V,E).



Chapter 2

A brief introduction to Gromov
hyperbolic graphs

There are several definitions of Gromov hyperbolicity. These different definitions are equiv-
alent in the sense that if X is δ-hyperbolic with respect to the definition A, then it is
δ′-hyperbolic with respect to the definition B for some δ′ (see, e.g., [19, 50]). We have
chosen the definition in the introduction since it has a deep geometric meaning (see, e.g.,
[50]).

First of all, we collect some basic facts about hyperbolic spaces.

The following are interesting examples of hyperbolic spaces.

Example 2.0.1. Every bounded metric space X is (1
2
diamX)-hyperbolic.

Example 2.0.2. The real line R is 0-hyperbolic: In fact, any point of a geodesic triangle in
the real line belongs to two sides of the triangle simultaneously, and therefore any geodesic
triangle in R is 0-thin.

Example 2.0.3. The Euclidean plane R2 is not hyperbolic, since the midpoint of a side on
a large equilateral triangle is far from all points on the other two sides.

These arguments can be applied to higher dimensions:

Example 2.0.4. A normed real vector space is hyperbolic if and only if it has dimension 1.

Example 2.0.5. Every metric tree with arbitrary edge lengths is 0-hyperbolic, by the same
reason that the real line.

Example 2.0.6. The unit disk D (with its Poincaré metric) is log(1 +
√
2 )-thin: Consider

any geodesic triangle T in D. It is clear that T is contained in an ideal triangle T ′, all of
whose sides are of infinite length, with δ(T ) ≤ δ(T ′). Since all ideal triangles are isometric,
we can consider just one fixed T ′. Then, a computation gives δ(T ′) = log(1 +

√
2 ).

21
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Figure 2.1: R and R2 as examples of hyperbolic and non-hyperbolic spaces.

a

b

c

Figure 2.2: Any metric tree T verifies δ(T ) = 0.

Example 2.0.7. Every simply connected complete Riemannian manifold with sectional cur-
vatures verifying K ≤ −c2 < 0, for some constant c, is hyperbolic (see, e.g., [50, p.52]).

Example 2.0.8. The graph Γ of the routing infrastructure of the Internet is also empirically
shown to be hyperbolic (see [8]). One can think that this is a trivial (and then a non-useful)
fact, since every bounded metric space X is (1

2
diamX)-hyperbolic. The point is that the

quotient
δ(Γ)

diamΓ

is very small, and this makes the tools of hyperbolic spaces applicable to Γ (see, e.g., [35]).

We would like to point out that deciding whether or not a space is hyperbolic is usually
very difficult. Notice that, first of all, we have to consider an arbitrary geodesic triangle
T , and calculate the minimum distance from an arbitrary point P of T to the union of the
other two sides of the triangle to which P does not belong to. Thereafter, we have to take
supremum over all the possible choices for P and then over all the possible choices for T . It
means that if our space is, for instance, an n-dimensional manifold and we select two points
P and Q on different sides of a triangle T , the function F that measures the distance between
P and Q is a (3n + 2)-variable function (3n variables describe the three vertices of T and
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Figure 2.3: First steps in order to compute the hyperbolicity constant of X.

two variables describe the points P and Q in the closed curve given by T ). In order to prove
that our space is hyperbolic we would have to take the minimum of F over the variable that
describes Q, and then the supremum over the remaining 3n+1 variables, or at least to prove
that it is finite. Without disregarding the difficulty of solving a (3n + 2)-variable minimax
problem, notice that the main obstacle is that we do not even know in an approximate way
the location of geodesics in the space.

Figure 2.4: Calculating the supremum over all geodesic triangles.

Without disregarding the difficulty of solving this minimax problem, notice that in general
the main obstacle is that we do not know the location of geodesics in the space. Therefore, it
is interesting to obtain inequalities involving the hyperbolicity constant and other parameters
of graphs. Another natural problem is to study the invariance of the hyperbolicity of graphs
under appropriate transformations.
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Since the hyperbolicity of many geodesic metric spaces is equivalent to the hyperbolicity
of some graphs related to them (see, e.g., [19]), the study of hyperbolic graphs becomes an
interesting topic.
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2.1 Others definitions of Gromov hyperbolicity

2.1.1 Gromov product definition

Definition 2.1.1. Given a metric space X, we define the Gromov product of x, y ∈ X with
base point w ∈ X by

(x|y)w :=
1

2

(
d(x,w) + d(y, w)− d(x, y)

)
. (2.1)

We say that the Gromov product is δ-hyperbolic if there is a constant δ ≥ 0 such that

(x|z)w ≥ min
{
(x|y)w, (y|z)w

}
− δ

for every x, y, z ∈ X.

The following result (see [3, Proposition 2.2] and [52, Lemma 1.1A]) gives that the defi-
nition is independent of the base point.

Proposition 2.1.2. Let X be a metric space and w,w′ ∈ X. If the Gromov product based
at w is δ-hyperbolic, then the Gromov product based at w′ is 2δ-hyperbolic.

We say that X is δ-hyperbolic product if its Gromov product is δ-hyperbolic for any base
point, i.e.,

(x|z)w ≥ min
{
(x|y)w, (y|z)w

}
− δ (2.2)

for every x, y, z, w ∈ X (see, e.g., [50]).
It is well known that (2.2) is equivalent to our definition of Gromov hyperbolicity. Fur-

thermore, we have the following quantitative result about this equivalence.

Theorem 2.1.3. [50, Proposition 2.21, p.41] Let us consider a geodesic metric space X.
(1) If X is δ-hyperbolic, then it is 4δ-hyperbolic product.
(2) If X is δ-hyperbolic product, then it is 3δ-hyperbolic.

2.1.2 Fine definition

Definition 2.1.4. Given a geodesic triangle T = {x, y, z} in a geodesic metric space X, let
TE be a Euclidean triangle with sides of the same length than T . Since there is no possible
confusion, we will use the same notation for the corresponding points in T and TE. The
maximum inscribed circle in TE meets the side [xy] (respectively [yz], [zx]) in a point z′

(respectively x′, y′) such that d(x, z′) = d(x, y′), d(y, x′) = d(y, z′) and d(z, x′) = d(z, y′).
We call the points x′, y′, z′, the internal points of {x, y, z}. There is a unique isometry fxyz
of {x, y, z} onto a tripod (a star graph with one vertex w of degree 3, and three vertices
x′′, y′′, z′′ of degree one, such that d(x′′, w) = d(x, z′) = d(x, y′), d(y′′, w) = d(y, x′) = d(y, z′)
and d(z′′, w) = d(z, x′) = d(z, y′)), see Figure 2.5. The triangle {x, y, z} is δ-fine if fxyz(p) =
fxyz(q) implies that d(p, q) ≤ δ. The space X is δ-fine if every geodesic triangle in X is δ-fine.
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TE
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fxyz

Figure 2.5: Isometry fxyz of the triangle TE = {x, y, z} onto a tripod.

We also allow degenerated tripods, i.e., path graphs P1, P2 with one or two vertices,
respectively. These situations correspond with triangles with several vertices repeated; in
these cases the inscribed circle in TE is a point.

It is known that this definition of fine is also equivalent to our definition of Gromov
hyperbolicity. Furthermore, we have the following quantitative result.

Theorem 2.1.5. [50, Proposition 2.21, p.41] Let us consider a geodesic metric space X.
(1) If X is δ-hyperbolic, then it is 4δ-fine.
(2) If X is δ-fine, then it is δ-hyperbolic.

2.1.3 Insize definition

Definition 2.1.6. Given a geodesic metric space X, let T = {x, y, z} be a geodesic triangle
in X and let x′, y′, z′ be the internal points on T defined in Definition 2.1.4. We define the
insize of the geodesic triangle T to be

insize(T ) := diam{x′, y′, z′}. (2.3)

The space X is δ-insize if every geodesic triangle in X has insize at most δ.

This definition of insize is also equivalent to our definition of Gromov hyperbolicity.
Besides, we have the following quantitative result.

Theorem 2.1.7. [50, Proposition 2.21, p.41] Let us consider a geodesic metric space X.
(1) If X is δ-hyperbolic, then it is 4δ-insize.
(2) If X is δ-insize, then it is 2δ-hyperbolic.

2.1.4 Minsize definition

Definition 2.1.8. Given a geodesic metric space X, let T = {x, y, z} be a geodesic triangle
in X and let x′ ∈ [yz], y′ ∈ [zx], z′ ∈ [xy]. We define the minsize of the geodesic triangle T
to be
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minsize(T ) := min
x′,y′,z′∈T

diam{x′, y′, z′}. (2.4)

The space X is δ-minsize if every geodesic triangle in X has minsize at most δ.

It is known that this definition of minsize is also equivalent to our definition of Gromov
hyperbolicity, in a quantitative way.

Theorem 2.1.9. [50, Proposition 2.21, p.41] Let us consider a geodesic metric space X.
(1) If X is δ-hyperbolic, then it is 4δ-minsize.
(2) If X is δ-minsize, then it is 8δ-hyperbolic.

2.1.5 Geodesics diverge

As usual, we denote by Bk(x) the open ball in a metric space, i.e.,

Bk(x) := {y ∈ X : d(x, y) < k} for any x ∈ X and k > 0.

Definition 2.1.10. Given a geodesic metric space X, we say that e : [0,∞) → (0,∞) is a
divergence function for X, if for every point x ∈ X and all geodesics γ = [xy], γ′ = [xz],
the function e satisfies the following condition:

For every R, r > 0 such that R + r ≤ min{L([xy]), L([xz])}, if d(γ(R), γ′(R)) ≥ e(0),
and α is a path in X \ BR+r(x) from γ(R + r) to γ′(R + r), then we have L(α) > e(r) (see
Figure 2.6).

x

y

z

γ(R)

γ′(R)

γ(R + r)

γ′(R + r)

BR+r(x) α

Figure 2.6: Geodesics diverge.
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We say that geodesics diverge in X if there is a divergence function e(r) such that

lim
r→∞

e(r) = ∞.

We say that geodesics diverge exponentially in X if there is an exponential divergence
function. Theorem 1.1 in [74] shows that in a geodesic metric space X, geodesics diverge in
X if and only if geodesics diverge exponentially in X.

It is known that Definition 2.1.10 is also equivalent to our definition of Gromov hyper-
bolicity (see [3, 74]). However, a quantitative result of this is not possible.

2.1.6 Gromov boundary

Let X be a metric space and we fix a base point w ∈ X. We say that a sequence x̂ = {xi}∞i=1

in X is a Gromov sequence if (xi|xj)w → ∞ as i, j → ∞.
Since, we have∣∣(x|y)w − (x|y)w′

∣∣ = 1

2

∣∣d(x,w)− d(x,w′) + d(y, w)− d(y, w′)
∣∣ ≤ d(w,w′),

this concept is independent of the base point. The Gromov sequences are usually called
sequences converging at infinity or tending to infinity (see, e.g., [3]). For the sake of brevity,
we shall omit the base point w in the notation.

We say that two sequences x̂ and ŷ in X are equivalent and write x̂ ∼ ŷ if (xi|yi) → ∞ as
i → ∞. This relation is always reflexive and symmetric, but it is transitive if X is hyperbolic
(it is necessary to use (2.2) in order to prove it).

Definition 2.1.11. Let X be a hyperbolic product metric space. Let x denote the equivalence
class containing the Gromov sequence x̂ in X. The set of all equivalence classes

∂X := {x : x̂ is a Gromov sequence in X}

is the Gromov boundary of X, and the set

X := X ∪ ∂X

is the Gromov closure of X.

A geodesic ray in a space X is an isometric image of the half line [0,∞). In the case of
geodesic metric spaces one can alternatively define a boundary point as an equivalence class
of geodesic rays [50, p.119].

We want to define the Gromov product (a|b) for all a, b ∈ X. Assume first that a, b ∈ ∂X
and choose Gromov sequences x̂ ∈ a, ŷ ∈ b. The numbers (xi|yj) need not converge to a
limit but they converge to a rough limit in the following sense (see [90, Lemma 5.6]):
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Lemma 2.1.12. Let X be a δ-hyperbolic product metric space. Let a, b ∈ ∂X, a ̸= b, and
let x̂, x̂′ ∈ a, ŷ, ŷ′ ∈ b, z ∈ X. Then

lim sup
i,j→∞

(x′
i|y′j) ≤ lim inf

i,j→∞
(xi|yj) + 2δ < ∞,

lim sup
i→∞

(x′
i|z) ≤ lim inf

i→∞
(xi|z) + δ < ∞.

Given a, b ∈ ∂X, there exist several definitions for (a|b). We choose the following one,
since it is very useful.

Definition 2.1.13. Let X be a hyperbolic product metric space and a, b ∈ ∂X. We define

(a|b) := inf{lim inf
i,j→∞

(xi|yj) : x̂ ∈ a, ŷ ∈ b}. (2.5)

The same definition is used in [3, 40, 90], but [50] uses sup instead of inf.

In order to provide a topological structure to X, we consider the set B consisting of all:

(1) open balls Br(x), for any x ∈ X and r > 0,

(2) sets of the form Nx,k := {y ∈ X : (x|y) > k}, for any x ∈ ∂X and k > 0.

Proposition 4.8 in [3] shows that the set B is a basis for a topology of X. Furthermore,
we have the following result.

Proposition 2.1.14. [3, Proposition 4.10] Let X be a locally compact hyperbolic product
metric space. Then X is a Hausdorff compact metric space, and X is open and dense in X.
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2.2 Gromov hyperbolicity, Mathematical Analysis and

Geometry

The ideal boundary of a metric space is a type of boundary at infinity which is a very useful
concept when dealing with negatively curved spaces. We want to talk about some subjects
in which this boundary is useful.

A main problem in the study of Partial Differential Equations on Riemannian manifolds
is whether or not there exist nonconstant bounded harmonic functions. A way to approach
this problem is to study whether the so-called Dirichlet problem at infinity (or the asymptotic
Dirichlet problem) is solvable on a complete Riemannian manifold M . That is to say, raising
the question as to whether every continuous function on the boundary ∂M has a (unique)
harmonic extension to M . Of course, the answer, in general, is no, since the simplest
manifold Rn admits no positive harmonic functions other than constants. However, the
answer is positive for the unit disk D.

In [4] Ancona studied the asymptotic Dirichlet problem on Gromov hyperbolic graphs
and in [5] on Gromov hyperbolic Riemannian manifolds with bounded geometry and a posi-
tive lower bound λ1(M) > 0 for Dirichlet eigenvalues. In the papers [21] and [60] conditions
on Gromov hyperbolic manifolds M that imply the positivity of λ1(M) are given and, con-
sequently, the Dirichlet problem is solvable for many Gromov hyperbolic manifolds.

One of the most important features of the transition from a Gromov hyperbolic space
to its Gromov boundary is that it is functorial. If f : X −→ Y is in a certain class
of maps between two Gromov hyperbolic spaces X and Y, then there is a boundary map
∂f : ∂X −→ ∂Y which is in some other class of maps. In particular, if f is a quasi-isometry,
then ∂f is a bihölder map (with respect to the Gromov metric on the boundary).

It is well known that biholomorphic maps between domains (with smooth boundaries) in
C can be extended as a homeomorphism between their boundaries. If we consider domains in
Cn (n > 1) instead in C, then the problem is very difficult. C. Fefferman (Fields medallist)
showed in Inventiones Mathematicae (see [46]), with a very long and technical proof, that
biholomorphic maps between bounded strictly pseudoconvex domains with smooth bound-
aries can be extended as a homeomorphism between their boundaries. It is possible to
give a “more elementary” proof of this extension result using the functoriality of Gromov
hyperbolic spaces: If we consider the Carathéodory metric on a bounded smooth strictly
pseudoconvex domain in Cn, then it is Gromov hyperbolic, and the Gromov boundary is
homeomorphic to the topological boundary (see [7]). Since any biholomorphic map f be-
tween such two domains is an isometry for the Carathéodory metrics, the boundary map ∂f
is essentially a boundary extension of f that is a homeomorphism between the boundaries
(in fact, it is bihölder with respect to the Carnot-Carathéodory metrics in the boundaries).
Fefferman’s result gives much more precise information, but this last proof is simpler and
gives information about a class of maps that is much more general than biholomorphic maps:
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the quasi-isometries for the Carathéodory metrics.

In applications to various areas of mathematics, the Gromov boundary can be similarly
be proved (under appropriate conditions) to coincide with other “finite” boundaries, such as
the Euclidean or inner Euclidean boundary, or the Martin boundary, so we obtain a variety
of boundary extension results as above.

Isometries (and quasi-isometries) in a hyperbolic space X can be extended (as an home-
omorphism) to the Gromov boundary ∂X of the space. This fact allows to classify the
isometries as hyperbolic, parabolic and elliptic, like the Möbius maps in D, in terms of their
fixed points in X ∪ ∂X.

There are just three possibilities:

• There are exactly two fixed points inX∪∂X and both are in ∂X (hyperbolic isometry).

• There is a single fixed point in X ∪ ∂X and it is in ∂X (parabolic isometry).

• There is a single fixed point in X ∪ ∂X and it is in X (elliptic isometry).

A main ingredient in the proof of this result in the unit disk D is that the isometries
are holomorphic functions. Surprisingly, the tools in hyperbolic spaces provide a new and
general proof just in terms of distances!
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2.3 Main results on hyperbolic spaces

We state now some of the main facts about hyperbolic spaces.

Definition 2.3.1. Let (X, dX) and (Y, dY ) be two metric spaces. A map f : X −→ Y is
said to be an (α, β)-quasi-isometric embedding, with constants α ≥ 1, β ≥ 0 if for every
x, y ∈ X:

α−1dX(x, y)− β ≤ dY (f(x), f(y)) ≤ αdX(x, y) + β.

The function f is ε-full if for each y ∈ Y there exists x ∈ X with dY (f(x), y) ≤ ε.

Definition 2.3.2. A map f : X −→ Y is said to be a quasi-isometry, if there exist constants
α ≥ 1, β, ε ≥ 0 such that f is an ε-full (α, β)-quasi-isometric embedding.

Definition 2.3.3. An (α, β)-quasigeodesic in X is an (α, β)-quasi-isometric embedding be-
tween an interval of R and X.

In the study of any mathematical property, the class of maps which preserve that property
plays a central role in the theory. The following result shows that quasi-isometries preserve
hyperbolicity.

Theorem 2.3.4 (Invariance of hyperbolicity). Let f : X −→ Y be an (α, β)-quasi-isometric
embedding between the geodesic metric spaces X and Y. If Y is hyperbolic, then X is hyper-
bolic.

Besides, if f is ε-full for some ε ≥ 0 (a quasi-isometry), then X is hyperbolic if and only
if Y is hyperbolic.

We next discuss the connection between hyperbolicity and geodesic stability. In the
complex plane (with its Euclidean distance), there is only one optimal way of joining two
points: a straight line segment. However if we allow “limited suboptimality”, the set of
“reasonably efficient paths” (quasigeodesics) are well spread. For instance, if we split the
circle ∂D(0, R) ⊂ C into its two semicircles between the points R and −R, then we have two
reasonably efficient paths (two (π/2, 0)-quasigeodesics) between these endpoints such that
the point Ri on one of the semicircles is far from all points on the other semicircle provided
that R is large. Even an additive suboptimality can lead to paths that fail to stay close
together. For instance, the union of the two line segments in C given by [0, R + i

√
R ] and

[R+ i
√
R , 2R] gives a path of length less than 2R+1 (since 2

√
R2 +R ≤ 2R+1), and so is

“additively inefficient” by less than 1 (it is a (1, 1)-quasigeodesic). However, its corner point
is very far from all points on the line segment [0, 2R] when R is very large.

The situation in Gromov hyperbolic spaces is very different, since all such reasonably
efficient paths ((α, β)-quasigeodesics for fixed α, β) stay within a bounded distance of each
other:
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Definition 2.3.5. Let X be a metric space, Y a non-empty subset of X and ε a positive num-
ber. We call ε-neighborhood of Y in X, denoted by Vε(Y ), to the set {x ∈ X : dX(x, Y ) ≤ ε}.
The Hausdorff distance between two subsets Y and Z of X, denoted by H(Y, Z), is the num-
ber defined by:

inf{ε > 0 : Y ⊂ Vε(Z) and Z ⊂ Vε(Y )}.

Theorem 2.3.6 (Geodesic stability). For any constants α ≥ 1 and β, δ ≥ 0 there exists a
constant H = H(δ, α, β) such that for every δ-hyperbolic geodesic metric space and for every
pair of (α, β)-quasigeodesics g, h with the same endpoints, H(g, h) ≤ H.

The geodesic stability is not just a useful property of hyperbolic spaces; in fact, M. Bonk
proves in [18] that the geodesic stability is equivalent to the hyperbolicity:

Theorem 2.3.7. ([18, p.286]) Let X be a geodesic metric space with the following property:
For each a ≥ 1 there exists a constant H such that for every x, y ∈ X and any (a, 0)-
quasigeodesic g in X starting in x and finishing in y there exists a geodesic γ joining x and
y satisfy H(g, γ) ≤ H. Then X is hyperbolic.

Theorem 2.3.6 allows to prove Theorem 4.1.4:

Proof of Theorem 4.1.4. By hypothesis there exists δ ≥ 0 such that Y is δ-hyperbolic.
Let T be a geodesic triangle in X with sides g1, g2 y g3, and TY the triangle with (α, β)-

quasigeodesic sides f(g1), f(g2) y f(g3) in Y . Let γj be a geodesic joining the endpoints of
f(gj), for j = 1, 2, 3, and T ′ the geodesic triangle in Y with sides γ1, γ2, γ3.

Let p be any point in f(g1). We are going to prove that there exists a point q ∈ f(g2) ∪
f(g3) with dY (p, q) ≤ K, where K := δ + 2H(δ, α, β). By Theorem 2.3.6, there exists a
point p′ ∈ γ1 with dY (p, p

′) ≤ H(δ, α, β). Since T ′ is a geodesic triangle, it is δ-thin and
there exists q′ ∈ γ2 ∪ γ3 with dY (p

′, q′) ≤ δ. Using again Theorem 2.3.6, there exists a point
q ∈ f(g2) ∪ f(g3) con dY (q, q

′) ≤ H(δ, α, β). Therefore,

dY (p, f(g2) ∪ f(g3)) ≤ dY (p, q) ≤ dY (p, p
′) + dY (p

′, q′) + dY (q
′, q)

≤ H(δ, α, β) + δ +H(δ, α, β).

Let z ∈ T ; without loss of generality we can assume that z ∈ g1. We have seen that there
exists a point q ∈ f(g2)∪ f(g3) with dY (f(z), q) ≤ K. If w ∈ g2 ∪ g3 satisfies f(w) = q, then

dX(z, g2 ∪ g3) ≤ dX(z, w) ≤ αdY (f(z), q) + αβ ≤ αK + αβ.

Hence, T is (αK+αβ)-thin. Since T is an arbitrary geodesic triangle,X is (αδ+2αH(δ, α, β)+
αβ)-hyperbolic.

Assume now that f is ε-full. One can check that an “inverse” quasi-isometry f− : Y −→
X can be constructed as follows: for y ∈ Y choose x ∈ X with dY (f(x), y) ≤ ε and define
f−(y) := x. Then the first part of the Theorem gives the result.
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2.4 Previous results

We collect now some important results which would be useful for the development of our
work.

As usual, by cycle we mean a simple closed curve, i.e., a path with different vertices,
unless the last one, which is equal to the first vertex. It is known (see [84, Lemma 2.1]) that,
for every graph G, it is satisfied

δ(G) = sup{δ(T ) : T is a geodesic triangle in G that is a cycle}.
We denote by J(G) the union of the set V (G) and the midpoints of the edges of G.

Consider the set T1 of geodesic triangles T in G that are cycles and such that the three
vertices of the triangle T belong to J(G), and denote by δ1(G) the infimum of the constants
λ such that every triangle in T1 is λ-thin.

The following results, which appear in [12, Theorems 2.5, 2.6 and 2.7], will be used
throughout the work.

Theorem 2.4.1. For every graph G, we have δ1(G) = δ(G).

Theorem 2.4.2. For every hyperbolic graph G, δ(G) is a multiple of 1
4
.

The following result is a direct consequence of Theorems 2.4.1 and 2.4.2; it states that
in the hyperbolic graphs there always exists a geodesic triangle for which the hyperbolicity
constant is attained.

Theorem 2.4.3. For any hyperbolic graph G, there exists a geodesic triangle T ∈ T1 such
that δ(T ) = δ(G).

Given a graph G, we define

diamV (G) := sup
{
d(u, v)|u, v ∈ V (G)

}
, diamG := sup

{
d(x, y)|x, y ∈ G

}
.

It is clear that diamV (G) ≤ diamG ≤ diamV (G) + 1.

We will need the following theorem (see [83, Theorem 8]).

Theorem 2.4.4. In any graph G the inequality δ(G) ≤ 1
2
diamG holds.

If H is a subgraph of G and w ∈ V (H), we denote by degH(w) the degree of the vertex w
in the subgraph induced by V (H). We always have dH(x, y) ≥ dG(x, y) for every x, y ∈ H.
A subgraph H of G is said isometric if dH(x, y) = dG(x, y) for every x, y ∈ H. Note that
this condition is equivalent to dH(u, v) = dG(u, v) for every vertices u, v ∈ V (H).

The following results appear in [14, Lemma 9] and [83, Theorem 11].

Lemma 2.4.5. If H is an isometric subgraph of G, then δ(H) ≤ δ(G).

Lemma 2.4.6. If Cn is the cycle graph with n vertices, then δ(Cn) =
1
4
L(Cn) =

n
4
.

Corollary 2.4.7. If G is a graph which contains an isometric subgraph which is isomorphic
to Cn, then δ(G) ≥ n

4
.





Chapter 3

Small values of the hyperbolicity
constant in graph

3.1 Graphs with small hyperbolicity constant

The results in this chapter show some characterizations for hyperbolic graphs with small
hyperbolicity constant. In this sense, the following result in [68, Theorem 11] characterizes
the graphs G with hyperbolicity constant δ(G) ≤ 3

4
.

Theorem 3.1.1. Let G be any graph.

(a) δ(G) = 0 if and only if G is a tree.

(b) δ(G) = 1
4
, 1
2
is not satisfied for any graph G.

(c) δ(G) = 3
4
if and only if G is not a tree and every cycle in G has length 3.

In order to characterize the graphs whit hyperbolicity constant greater than 3
4
it is nec-

essary to obtain some previous results.

Theorem 3.1.2. Let G be any graph. Then δ(G) ≥ 5
4
if and only if there exists a cycle g

in G with length L(g) ≥ 5 and a vertex w ∈ g such that degg(w) = 2.

Proof. Let us assume that there exists a cycle g in G with length L(g) ≥ 5 and a vertex w ∈ g
such that degg(w) = 2. If L(g) = 5, that is, V (g) = {u1, u2, u3, u4, u5} where degg(u1) = 2,
taking x = u1, y the midpoint in [u3, u4], z = u4 and p the midpoint in [xy] (the geodesic
containing u2 and u3), we obtain d(p, [xz]∪[zy]) = 5

4
. If L(g) = 6, that is, V (g) = {u1, . . . , u6}

where degg(u1) = 2, taking x = u1, y the midpoint in [u3, u4], z the midpoint in [u4, u5] and
p the midpoint in [xy], we obtain d(p, [xz] ∪ [zy]) = 5

4
. Now, we assume L(g) = n, where

36
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V (g) = {u1, . . . , un}, degg(u1) = 2 and n ≥ 7, and we will prove the result by complete
induction on n. Assume now that the conclusion of the theorem holds for cycles with length
less or equal than n − 1, that is, if there exist a cycle C such that 5 ≤ L(C) ≤ n − 1 and
a vertex w ∈ V (C) such that degC(w) = 2, then δ(G) ≥ 5

4
. Let us consider the subgraph

G0 induced by V (g). If [ui, uj] ∈ E(G) for some 1 < i < j − 1 ≤ n − 1, then we obtain
two cycles g1 and g2 such that V (g1) = {u1, . . . , ui, uj, . . . , un} and V (g2) = {ui, . . . , uj}.
If L(g1) ≥ 5, the induction hypothesis gives the result, so we assume that L(g1) < 5 and,
therefore, 5 ≤ L(g2) ≤ n − 1. If there exists uk ∈ {ui, . . . , uj} such that degg2(uk) = 2, the
induction hypothesis gives the result. Otherwise, we can choose two adjacent vertices uk, ul ∈
{ui, . . . , uj}, with k ≤ l−2, such that g3 = {u1, . . . , uk, ul, . . . , un} satisfies 5 ≤ L(g3) ≤ n−1
and degg3(u1) = 2. Finally, we assume that degg(ui) = 2 for every i ∈ {1, 2, ..., n}, that is,
G0 = g. If G0 is an isometric subgraph of G, then δ(G) ≥ δ(G0) ≥ n

4
≥ 7

4
. If G0 is not an

isometric subgraph of G, then let us consider the following family of paths in G:

P :=
{
σ : σ = [xy] is a geodesic in G with x, y ∈ V (g) and L(σ) < dg(x, y)

}
.

Let h = [uv] ∈ P with L(h) = minσ∈P L(σ); note that degh(u) = 1 since otherwise h is not
a geodesic. Let h′ be a geodesic in g joining u and v. Since E(G0) = E(g), we have that
L(h) ≥ 2; L(h) < dg(u, v) = L(h′) gives that L(h′) ≥ 3. Therefore, H := h ∪ h′ is a cycle in
G with 5 ≤ L(H) ≤ n−1 and degH(u) = 2; hence, the induction hypothesis gives δ(G) ≥ 5

4
.

Now, we assume δ(G) ≥ 5
4
. By Theorem 2.4.3, there exist a simple geodesic triangle

T = {x, y, z} and p ∈ [xy] such that d(p, [xz]∪ [zy]) ≥ 5
4
. It is clear that d(p, x), d(p, y) ≥ 5

4
;

thus, d(x, y) ≥ 5
2
and L(T ) ≥ 5. If degT (u) = 2 for some u ∈ V (T ), then we have finished

the proof; hence, we can assume that degT (u) ≥ 3 for every u ∈ V (T ). If x (or y) is a
vertex of the graph, since x has at least three adjacent vertices in T , then one of them has
to belong to [zy]. Taking the vertex v in [zy] adjacent to x and nearest to y, we obtain a
cycle g = [yx] ∪ [x, v] ∪ [vy] with length greater than or equal to 5 such that degg(x) = 2.
By Theorem 2.4.3, we can assume now that x and y are midpoints of different edges; we
have d(x, y) ≥ 3. Let [ux, vx] be the edge which contains x and satisfies vx ∈ [xy], then
d(vx, y) ≥ 5

2
; let v be the vertex in [xz] ∪ [zy] adjacent to vx and nearest to y, and γ be the

path in [xz] ∪ [zy] from v to y. Taking g = [yvx] ∪ [vx, v] ∪ γ, we obtain a cycle with length
greater or equal to 5 such that degg(vx) = 2.

For every m ≥ 4, we say that a graph G with edges of length 1 is m-chordal (see [94]) if
for any cycle C in G with length L(C) ≥ m, there exists an edge joining two non-consecutive
vertices x, y of C. Given a cycle C in G, we say that a geodesic g = [uv] is a shortcut if
u, v ∈ V (C), L(g) = d(u, v) < dC(u, v) and g ∩ C = {u, v}.

Corollary 3.1.3. Let G be any graph with edges of length 1. If δ(G) ≤ 1, then G is 5-chordal.

Proposition 3.1.4. Let G be any graph. If δ(G) = 1, then G has a cycle isomorphic to C4.
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Proof. By Theorem 2.4.3, there exist a geodesic triangle T = {x, y, z} that is a cycle and
p ∈ [xy] such that d(p, [xz] ∪ [zy]) = 1; thus, L(T ) ≥ 4. Assume that L(T ) ≥ 5 and
denote the vertices of T by u1, u2, . . . , un with n ≥ 5. By Theorem 3.1.2 there exists a
vertex uj ∈ {u4, . . . , un} adjacent to u2. If none of the cycles {u1, u2, uj, uj+1, . . . , un} and
{u2, u3, . . . , uj} has length 4, at least one of them has length greater than or equal to 5.
Iterating this process we get a cycle of length 4.

Lemma 3.1.5. Let G be any graph such that δ(G) = 5
4
. If G contains a cycle C of length 6

and there exist x, y ∈ C such that d(x, y) = 3, then G has a cycle isomorphic to C5.

Proof. Let C be a cycle whose vertices are {u1, u2, u3, u4, u5, u6}. One can check that x, y
can be chosen such that we have either x, y ∈ V (C) or x, y are midpoints of opposite edges.
If x and y are two vertices in C such that d(x, y) = 3, then δ(G) ≥ 3

2
, a contradiction. Hence,

x and y are midpoints of opposite edges, for instance [u1, u2] and [u4, u5], respectively. Since
1 < d(u1, u4) < 3, then d(u1, u4) = 2. If there exists v ∈ V (G) \ V (C) with d(u1, v) =
d(u4, v) = 1, then there exists a cycle isomorphic to C5. If there exists v ∈ V (C) with
d(u1, v) = d(u4, v) = 1, then v ∈ {u3, u6} and in both cases there exists a cycle isomorphic
to C5.

Proposition 3.1.6. Let G be any graph. If δ(G) = 5
4
, then G has a cycle isomorphic to C5.

Proof. Since δ(G) = 5
4
, by Theorem 2.4.3, there exist a geodesic triangle T = {x, y, z} that

is a cycle whose vertices are in J(G) and p ∈ [xy] such that d(p, [xz] ∪ [yz]) = 5
4
.

Case 1. Assume that x or y is a vertex. If d(x, y) ≥ 3, we can take p′ ∈ [xy] such that p′

is not a vertex and d(p′, {x, y}) = 3
2
; thus d(p′, [xz] ∪ [yz]) = 3

2
, a contradiction. Therefore,

d(x, y) = 5
2
, that is, x is a vertex, y is the midpoint of a edge [uy, vy] (or viceversa), with

uy ∈ [xy], and p is the midpoint of [xy]. We take 0 < ε < 1
4
and y′ ∈ [yz] such that

d(y, y′) = ε. If p ∈ [xy′], let us consider the geodesic triangle T ′ = {x, y′, z}; taking p′ ∈ [xy′]
such that d(x, p′) = 5

4
+ ε

2
, we obtain d(p′, [xz] ∪ [y′z]) = 5

4
+ ε

2
, a contradiction. If p /∈ [xy′],

then there exists a vertex w adjacent to x and vy; thus, [xuy] ∪ [uy, vy] ∪ [vy, w] ∪ [w, x] is
isomorphic to a cycle C5, except for the case showed in Figure 3.1

Figure 3.1: Example 1
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In such a case, if L([xz]∪ [zvy]) = 2 or 3, we have a cycle isomorphic to C5, so we suppose
that the vertices of [xz] ∪ [zvy] are {x,w1, ..., wn, vy} where x ∼ w1, wi ∼ wi+1, wn ∼ vy and
n ≥ 3. If d(x,wn) = 3, we take the geodesic xwvywn for [xwn] and T ′ = {x,wn, z}, we obtain
δ(T ′) ≥ 3

2
, a contradiction. If d(x,wn) = 1 or d(x,wn) = 2 and w /∈ [xwn] then we have a

cycle isomorphic to C5. Finally, if d(x,wn) = 2 and w ∈ [xwn], as it is showed in Figure 3.2,
we can do the same with x and wn−1 in order to obtain a cycle isomorphic to C5.

Figure 3.2:

Case 2. Assume that x and y are the midpoints of [ux, vx] and [uy, vy], respectively (with
vx, uy ∈ [xy]). It is clear that d(x, y) ≥ 3. If d(x, y) ≥ 4, we can take p′ ∈ [xy] such that
d(p′, {x, y}) = 2 and, therefore, d(p′, [xz] ∪ [yz]) ≥ 3

2
, a contradiction. Hence, d(x, y) = 3

and d(vx, uy) = 2. Since δ(G) = 5
4
, d(p, x) = 5

4
or d(p, y) = 5

4
. Assume, for instance, that

d(p, x) = 5
4
, and we take 0 < ε < 1

4
and x′ ∈ [xux] such that d(x, x′) = ε. If p ∈ [x′y],

let us consider the geodesic triangle T ′ = {x′, y, z}; taking p′ ∈ [px′] such that d(p, p′) = ε
2
,

we conclude d(p′, [x′z] ∪ [yz]) ≥ 5
4
+ ε

2
, a contradiction. In consequence, p /∈ [x′y], that is,

d(ux, {uy, vy}) = 2. Four cases could happen.

Case 2.1. If {ux, w, vy} are the vertices of [uxvy] and w /∈ [xy], then γ = [uxvy] ∪ [vy, uy] ∪
[uyvx] ∪ [vx, ux] is a cycle such that L(γ) = 6. Since x, y ∈ γ and d(x, y) = 3, by Lemma
3.1.5, there exists a cycle isomorphic to C5.

Case 2.2. If {ux, w, vy} are the vertices of [uxvy] and w ∈ [xy], then we need to deal with
several cases. If L(T ) = 6, then γ = [ux, w] ∪ [wy] ∪ [yz] ∪ [zux] is a cycle isomorphic to C5.
If L(T ) ≥ 7, then L(γ) = p ≥ 6 and, since δ(G) = 5

4
< 6

4
, Corollary 2.4.7 gives that γ is not

an isometric subgraph, in consequence, there exists a shortcut e1 = [u1v1] in γ. Let γ1, γ
′
1 be

the two cycles in γ ∪ e1 containing e1 such that γ1 contains [ux, w] and γ′
1 does not contain

[ux, w]. (a) If L(γ1) = 3, then e1 ∈ E(G) and γ′
1 is a cycle isomorphic to a cycle graph Cp−1.

If p − 1 = 5, then there is nothing to prove. If p − 1 > 5, then δ(G) = 5
4
< p−1

4
; Corollary

2.4.7 gives that γ′
1 is not an isometric subgraph, and therefore there exists a shortcut e2 in

γ′
1. Let γ2, γ

′
2 be the two cycles in γ′

1 ∪ e2 containing e2 such that γ2 contains e1 and γ′
2 does

not contain e1. If L(γ2) ∈ {3, 4, 5}, then γ2∪γ1∪ [ux, vx]∪ [vx, w] contains a cycle isomorphic
to C5. If L(γ2) ≥ 6, then δ(G) = 5

4
< 6

4
; Corollary 2.4.7 gives that γ2 is not an isometric

subgraph, and therefore there exists a shortcut e3 in γ2. Let γ3 be the cycle in γ2 ∪ e3
containing e1 ∪ e3; then L(γ3) < L(γ2). If L(γ3) ∈ {3, 4, 5}, then γ3 ∪ γ1 ∪ [ux, vx] ∪ [vx, w]
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contains a cycle isomorphic to C5. If L(γ3) ≥ 6, then we can obtain a cycle γ4 containing e1
with L(γ4) < L(γ3). Iterating this process, finally we obtain a cycle isomorphic to C5. (b)
If L(γ1) > 3, then a similar argument on γ1 instead of γ′

1 in (a) gives, in a step k, a cycle
isomorphic to C5 or a cycle γk such that L(γk) = 3, namely, γk = [ux, w] ∪ [w,w′] ∪ [w′, ux]
where w′ ∈ V (γ). Finally, we can use γk instead of γ1 in (a) to obtain the result.

Case 2.3. If {ux, w, uy} are the vertices of [uxuy] and w /∈ [xy], then γ = [uxuy] ∪ [uyvx] ∪
[vx, ux] is a cycle such that L(γ) = 5.

Case 2.4. If {ux, w, uy} are the vertices of [uxuy] and w ∈ [xy] (w ̸= vx, uy), then an argument
similar to the one in Case 2.2 gives the result.

Looking at Propositions 3.1.4 and 3.1.6 it seems logical to think that, if δ(G) = 6
4
, then G

has a cycle isomorphic to C6 or, more generally, if δ(G) = n
4
, then G has a cycle isomorphic

to Cn for every n > 5. But this is not true, as the following result shows.

Proposition 3.1.7. For each n > 5 there exists a graph Gn such that δ(Gn) =
n
4
and Gn

does not have any cycle isomorphic to Cn.

Proof. Given 0 < a ≤ b ≤ c, denote by Ca,b,c the graph with three paths of lengths a, b, c
joining two vertices. We know that δ(Ca,b,c) = (c+min{b, 3a})/4 by [83, Theorem 12].

Given n > 6, consider the graph Gn = C1, (n−3), (n−3). We have

δ(Gn) =
(n− 3) + min{(n− 3), 1}

4
=

n

4
;

nevertheless Gn does not have any cycle isomorphic to Cn.

We deal now with the case n = 6. Let us consider a cycle graph C4 and fix [v, w] ∈ E(C4)
and u1, u2, u3 /∈ C4. Let G6 be the graph with

V (G6) := V (C4) ∪ {u1, u2, u3},

E(G6) := E(C4) ∪ {[v, u1], [u1, u2], [u2, u3], [u3, w], [v, u3]}.

Note that G6 has cycles isomorphic to C4, C5 and C7, but it does not have any cycle
isomorphic to C6.

Denote by g the unique cycle in G6 isomorphic to C7. Let x be the point in C4 at
distance 2 from the midpoint of the edge [v, w]. Consider the geodesic triangle T = {x, v, u2}
contained in the cycle g. If p is the point in [xu2] with d(p, x) = 2, then δ(G6) ≥ δ(T ) ≥
d(p, [xv] ∪ [vu2]) = d(p, u2) =

6
4
.

Since diam(G6) =
7
2
, we have δ(G6) ≤ 7

4
by Theorem 2.4.4. In order to prove δ(G6) =

6
4
,

it suffices to check that δ(G6) ̸= 7
4
, by Theorem 2.4.2. Seeking for a contradiction, assume

that δ(G6) =
7
4
. Theorem 2.4.3 gives that there exist a geodesic triangle T = {x, y, z} ∈ T1

in G6 and p ∈ [xy] such that d(p, [xz] ∪ [zy]) = δ(T ) = 7
4
and x, y, z ∈ J(G6). Since

d(p, {x, y}) ≥ d(p, [xz] ∪ [zy]) = 7
4
, L([xy]) ≥ 7

2
; the equality diam(Gn) = 7

2
implies that
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L([xy]) = 7
2
. Then L(T ) = L([xy]) + L([xz] ∪ [zy]) ≥ 2L([xy]) = 7. Since L(g) = 7 and g is

the largest cycle in G6, T is contained in the cycle g and L([xz]∪ [zy]) = 7
2
= L([xy]). Hence,

without loss of generality we can assume that T is the geodesic bigon T = {x, y}. Denote by
γ1 and γ2 the two geodesics in T with γ1∪γ2 = g and γ1∩γ2 = {x, y}, then p is the midpoint
of either γ1 or γ2. Since it is impossible to have x, y ∈ C4 or x, y /∈ C4, we can assume that
x ∈ C4 and y /∈ C4. Hence, without loss of generality we can assume that v ∈ γ1 and w ∈ γ2.
One can check that there are just two possibilities for y: we have that y is either u2 or the
midpoint of the edge [u1, u2]. Note that d(v, γ2) = d(v, w) = d(v, u3) = 1 < 3

2
≤ d(v, y) and

d(w, γ1) = d(w, v) = 1 < 2 ≤ d(w, y), and this implies that the distance from p to the other
side of T is less than d(p, y) = 7

4
, which is a contradiction. Therefore, δ(Gn) =

6
4
.

Theorem 3.1.8 below characterizes in a simple way the graphs G with δ(G) = 1. Recall
that Bandelt and Chepoi characterize in [6] the 1-hyperbolic graphs with respect to the
4-point condition. The following examples show that there is no relation between the set
of 1-hyperbolic graphs satisfying the 4-point condition and the set of 1-hyperbolic graphs
with respect to the Rips condition. Denote by δ4p(G) the 4-point condition hyperbolicity
constant of the graph G. One can check that δ(C5) = 5/4 and, by [6], δ4p(C5) = 1. We also
have δ(C4) = 1 and, by [6], δ4p(C4) ̸= 1.

The following result characterizes in a simple way the graphs G with δ(G) = 1.

Theorem 3.1.8. Let G be a graph. Then δ(G) = 1 if and only if the following conditions
hold:

(1) There exists a cycle isomorphic to C4.

(2) For every cycle γ such that L(γ) ≥ 5 and for every vertex w ∈ γ, it is satisfied
degγ(w) ≥ 3.

Proof. On one hand, if δ(G) = 1 < 5
4
, by Proposition 3.1.4 we obtain (1) and, by Theorem

3.1.2 we have (2). On the other hand, if (1) holds, by Theorems 2.4.2 and 3.1.1 we have
δ(G) ≥ 1. If (2) also holds, by Theorem 3.1.2 we know that δ(G) < 5

4
. Finally, since δ(G) is

a multiple of 1
4
by Theorem 2.4.2, we conclude δ(G) = 1.

Now we give a sufficient conditions in order to have δ(G) = 5
4
.

Proposition 3.1.9. Let G be a graph. Assume that the following conditions hold:

(1) There exist a cycle g in G such that L(g) ≥ 5 and a vertex w ∈ g satisfying degg(w) = 2.

(2) For every cycle γ we have diam(γ) ≤ 5
2
.

Then we have δ(G) = 5
4
.
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Proof. By Theorem 3.1.2, if (1) holds we have δ(G) ≥ 5
4
. Let us consider now any geodesic

triangle T = {x, y, z} that is a cycle; by hypothesis, diam(T ) ≤ 5
2
. Hence, for any p ∈ [xy]

we have d(p, [xz]∪ [zy]) ≤ d(p, {x, y}) ≤ 1
2
d(x, y) ≤ 5

4
. Therefore, δ(T ) ≤ 5

4
for any geodesic

triangle T that is a cycle; in consequence, δ(G) ≤ 5
4
by Theorem 2.4.3.

Proposition 3.1.9 gives sufficient conditions in a graph G to have δ(G) = 5
4
, but condition

(2) is not a necessary condition. The graph G showed in Figure 3.3, since d(x, y) = 3 and
the midpoints of every geodesic from x to y is a vertex of degree 7, satisfies δ(G) = 5

4

(we can take the geodesic triangle T = {x, y, z} and p ∈ [xy] such that d(p, y) = 5
4
to get

d(p, [xz] ∪ [zy]) = 5
4
). Moreover, this graph contains a cycle γ such that L(γ) ≥ 6 and

diam(γ) = 3.

Figure 3.3: Graph G that satisfies δ(G) = 5
4
.

Proposition 3.1.10. Let G be a graph. If δ(G) ≥ 3
2
, then there exists a cycle g in G such

that L(g) ≥ 6 and diam(g) ≥ 3.

Proof. By Theorem 2.4.3, if δ(G) ≥ 3
2
, then there exists a geodesic triangle T = {x, y, z}

that is a cycle, with x, y, z ∈ J(G), and p ∈ [xy] such that 1
2
≤ d(p, [xz]∪ [zy]) ≤ d(p, {x, y}).

Therefore, d(x, y) ≥ 3 and, consequently, we can take g = T .
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3.2 Hyperbolicity constant and effective diameter

A graph with small hyperbolicity constant can have arbitrarily large diameter: the path
graph with n vertices Pn verifies δ(Pn) = 0 and diam(Pn) = diamV (Pn) = n− 1 for every n.
However, there is a concept related with the diameter, the effective diameter, which is small
when the hyperbolicity constant is small, as we will prove in this chapter.

Definition 3.2.1. We say that a vertex v of a graph G is a cut-vertex if G \ {v} is not
connected. A graph is two-connected if it does not contain cut-vertices. Given any edge in
G, let us consider the maximal two-connected subgraph containing it. We call to the set of
these maximal two-connected subgraphs {Gn}n the canonical T-decomposition of G.

We will need the following result, which allows to obtain global information about the
hyperbolicity constant of a graph from local information (see [14, Theorem 3]).

Lemma 3.2.2. Let G be any graph with canonical T-decomposition {Gn}n. Then

δ(G) = sup
n

δ(Gn).

Definition 3.2.3. Given a graph G and its canonical T-decomposition {Gn}, we define the
effective diameter as

diameff V (G) := sup
n

diamV (Gn), diameff(G) := sup
n

diam(Gn).

Lemma 3.2.2 and Theorem 2.4.4 have the following consequence.

Lemma 3.2.4. Let G be any graph. Then

δ(G) ≤ 1

2
diameff(G).

As a corollary of Theorems 2.4.2 and 3.1.1, every Gn in the canonical T-decomposition of
a graph G with δ(G) < 1 is isomorphic to either K2 or K3. Therefore, we have the following
result.

Proposition 3.2.5. Let G be any graph. If δ(G) < 1, then diameff V (G) = 1 and diameff(G) ≤
3
2
. Furthermore:

(1) δ(G) = 0 if and only if diameff V (G) = diameff(G) = 1.

(2) δ(G) = 3
4
if and only if diameff V (G) = 1 and diameff(G) = 3

2
.

We are going to obtain now sharp bounds for diameff V (G) and diameff(G) when δ(G) <
3
2
. This is the only case where we can obtain them, since Remark 3.2.19 shows that it is

not possible to obtain similar bounds if δ(G) ≥ 3
2
. We start with some lemmas which will

be useful in order to simplify the proofs of the main results. Recall that J(G) denotes the
union of the set V (G) and the midpoints of the edges of G.
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Lemma 3.2.6. Let G be any graph. If there exists a cycle C in G containing a geodesic
[vw] with v, w ∈ V (G), 3 ≤ d(v, w) ≤ 5 and L(C) ≤ d(v, w) + 5, then δ(G) ≥ 3

2
.

Proof. Define
F := {σ | σ is a cycle in G containing [vw] }.

We know that F ̸= ∅ by hypothesis. Let C0 ∈ F such that L(C0) = minσ∈F L(σ).

Let γ be the path joining v and w with [vw] ∪ γ = C0 and [vw] ∩ γ = {v, w}. Therefore,
L(γ) ≤ 5.

Let u be the midpoint of γ and γ′, γ′′ the two paths such that v ∈ γ′, w ∈ γ′′, γ′∪ γ′′ = γ
and γ′ ∩ γ′′ = {u}. Thus L(γ′) = L(γ′′) ≤ 5

2
, and this implies that γ′ is a geodesic, since

otherwise there is an edge e joining v and a vertex of γ with e not contained in γ, and there
exists a cycle C1 containing [vw] with L(C1) < L(C0), which is a contradiction.

By symmetry, γ′′ is a geodesic and T = {[vw], γ′, γ′′} is a geodesic triangle in G that is
a cycle. Let p be the point in [vw] with d(p, v) = 3

2
. Then p is the midpoint of an edge and

δ(G) ≥ d(p, γ′ ∪ γ′′) = d(p, v) = 3
2
.

Theorem 3.2.7. Let G be any graph. If there exists a cycle in G containing a geodesic [pq]
with p, q ∈ V (G) and d(p, q) ≥ 3, then δ(G) ≥ 3

2
.

Proof. Let C be the set of cycles in G containing a geodesic of length 3 joining two vertices.
Since C ≠ ∅ by hypothesis, there exists C0 ∈ C such that L(C0) ≤ L(C) for every C ∈ C. Let
v, w ∈ V (G) such that d(v, w) = 3 and [vw] ⊂ C0. Denote by v0, w0, v1, v2, . . . , vr the other
vertices of C0, with {[v, v0], [v0, w0], [w0, w], [v, v1], [v1, v2], . . . , [vr−1, vr], [vr, w]} = E(G)∩C0.
The conditions on C0 imply the following:

if g is a geodesic joining x, y ∈ V (G) ∩ (C0 \ {v0, w0}) (3.1)

with L(g) < dC0(x, y), then g ∩ {v0, w0} ≠ ∅.

Since d(v, w) = 3, by Lemma 3.2.6, we can assume that L(C0) ≥ 9, since otherwise
δ(G) ≥ 3

2
. We also know by triangle inequality that 2 ≤ d(v1, w) ≤ 4.

Seeking for a contradiction assume that d(v1, w) = 3. Note that dC0(v1, w) = 4 since
L(C0) ≥ 9. Then [v1w] ∩ (C0 \ ([v0, w0] ∪ [w0, w])) = {v1} by (3.1) and dC0(v1, w) = 4.
Therefore the cycle C ′

0 := (C0 \ ([v1, v] ∪ [v, v0] ∪ [v0, w0] ∪ [w0, w])) ∪ [v1w] belongs to C and
L(C ′

0) = L(C0) − 1 < L(C0), contradicting the minimality of C0. Hence, d(v1, w) ̸= 3. The
same argument proves that d(vr, v) ̸= 3. If d(v1, w) = 2, then [v1, w0] ∈ E(G) by (3.1) and
dC0(v1, w) = 4.

Seeking for a contradiction, assume that d(v1, w) = 2 and d(vr, v) = 2. The previous
argument gives that [v1, w0], [vr, v0] ∈ E(G). Consider the geodesics γ1 := [v, v1] ∪ [v1, w0] ∪
[w0, w] and γ2 := [v, v0]∪ [v0, vr]∪ [vr, w] joining v and w. Since γ1∪γ2 ∈ C and L(γ1∪γ2) =
6 < 9 ≤ L(C0), we obtain a contradiction.
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Hence, we have d(v1, w) = 4 or d(vr, v) = 4. By symmetry we can assume that d(v1, w) =
4. Then d(v1, w0) = 3 and d(v2, w) ≥ d(w, v1)− d(v1, v2) = 3.

Recall that a geodesic η joining two vertices a, b ∈ C0 is a shortcut if d(a, b) = L(η) <
dC0(a, b) and η ∩ C0 = {a, b}.

Since d(v1, w) = 4 and w0 ∈ [v1w], there is no shortcut joining w0 and v1.
Seeking for a contradiction assume that there exists a shortcut η joining w0 and vj for

some 2 ≤ j ≤ r. Then C2 := [vj, vj−1] ∪ · · · ∪ [v2, v1] ∪ [v1, v] ∪ [v, v0] ∪ [v0, w0] ∪ η is a cycle
and L(C2) < L(C0). Since d(v1, w0) = 3, we have C2 ∈ C, contradicting the minimality of
C0.

Hence, for each 1 ≤ j ≤ r, there is no shortcut joining w0 and vj.
Since d(v1, w) = 4, we have d(v1, v0) = 2 and triangle inequality gives 1 ≤ d(v2, v0) ≤ 3.

Seeking for a contradiction assume that d(v2, v0) < 3. Assume first that d(v2, v0) = 1. Then
[v0, v2] ∈ E(G), and C3 := (C0\([v2, v1]∪[v1, v]∪[v, v0]))∪[v0, v2] is a cycle such that L(C3) <
L(C0). Since d(v2, w) ≥ 3, we have C3 ∈ C, contradicting the minimality of C0. Assume now
that d(v2, v0) = 2. Then there exists a vertex u with [v2, u], [u, v0] ∈ E(G). Since d(v1, v0) = 2
and there is no shortcut joining w0 and v2, by (3.1) we have either u = v3 or u /∈ C0. Since
there is no shortcut joining w0 and vj (1 ≤ j ≤ r), we deduce from (3.1) that d(v2, w) = 4
and, hence, d(v3, w) ≥ 3. Let us define C4 := (C0\([v2, v1]∪ [v1, v]∪ [v, v0]))∪ [v0v2] if u /∈ C0,
and C4 := (C0 \ ([v3, v2]∪ [v2, v1]∪ [v1, v]∪ [v, v0]))∪ [v0, v3] if u = v3. Then C4 is a cycle and
L(C4) < L(C0). Since d(v3, w) ≥ 3, we have C4 ∈ C, contradicting the minimality of C0.

Therefore, d(v2, v0) = 3 and there is no shortcut joining v0 and v2. Since d(v1, v0) = 2,
there is no shortcut joining v0 and v1. Seeking for a contradiction assume that there exists a
shortcut µ joining v0 and vj for some 3 ≤ j ≤ r. Then C5 := [vj, vj−1]∪· · ·∪ [v2, v1]∪ [v1, v]∪
[v, v0] ∪ µ is a cycle and L(C5) < L(C0). Since d(v2, v0) = 3, we have C5 ∈ C, contradicting
the minimality of C0.

Hence, for each 1 ≤ j ≤ r, there is no shortcut joining v0 and vj. Since we have proved
the similar result for w0, by (3.1), C0 is isometric to a cycle graph with the same length than
it and, consequently, C0 is an isometric subgraph of G. Then Lemmas 2.4.5 and 2.4.6 give
δ(G) ≥ δ(C0) =

1
4
L(C0) ≥ 9

4
> 3

2
.

Proposition 3.2.8. Let G be any graph. If G does not have cut-vertices and δ(G) ≤ 5
4
, then

diamV (G) ≤ 2 and diam(G) ≤ 3.

Proof. Note that diam(G) ≤ 3 is a direct consequence of diamV (G) ≤ 2. Seeking for a
contradiction, assume that diamV (G) ≥ 3. Let γ be a geodesic in G joining v1 and v4 whose
vertices are {v1, v2, v3, v4}, in this order; then L(γ) = 3. Since v2 is not a cut-vertex, there
is a path γ1 joining v1 and v3 with v2 /∈ γ1. Without loss of generality we can assume that
γ1 is minimal, i.e., L(γ1) ≤ L(g1) for every path g1 joining v1 and v3 with v2 /∈ g1. Similarly,
there is a minimal path γ2 joining v2 and v4 with v3 /∈ γ2.

Case 1. If v1 ∈ γ2 or v4 ∈ γ1, then by symmetry we can assume that v1 ∈ γ2. Hence,
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C = γ ∪ γ2 is a cycle containing a geodesic with length 3 and Theorem 3.2.7 gives δ(G) ≥ 3
2
.

This is a contradiction and then we can assume that v1 /∈ γ2 and v4 /∈ γ1.

Case 2. Assume that γ1 ∩ γ2 ̸= ∅. Then there exists x ∈ γ1 ∩ γ2 ∩V (G) such that if γ′
1 is the

subcurve of γ1 joining v1 and x, and γ′
2 is the subcurve of γ2 joining x and v4, then γ′

1 ∪ γ′
2

joins v1 and v4, and v2, v3 /∈ γ′
1∪γ′

2. Then C = γ′
1∪γ′

2∪γ is a cycle and Theorem 3.2.7 gives
δ(G) ≥ 3

2
, which is a contradiction.

Case 3. Finally, assume that γ1 ∩ γ2 = ∅, v1 /∈ γ2 and v4 /∈ γ1. If L(γ2) = 2, then [v1, v2]∪ γ2
is a geodesic with length 3, and therefore we can apply Theorem 3.2.7 taking the cycle
C = [v1, v2] ∪ γ2 ∪ [v3, v4] ∪ γ1 and the geodesic [v1, v2] ∪ γ2, obtaining a contradiction. If
L(γ2) > 2, then consider the path γ′

2 = {v1, v2, w1, w2} with w1, w2 ∈ γ2, dγ2(v2, w1) = 1 and
dγ2(v2, w2) = 2. If γ′

2 is a geodesic, again applying Theorem 3.2.7 to the cycle (γ \ [v2, v3])∪
γ1 ∪ γ2 we have a contradiction. Otherwise, considerer a geodesic γ′′

2 joining v1 and w2. The
minimality of γ2 gives that [v2, w2] /∈ V (G). Assume that [v1, w1] ∈ E(G), then γ ∪ [v1, w1]∪
(γ2 \ [v2, w1]) is a cycle and Theorem 3.2.7 provides a contradiction. Hence, [v1, w1] /∈ E(G),
v2, w1 /∈ γ′′

2 and γ′′
2 ∩ γ = {v1}; then we have a cycle γ ∪ γ′′

2 ∪ (γ2 \ {[v2, w1] ∪ [w1, w2]}) in G
and Theorem 3.2.7 gives a contradiction.

Thus diamV (G) ≤ 2 and, consequently, diam(G) ≤ 3.

Finally, we obtain an upper bound of diameff V (G) and diameff(G) for every graph G
with δ(G) = 5

4
.

Theorem 3.2.9. Let G be any graph. If δ(G) = 5
4
, then diameff V (G) ≤ 2 and diameff(G) ≤

3, and the inequalities are sharp.

Proof. Note that diameff(G) ≤ 3 is a direct consequence of diameff V (G) ≤ 2. Seeking for
a contradiction, assume that diameff V (G) > 2. If {Gn}n is the canonical T-decomposition
of G, then there exists n0 with diam(Gn0) > 2. Since Gn0 does not have cut-vertices,
Proposition 3.2.8 gives δ(Gn0) >

5
4
and Lemma 3.2.2 gives δ(G) > 5

4
, which is a contradiction.

Thus diameff V (G) ≤ 2 and, consequently, diameff(G) ≤ 3.

Note that diameff(G) ≤ 3 is a direct consequence of diameff V (G) ≤ 2. Seeking for a
contradiction, assume that diameff V (G) > 2. If {Gn}n is the canonical T-decomposition
of G, then there exists n0 with diam(Gn0) > 2. Since Gn0 does not have cut-vertices,
Proposition 3.2.8 gives δ(Gn0) >

5
4
and Lemma 3.2.2 gives δ(G) > 5

4
, which is a contradiction.

Thus diameff V (G) ≤ 2 and, consequently, diameff(G) ≤ 3.
In order to show that the inequalities are sharp, consider two graphs G1 and G2 isomor-

phic to the complete graph K4. Fix ej ∈ E(Gj) (j = 1, 2) and consider the unique edge
e′j ∈ E(Gj) with ej ∩ e′j = ∅; let xj be the midpoint of e′j. Define G as the graph obtained
from G1 and G2 by identifying e1 and e2. Denote by e the edge of G obtained by identifying
e1 and e2. One can check that diameff V (G) = diamV (G) = 2, diameff(G) = diam(G) = 3
and dG(x, y) = 3 if and only if {x, y} = {x1, x2}. Thus δ(G) ≤ 3

2
by Theorem 2.4.4. Let

γ1 and γ2 be two geodesics in G joining x1 and x2 with γ1 ∩ γ2 = {x1, x2}, and B the
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geodesic bigon B = {γ1, γ2}. One can check that δ(G) ≥ δ(B) = 5
4
. Hence, Theorem

2.4.2 implies δ(G) ∈
{

5
4
, 3

2

}
. Seeking for a contradiction assume that δ(G) = 3

2
. By Theo-

rem 2.4.3, there exist a geodesic triangle T = {x, y, z} that is a cycle and p ∈ [xy] such that
dG(p, [xz]∪ [zy]) = 3

2
. It is clear that dG(p, x), dG(p, y) ≥ 3

2
; thus, dG(x, y) ≥ 3 and L(T ) ≥ 6.

Since diam(G) = 3, dG(x, y) = 3 and we conclude {x, y} = {x1, x2}, p ∈ V (G) and p ∈ e.
Thus, e = [p, q] for some vertex q. Since G has six vertices and T is a cycle, L(T ) = 6 and
T is a geodesic bigon T = {x1, x2} = {g1, g2}. Without loss of generality we can assume
that p ∈ g1, and then q ∈ g2 and dG(p, g2) = dG(p, q) = 1, which is a contradiction. Hence,
δ(G) ̸= 3

2
and we conclude δ(G) = 5

4
. Since diameff V (G) = 2 and diameff(G) = 3, the

inequalities are sharp.

We prove now a similar result to Theorem 3.2.9 for graphs with hyperbolicity constant
1. We need some previous results.

Proposition 3.2.10. Let G be any graph. If there exists a cycle in G containing a geodesic
[vw] with v, w ∈ J(G) and d(v, w) ≥ 3, then δ(G) ≥ 5

4
.

Proof. Without loss of generality we can assume that d(v, w) = 3, since otherwise we can
take a subset of [vw]. Let C0 be a cycle in G containing [vw] and minimal, i.e., such that
L(C0) ≤ L(C) for every cycle C containing [vw]. Since d(v, w) = 3, L(C0) ≥ 6.

Note that we have either v, w ∈ V (G) or v, w ∈ J(G) \ V (G).
If v, w ∈ V (G), then Theorem 3.2.7 gives δ(G) ≥ 3

2
> 5

4
.

Assume now v, w ∈ J(G) \ V (G). Let v1, v2, v3 be the vertices in [vw] with d(v, vj) =
(j − 1

2
). Since w /∈ V (G) there exists v4 ∈ V (G) with w ∈ [v3, v4]. Define γ as γ :=

(C0 \ [v1w]) ∪ {v1}. Let v1, w1, . . . , wr be the vertices in γ with dγ(v1, wj) = j for 1 ≤
j ≤ r and wr = v4. Define s := max{1 ≤ j ≤ r − 1 | [v1, wj] ∈ E(G)} and C as the
cycle C := [v1, v2] ∪ [v2, v3] ∪ [v3, wr] ∪ [wr, wr−1] ∪ . . . ∪ [ws+1, ws] ∪ [ws, v1]. Note that
[v1, v3], [v1, wr] /∈ E(G) since d(v, w) = 3, furthermore, [v1, wj] /∈ E(G) for j > s; hence,
degC(v1) = 2 and L(C) ≥ 5, since d(v1, w) =

5
2
, and Theorem 3.1.2 gives δ(G) ≥ 5

4
.

The argument in the proof of Proposition 3.2.10 also gives the following result.

Corollary 3.2.11. Let G be any graph. If there exists a cycle in G containing a geodesic
[vw] with v, w ∈ V (G), d(v, w) = 2 and δ(G) = 1, then [vw] is contained in a cycle with
length 4.

Proposition 3.2.12. Let G be any graph. If G does not have cut-vertices and δ(G) ≤ 1,
then diamV (G) ≤ 2 and diam(G) ≤ 5

2
.

Proof. By Proposition 3.2.8 we know that diamV (G) ≤ 2 and diam(G) ≤ 3. Seeking for a
contradiction, assume that diam(G) > 5

2
, that is, diam(G) = 3.
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Then there are v, w ∈ J(G)\V (G) such that d(v, w) = 3. Let γ be a geodesic in G joining
v and w. Assume that v and w are the midpoints of [v1, v2] and [w1, w2], respectively (with
v1, w1 ∈ γ). Since d(v2, w2) = 2, there is a geodesic γ1 joining v2 and w2 with L(γ1) = 2.
Case 1. If γ ∩ γ1 = ∅, then we have a cycle C := [v1w1] ∪ [w1, w2] ∪ γ1 ∪ [v2, v1] with the
geodesic γ ⊂ C and Proposition 3.2.10 gives δ(G) ≥ 5

4
, which is a contradiction.

Case 2. Assume that γ ∩ γ1 ̸= ∅. Let x ∈ V (G) be the midpoint of γ. Since d(vi, wj) = 2
for i, j ∈ {1, 2}, v1, w1 /∈ γ1 and γ1 = [v2, x] ∪ [x,w2]. Since x is not a cut-vertex, there is a
path γ2 joining v1 and w1 with x /∈ γ2. Without loss of generality we can assume that γ2 is
a shortest path.
Case 2.1. If v2 /∈ γ2 and w2 /∈ γ2, then consider the cycle C := [v1, v2] ∪ γ1 ∪ [w2, w1] ∪ γ2
with the geodesic γ′ := [vv2] ∪ γ1 ∪ [w2w] ⊂ C. Proposition 3.2.10 gives δ(G) ≥ 5

4
, which is

a contradiction.
Case 2.2. Assume that v2, w2 ∈ γ2. In this case we have a cycle C := γ ∪ [ww2] ∪
(γ2 \ {[v1, v2], [w1, w2]}) ∪ [v2v] with γ ⊂ C. Proposition 3.2.10 gives δ(G) ≥ 5

4
, which is

a contradiction.
Case 2.3. Finally, assume that either v2 ∈ γ2 and w2 /∈ γ2, or v2 /∈ γ2 and w2 ∈ γ2. By
symmetry we can assume that v2 ∈ γ2 and w2 /∈ γ2. Consider the vertex u ∈ γ2 such that
u ̸= v1 and [u, v2] ∈ E(G), and let v′ be the midpoint of [u, v2].
Case 2.3.1. If d(v′, w) = 3, then σ := [v′v2] ∪ γ1 ∪ [w2w] is a geodesic joining v′ and w, and
therefore we can apply Proposition 3.2.10 taking the cycle C := (γ2 \ [v1, v2]) ∪ [w1, w2] ∪ γ1
and the geodesic σ ⊂ C, obtaining a contradiction.
Case 2.3.2. If d(v′, w) < 3, then d(v′, w) = 2. Since d(v2, wj) = 2 for j ∈ {1, 2}, u must be
adjacent to w1 or w2.
If d(u,w2) = 1, then C := [u,w2]∪ [w2w]∪γ∪ [vv2]∪ [v2, u] is a cycle containing the geodesic
γ. Therefore, we obtain a contradiction by applying Proposition 3.2.10.
If d(u,w2) > 1, then d(u,w1) = 1. Consider the cycle C := [u,w1]∪ [w1, w2]∪ [w2, x]∪ [x, v2]∪
[v2, u]. Since d(u,w2) > 1 and d(v2, w2) = 2, [u,w2], [v2, w2] /∈ E(G) and degC(w2) = 2.
Therefore, L(C) = 5 and, by Theorem 3.1.2 we have δ(G) ≥ 5

2
, which is a contradiction.

This result can be improved as follows.

Proposition 3.2.13. Let G be any graph. If G does not have cut-vertices and δ(G) ≤ 1,
then diam(G) ≤ 2.

Proof. Seeking for a contradiction, assume that diam(G) > 2, then diam(G) = 5
2
by Propo-

sition 3.2.12. Therefore, diamV (G) = 2.

Then there are v ∈ V (G), w ∈ J(G) \ V (G) such that d(v, w) = 5
2
. Let γ be a geodesic

in G joining v and w. Assume that w is the midpoint of [w1, w2], with w1 ∈ γ. Since
diamV (G) = 2 and d(v, w) = 5

2
, d(v, w2) = 2 and there is a geodesic γ1 joining v and w2

with L(γ1) = 2.
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Case 1. If γ ∩ γ1 = {v}, then γ ∪ [ww2] ∪ γ1 is a cycle. Consider the geodesic bigon
B := {γ, γ1 ∪ [w2w]}. If p is the midpoint of γ, then δ(G) ≥ δ(B) ≥ d(p, γ1 ∪ [w2w]) =

5
4
,

which is a contradiction.
Case 2. Assume that γ ∩ γ1 ̸= {v}. Let x ∈ V (G) be the vertex of γ with d(x, v) = 1. Since
d(v, w1) = d(v, w2) = 2, γ1 = [v, x] ∪ [x,w2] and γ ∩ γ1 = [v, x]. Since x is not a cut-vertex,
there is a path γ2 joining v and {w1, w2} with x /∈ γ2. Without loss of generality we can
assume that γ2 has minimum length, i.e., L(γ2) ≤ L(g) for every path g joining v and the
set {w1, w2}. By symmetry, we can assume that γ2 joins v and w1.
Case 2.1. If L(γ2) = 2, then γ2 ∪ [w1, w2] ∪ γ1 is a cycle. Consider the geodesic bigon
B := {γ2 ∪ [w1w], γ1 ∪ [w2w]}. If p is the midpoint of γ2 ∪ [w1w], then δ(G) ≥ δ(B) ≥
d(p, γ1 ∪ [w2w]) =

5
4
, which is a contradiction.

Case 2.2. If L(γ2) ≥ 3, then consider the cycle C := [w1v] ∪ γ2 with L(C) ≥ 5. The
minimality of γ2 gives degC(w1) = 2. Since L(C) ≥ 5, δ(G) ≥ 5

2
by Theorem 3.1.2, which is

a contradiction.
Thus diam(G) ≤ 2.

Finally, we obtain the precise value of diameff(G) for every graph G with δ(G) = 1.
Furthermore, the next result is another characterization of the graphs with δ(G) = 1.

Theorem 3.2.14. Let G be any graph. Then δ(G) = 1 if and only if diameff(G) = 2.

Proof. Assume that diameff(G) = 2. Lemma 3.2.4 gives δ(G) ≤ 1
2
diameff(G) = 1. If

δ(G) < 1, then Proposition 3.2.5 gives diameff(G) ≤ 3
2
, which contradicts diameff(G) = 2.

Hence, δ(G) = 1.

Assume now δ(G) = 1. Seeking for a contradiction, assume that diameff(G) > 2. If
{Gn}n is the canonical T-decomposition of G, then there exists n0 with diam(Gn0) > 2.

Since Gn0 does not have cut-vertices, Proposition 3.2.13 gives δ(Gn0) > 1 and Lemma
3.2.2 gives δ(G) > 1, which is a contradiction. Thus diameff(G) ≤ 2. Furthermore, Lemma
3.2.4 gives 2 = 2δ(G) ≤ diameff(G). Hence, diameff(G) = 2.

Proposition 3.2.5 and Theorem 3.2.14 imply the following results.

Corollary 3.2.15. Let G be any graph and 3
2
≤ diameff(G) ≤ 2. Then

δ(G) =
1

2
diameff(G).

Corollary 3.2.16. Let G be any graph. Then δ(G) ≥ 5
4
if and only if diameff(G) ≥ 5

2
.

Corollary 3.2.17. Let G be any graph and 3
2
≤ diameff(G) ≤ 5

2
. Then

δ(G) =
1

2
diameff(G).
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Proof. If 3
2
≤ diameff(G) ≤ 2, then Corollary 3.2.15 gives the equality. Assume now that

diameff(G) = 5
2
. We have δ(G) ≥ 5

4
by Corollary 3.2.16. Finally, δ(G) ≤ 5

4
by Lemma

3.2.4.

Lemma 3.2.4, Proposition 3.2.5 and Theorems 3.2.9 and 3.2.14 have the following conse-
quence.

Corollary 3.2.18. Let G be any graph. If δ(G) < 3
2
, then

5

8

(
diameff(G)− 1

)
≤ δ(G) ≤ 1

2
diameff(G).

Remark 3.2.19. It is not possible to bound diameff V (G) or diameff(G) if δ(G) ≥ 3
2
:

Let G be the Cayley graph of the group Z× Z2 (G has the shape of an infinite railway).
We have δ(G) = 3

2
and the canonical T-decomposition of G has just a graph G1 = G; hence,

diameff V (G) = diamV (G1) = ∞ and diameff(G) = ∞.

For each n > 6 consider the cycle graph Cn, and fix vertices v1 ∈ V (G) and v2 ∈ V (Cn).
The graph Gn obtained from G and Cn by identifying v1 and v2 has canonical T-decomposition
{G,Cn} and diameff V (Gn) = diameff V (G) = ∞ and diameff(Gn) = ∞. Furthermore,
Lemmas 3.2.2 and 2.4.6 give

δ(Gn) = max
{
δ(G), δ(Cn)

}
= max

{3

2
,
n

4

}
=

n

4
.

In order to characterize the graphs with hyperbolicity constant 5
4
we define some families

of graphs. Denote by Cn the cycle graph with n ≥ 3 vertices and by V (Cn) := {v(n)1 , . . . , v
(n)
n }

the set of their vertices such that [v
(n)
n , v

(n)
1 ] ∈ E(Cn) and [v

(n)
i , v

(n)
i+1] ∈ E(Cn) for 1 ≤ i ≤ n−1.

Let C6 be the set of graphs obtained from C6 by adding a (proper or not) subset of the

set of edges {[v(6)2 , v
(6)
6 ], [v

(6)
4 , v

(6)
6 ]}. Let us define the set of graphs

F6 := {graphs containing, as induced subgraph, an isomorphic graph to some element of C6}.

Let C7 be the set of graphs obtained from C7 by adding a (proper or not) subset of the set

of edges {[v(7)2 , v
(7)
6 ], [v

(7)
2 , v

(7)
7 ], [v

(7)
4 , v

(7)
6 ], [v

(7)
4 , v

(7)
7 ]}.

Define

F7 := {graphs containing, as induced subgraph, an isomorphic graph to some element of C7}.

Let C8 be the set of graphs obtained from C8 by adding a (proper or not) subset of the set

{[v(8)2 , v
(8)
6 ], [v

(8)
2 , v

(8)
8 ], [v

(8)
4 , v

(8)
6 ], [v

(8)
4 , v

(8)
8 ]}. Also, let C ′

8 be the set of graphs obtained from

C8 by adding a (proper or not) subset of {[v(8)2 , v
(8)
8 ], [v

(8)
4 , v

(8)
6 ], [v

(8)
4 , v

(8)
7 ], [v

(8)
4 , v

(8)
8 ]}.
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Define

F8 := {graphs containing, as induced subgraph, an isomorphic graph to some element of C8∪C ′
8}.

Let C9 be the set of graphs obtained from C9 by adding a (proper or not) subset of the set

of edges {[v(9)2 , v
(9)
6 ], [v

(9)
2 , v

(9)
9 ], [v

(9)
4 , v

(9)
6 ], [v

(9)
4 , v

(9)
9 ]}. Define

F9 := {graphs containing, as induced subgraph, an isomorphic graph to some element of C9}.

Finally, we define the set F by

F := F6 ∪ F7 ∪ F8 ∪ F9.

In [26, Lemma 3.21] appears the following result.

Lemma 3.2.20. Let G be any graph. Then G ∈ F if and only if there is a geodesic triangle
T = {x, y, z} in G that is a cycle with x, y, z ∈ J(G), L([xy]), L([yz]), L([zx]) ≤ 3 and
δ(T ) = 3

2
= d(p, [yz] ∪ [zx]) for some p ∈ [xy] ∩ V (G).

Finally, we obtain a simple characterization of the graphs G with δ(G) = 5
4
.

Theorem 3.2.21. Let G be any graph. Then δ(G) = 5
4
if and only if we have either

diameff(G) = 5
2
or diameff V (G) = 2, diameff(G) = 3 and G /∈ F .

Proof. Assume that δ(G) = 5
4
. Theorem 3.2.9 and Lemma 3.2.20 give diameff V (G) ≤ 2,

diameff(G) ≤ 3 and G /∈ F . Furthermore, diameff(G) ≥ 5
2
by Corollary 3.2.16, and this

implies diameff V (G) = 2.

Assume now diameff(G) = 5
2
. Corollary 3.2.17 gives δ(G) = 5

4
.

Finally, assume that diameff V (G) = 2, diameff(G) = 3 and G /∈ F . Thus δ(G) ≤ 3
2

by Theorem 2.4.4. Besides, δ(G) ≥ 5
4
by Corollary 3.2.16. Hence, Theorem 2.4.2 implies

δ(G) ∈
{

5
4
, 3

2

}
. Seeking for a contradiction assume that δ(G) = 3

2
. By Theorem 2.4.3, there

exists a geodesic triangle T = {x, y, z} that is a cycle with x, y, z ∈ J(G) and δ(T ) = 3
2
=

d(p, [yz] ∪ [zx]) for some p ∈ [xy]. Then d(p, {x, y}) ≥ d(p, [yz] ∪ [zx]) = 3
2
and d(x, y) ≥ 3.

Since diameff(G) = 3 and T is a cycle, we have L([xy]) = 3, L([yz]), L([zx]) ≤ 3. Since
diameff V (G) = 2, x, y ∈ J(G)\V (G), p is the midpoint of [xy] and it is a vertex of G. Thus
Lemma 3.2.20 gives G ∈ F , which is the contradiction we were looking for. Hence, δ(G) ̸= 3

2

and we conclude δ(G) = 5
4
.





Chapter 4

Gromov hyperbolicity of minor graphs

4.1 Hyperbolicity and edge contraction on simple graphs

In this section we study the distortion of the hyperbolicity constant by contraction of one
edge in any simple graph.

If G is a graph and e := [A,B] ∈ E(G), we denote by G/e the graph obtained by
contracting the edge e from it (we remove e from G while simultaneously we merge A and
B).

Definition 4.1.1. Denote by Ve the vertex in G/e obtained by identifying A and B in G.

Note that any vertex v ∈ V (G) \ {A,B} can be seen as itself in V (G/e). Also we can
write any edge in E(G/e) in terms of its endpoints, but we write Ve instead of A or B. If
[v, A] and [v,B] are edges of G for some v ∈ V (G), then we replace both edges by a single
edge [v, Ve] ∈ G/e (recall that we work with simple graphs), see Figure 4.1.

We define the map h : G → G/e in the following way: if x belongs to the edge e, then
h(x) := Ve; if x ∈ G does not belong to e, then h(x) is the “natural inclusion map”. Clearly
h is onto, i.e., h(G) = G/e. Besides, h is an injective map in the union of edges without
endpoints in {A,B}.

Given e ∈ E(G), denote by C(G, e) the set of cycles in G with length 3 containing e.

Proposition 4.1.2. Let G be a graph and e ∈ E(G). Then

dG/e

(
h(x), h(y)

)
≤ dG(x, y) ≤ dG/e

(
h(x), h(y)

)
+

3

2
, ∀x, y ∈ G. (4.1)

Furthermore, if y ∈ J(G) or x, y are not contained in the same cycle C ∈ C(G, e), then

dG/e

(
h(x), h(y)

)
≤ dG(x, y) ≤ dG/e

(
h(x), h(y)

)
+ 1. (4.2)

53
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eA B

G

Ve

G/e
h

Figure 4.1: The map h.

Proof. Without loss of generality we can assume that G is a connected graph, since otherwise
we can consider each connected component.
Fix x, y ∈ G. Let [xy]G be a geodesic in G joining x and y. Clearly, h([xy]G) is a path joining
h(x) and h(y) with length at most L([xy]G), thus, we obtain dG/e

(
h(x), h(y)

)
≤ dG(x, y).

Hence, the first inequalities in (4.1) and (4.2) hold.
Let γ′ be a geodesic in G/e joining h(x) and h(y). If x, y are not contained in the

same cycle C ∈ C(G, e), then there is a path γ in G with h(γ) = γ′ and L(γ) ≤ L(γ′) + 1
since e (or a subset of e) can be included in γ. Therefore, dG(x, y) ≤ L(γ) ≤ L(γ′) + 1 =
dG/e

(
h(x), h(y)

)
+ 1.

If x, y ∈ C ∈ C(G, e), then

dG(x, y) ≤ dC(x, y) ≤
1

2
L(C) =

3

2
≤ dG/e

(
h(x), h(y)

)
+

3

2
.

Finally, consider x, y ∈ C ∈ C(G, e) with y ∈ J(G).
We deal with several cases.

Case 1. If dG/e

(
h(x), h(y)

)
≥ 1/2, then

dG(x, y) ≤
1

2
L(C) =

1

2
+ 1 ≤ dG/e

(
h(x), h(y)

)
+ 1.

Case 2. Assume that dG/e

(
h(x), h(y)

)
< 1/2.

Case 2.1. y is the midpoint of e. If x ∈ e, then dG(x, y) ≤ 1/2. If x /∈ e, then
dG(x, y) = dG/e

(
h(x), h(y)

)
+ 1/2.

Case 2.2. y ∈ {A,B}. If x ∈ e, then dG(x, y) ≤ 1. If x /∈ e, then we have either
dG(x, y) = dG/e

(
h(x), h(y)

)
or dG(x, y) = dG/e

(
h(x), h(y)

)
+ 1.

Case 2.3. y ∈ V (C) \ {A,B}. Thus dG(x, y) = dG/e

(
h(x), h(y)

)
.

Case 2.4. y ∈ J(G) \{V (C)∪ e}. We have either dG(x, y) = dG/e

(
h(x), h(y)

)
, dG(x, y) =

dG/e

(
h(x), h(y)

)
+ 1 or dG(x, y) = 1− dG/e

(
h(x), h(y)

)
≤ 1.

This finishes the proof.
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Note that the inequalities in (4.1) and (4.2) are attained. If G is any graph, [v, w] ∈ E(G)
and {v, w}∩{A,B} = ∅, then dG/e(h(v), h(w)) = 1 = dG(v, w). Consider a cycle graph G =
C3 and x, y ∈ C3 such that x ̸= y and there is v ∈ V (C3) with dC3(x, v) = dC3(v, y) = 3/4.
Let e be the edge in C3 with x, y /∈ e. Hence, we have dC3(x, y) = 3/2 and h(x) = h(y).
Finally, consider a cycle graph G = C3, x0, y0 two different midpoints of edges in C3 and
e ∈ E(C3) with x0, y0 /∈ e. Thus, dC3(x0, y0) = 1 and h(x0) = h(y0).

The previous lemma has the following consequence about the continuity of h.

Proposition 4.1.3. The map h is an 1-Lipschitz continuous function.

Let (X, dX) and (Y, dY ) be two metric spaces. A map f : X −→ Y is said to be an
(α, β)-quasi-isometric embedding, with constants α ≥ 1, β ≥ 0 if for every x, y ∈ X:

α−1dX(x, y)− β ≤ dY (f(x), f(y)) ≤ αdX(x, y) + β.

The function f is ε-full if for each y ∈ Y there exists x ∈ X with dY (f(x), y) ≤ ε.

A map f : X −→ Y is said to be a quasi-isometry if there exist constants α ≥ 1, β, ε ≥ 0
such that f is an ε-full (α, β)-quasi-isometric embedding.

A fundamental property of hyperbolic spaces is the following:

Theorem 4.1.4 (Invariance of hyperbolicity). Let f : X −→ Y be an (α, β)-quasi-isometric
embedding between the geodesic metric spaces X and Y . If Y is hyperbolic, then X is
hyperbolic. Furthermore, if Y is δ-hyperbolic, then X is δ′-hyperbolic, where δ′ is a constant
which just depends on α, β, δ.

Besides, if f is ε-full for some ε ≥ 0 (a quasi-isometry), then X is hyperbolic if and only
if Y is hyperbolic. Furthermore, if X is δ-hyperbolic, then Y is δ′-hyperbolic, where δ′ is a
constant which just depends on α, β, δ, ε.

Remark 4.1.5. The definition of δ(G) when G is a non-connected graph gives that 4.1.4
holds for non-connected graphs.

Using the invariance of hyperbolicity (Theorem 4.1.4), we can obtain the main qualitative
aim in this section.

Theorem 4.1.6. Let G be any graph and e ∈ E(G). Then G is hyperbolic if and only if G/e
is hyperbolic. Furthermore, if G (respectively, G/e) is δ-hyperbolic, then G/e (respectively,
G) is δ′-hyperbolic, where δ′ is a constant which just depends on δ.

Proof. Lemma 4.1.2 gives that h is a 0-full (1, 3/2)-quasi-isometry from G onto G/e, and we
obtain the result by Theorem 4.1.4.
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One can expect that the edge contraction is a monotone transformation for the hy-
perbolicity constant, i.e., the hyperbolicity constant always decreases by edge contraction
(for instance, if e is any edge of the cycle graph C3, then C3/e is the path graph P2 and
δ(P2) = 0 < 3/4 = δ(C3); if e is any edge of the cycle graph Cn with n ≥ 4, then Cn/e is the
cycle graph Cn−1 and δ(Cn−1) = (n− 1)/4 < n/4 = δ(Cn)). However, the following example
provides a family of graphs such that the hyperbolicity constant increases by contracting
certain edge.

We need two definitions. Recall that the girth of a graph G is the minimum of the lengths
of the cycles in G. Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) be two graphs with
V (G1) ∩ V (G2) = ∅. The graph join G1 ⊎G2 of G1 and G2 has V (G1 ⊎G2) = V (G1)V (G2)
and two different vertices u and v of G1⊎G2 are adjacent (i.e., [u, v]E(G1⊎G2)) if u ∈ V (G1)
and v ∈ V (G2), or [u, v] ∈ E(G1) or [u, v] ∈ E(G2).

Example 4.1.7. In [83, Theorem 11], the authors obtain the precise value of the hyperbolicity
constant of the wheel graph with n vertices Wn: δ(W4) = δ(W5) = 1, δ(Wn) = 3/2 for every
7 ≤ n ≤ 10, and δ(Wn) = 5/4 for n = 6 and for every n ≥ 11. Note that we can obtain
Wn from Wn+1 by edge contraction, so, we have that δ(W11) = 5/4 and δ(W10) = 3/2.
Furthermore, in [30] the authors obtain the value of the hyperbolicity constant of the graph
join of E (the empty graph with just one vertex) and every graph. Thus, taking G as a
graph join of E and any graph G∗ with girth 10, then δ(G) = 5/4, but contracting an edge e
belonging to any cycle in G∗ with length 10, G/e is the graph join of E and other graph with
girth 9, so [30, Corollary 7] gives δ(G/e) = 3/2.

Other aim in this work is to obtain quantitative relations between δ(G/e) and δ(G). Since
the proofs of these inequalities are long, in order to make the arguments more transparent,
we collect some results in technical lemmas.

For any simple (non-selfintersecting) path γ′ joining two different points in G/e which
are not contained in an edge e0 with h−1(e0) ∈ C(G, e), we define Γ(γ′) as the set of paths γ
in G such that h(γ) = γ′ and

Γ0(γ
′) =

{
g ∈ Γ(γ′) | L(g) ≤ L(γ) ∀ γ ∈ Γ(γ′)

}
.

Note that any curve in Γ0(γ
′) is a simple path. We denote by h−1

0 (γ′) any fixed choice of
curve in Γ0(γ

′). If t′ ∈ γ′ \ Ve we denote by t = h−1
0 (t′) the point in h−1

0 (γ′) such that
h(t) = t′ (note that, since γ′ is a simple path, any t′ ∈ γ′ \ Ve defines an unique t ∈ h−1

0 (γ′)).
If t′ = Ve ∈ γ′, then h−1

0 (Ve) = h−1(Ve) = e. Hence, h−1
0 (t′) = h−1(t′)∩h−1

0 (γ′). Furthermore,
for any geodesic γ′ in G/e such that Ve /∈ γ′ we have that

h |h−1(γ′): h
−1(γ′) −→ γ′

is a bijective map and γ = h−1(γ′) = h−1
0 (γ′) is a geodesic in G with L(γ) = L(γ′).
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Lemma 4.1.8. Let G be a graph and e ∈ E(G). Let x, y ∈ G \ {e} such that there is no
C ∈ C(G, e) with x, y ∈ C. Assume that there are two geodesics γG and γG/e in G and G/e,
respectively, joining x, y and h(x), h(y), respectively, such that L(γG) = L(γG/e) = L(h(γG))
and e ⊂ h−1

0 (γG/e). Then we have

dG/e(h(α), γG/e) ≤ δ(G) ∀ α ∈ γG (4.3)

and
dG/e

(
α′, h(γG)

)
≤ 2δ(G) ∀ α′ ∈ γG/e. (4.4)

Remark 4.1.9. Since there is no C ∈ C(G, e) with x, y ∈ C, we deduce that h(x), h(y) are
not contained in an edge e0 with h−1(e0) ∈ C(G, e), and then h−1

0 (γG/e) is well defined.

Proof. We can assume that G is connected. Without loss of generality we can assume that
G is hyperbolic, since otherwise the inequalities trivially hold. Let z be the midpoint of
e = [A,B]. By symmetry, we can assume that the closure of the connected components of
h−1
0 (γG/e \ {Ve}) join x with A, and B with y. Clearly,

dG(z, x) = dG(z, A) +
1
2
= dG/e(h(x), Ve) +

1
2
,

dG(z, y) = dG(y,B) + 1
2
= dG/e(h(y), Ve) +

1
2
.

So, there are geodesics [xz]G and [zy]G in G verifying the following: [xz]G contains
the closure of the connected component of h−1

0 (γG/e \ {Ve}) joining x with A, and [zy]G
contains the closure of the connected component of h−1

0 (γG/e\{Ve}) joining B with y. Hence,
T := {γG, [yz]G, [zx]G} is a geodesic triangle in G and so,

dG(α, [yz]G ∪ [zx]G) = dG(α, h
−1
0 (γG/e)) ≤ δ(G)

for every α ∈ γG, and (4.3) holds by Lemma 4.1.2.
In order to obtain (4.4), without loss of generality we can assume that α′ ∈ h([yz]G),

since γG/e = h([yz]G)∪h([zx]G). Denote by α a point in [yB]G with h(α) = α′. If dG(y, e) =
dG(y,B) ≤ 2δ(G), then we have

dG/e(α
′, h(γG)) ≤ dG(α, γG) ≤ dG(α, y) ≤ dG(B, y) ≤ 2δ(G).

Assume that dG(y, e) > 2δ(G). Now we can take a point w ∈ [yz]G such that dG(w, e) = δ(G).
If α ∈ [wy] \ {w}, then the hyperbolicity of G implies dG(α, γG ∪ [zx]G) ≤ δ(G); note
that dG(α, [zx]G) > δ(G) since γG/e is a geodesic in G/e and dG(w, e) = δ(G). Hence,
dG(α, γG) ≤ δ(G) and thus Lemma 4.1.2 gives dG/e(α

′, h(γG)) ≤ δ(G). Assume now that
α ∈ [wB] \B (therefore, α′ ̸= Ve). Thus, there exists α1 ∈ [yz]G such that dG(α, α1) = δ(G)
and dG(α1, e) > δ(G). Therefore, α1 ∈ [wy]\{w} and we have proved that dG(α1, γG) ≤ δ(G).
Hence, Lemma 4.1.2 gives

dG/e(α
′, h(γG)) ≤ dG(α, γG) ≤ dG(α, α1) + dG(α1, γG) ≤ 2δ(G).

If α = B, then α′ = Ve and the inequality for α′ = Ve is obtained by continuity.
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In what follows, if x, y belong to some C ∈ C(G, e), then we denote by h−1
0 ([h(x)h(y)]G/e)

any fixed choice of a geodesic in C with [h(x)h(y)]G/e ⊆ h(h−1
0 ([h(x)h(y)]G/e)), and by

h−1
0 (α′) any point in h−1(α′) ∩ h−1

0 ([h(x)h(y)]G/e).

Lemma 4.1.10. Let G be a graph and e ∈ E(G) such that G/e is not a tree. Let [xy]G be
a geodesic in G joining x, y ∈ J(G). Assume that h([xy]G) is not a geodesic in G/e and let
[h(x)h(y)]G/e be a geodesic in G/e joining h(x) and h(y). Then we have

dG(h
−1
0 (α′), [xy]G) ≤ δ(G/e) + 1 ≤ 7

3
δ(G/e), ∀ α′ ∈ [h(x)h(y)]G/e (4.5)

and
dG

(
α, h−1

0 ([h(x)h(y)]G/e)
)
≤ 2δ(G/e), ∀ α ∈ [xy]G. (4.6)

Proof. Without loss of generality we can assume that G/e is hyperbolic, since otherwise the
inequalities hold. Since G/e is not a tree, δ(G/e) ≥ 3/4 by [68, Theorem 11], and

δ(G/e) + 1 ≤ 7

3
δ(G/e).

We deal with several cases.

(a) There exists C ∈ C(G, e) with x, y ∈ C. For every α, β ∈ C we have

dG(α, β) ≤ diamC =
3

2
= min

{3

4
+ 1, 2

3

4

}
≤ min

{
δ(G/e) + 1, 2δ(G/e)

}
.

Since [xy]G and h−1
0 ([h(x)h(y)]G/e are contained in C, (4.5) and (4.6) hold.

(b) There is no C ∈ C(G, e) with x, y ∈ C. Thus h(x), h(y) are not contained in an edge
e0 with h−1(e0) ∈ C(G, e), and then h−1

0 ([h(x)h(y)]G/e) is defined as before Lemma 4.1.8.
Let [A,B] := e. Since h([xy]G) is not a geodesic in G/e and x, y ∈ J(G), we have

e ∩ [xy]G ⊊ {A,B}, L([xy]G) ≥ 3/2, dG(x, y) = dG/e(h(x), h(y)) + 1 and Ve ∈ [h(x)h(y)]G/e.

(b.1) Assume that there exists a cycle C ∈ C(G, e) with L([xy]G∩C) > 1. Since [xy]G is a
geodesic in G, h([xy]G) is not a geodesic in G/e and x, y ∈ J(G), we have L([xy]G∩C) = 3/2,
C ⊂ h−1

0 ([h(x)h(y)]G/e) ∪ [xy]G, the closures of h−1
0 ([h(x)h(y)]G/e) \ C and [xy]G \ C are

two geodesics in G with the same endpoints, and the closures of [h(x)h(y)]G/e \ h(C) and
h([xy]G) \ h(C) are two geodesics in G/e with the same endpoints. Since L([xy]G ∩ C) =
3/2 = L(h−1

0 ([h(x)h(y)]G/e) ∩ C) and L(C) = 3, we have

dG(h
−1
0 (α′), [xy]G) ≤ 3/4 ≤ δ(G/e), ∀ α′ ∈ [h(x)h(y)]G/e ∩ h(C),

dG
(
α, h−1

0 ([h(x)h(y)]G/e)
)
≤ 3/4 ≤ δ(G/e), ∀ α ∈ [xy]G ∩ C.

Since the closures of h−1
0 ([h(x)h(y)]G/e) \ C and [xy]G \ C are two geodesics in G with the

same endpoints, and the closures of [h(x)h(y)]G/e\h(C) and h([xy]G)\h(C) are two geodesics
in G/e with the same endpoints, we also have

dG(h
−1
0 (α′), [xy]G) ≤ dG

(
h−1
0 (α′), [xy]G \ C

)
= dG/e

(
α′, h([xy]G) \ h(C)

)
≤ δ(G/e),
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for every α′ ∈ [h(x)h(y)]G/e \ h(C), and

dG
(
α, h−1

0 ([h(x)h(y)]G/e)
)
≤ dG

(
α, h−1

0 ([h(x)h(y)]G/e) \ C
)
=

= dG/e

(
h(α), [h(x)h(y)]G/e \ h(C)

)
≤ δ(G/e),

for every α ∈ [xy]G \ C.

(b.2) Assume now that L([xy]G ∩ C) ≤ 1 for every C ∈ C(G, e).
Note that L

(
h([xy]G)

)
= L([xy]G), since e ∩ [xy]G ⊂ {A,B}, so, for any z ∈ [xy]G we

have L
(
h([xz]G)

)
= L([xz]G) and L

(
h([zy]G)

)
= L([zy]G). Consider the points A′, B′ ∈

[xy]G such that dG(x,A
′) = dG(x, e) and dG(y,B

′) = dG(y, e). Since x, y ∈ J(G), we have
A′, B′ ∈ V (G). Since L

(
h([xy]G)

)
= L([xy]G), [A

′, B′] ∈ E(G) and [A′, B′] ⊂ [xy]G. Let
z be the midpoint of [A′, B′]. Since d(x,A′) = d(x, e), dG(y,B

′) = dG(y, e), dG(z, A
′) =

dG(z, B
′) = 1/2 and L([xy]G ∩ C) ≤ 1 for every C ∈ C(G, e), we have that h([xz]G) and

h([zy]G) are geodesics in G/e. Hence, T = {[h(x)h(y)]G/e, h([yz]G), h([zx]G)} is a geodesic
triangle in G/e, and thus

dG(h
−1
0 (α′), [xy]G) ≤ dG/e(α

′, h([xy]G)) + 1 = dG/e(α
′, h([xz]G) ∪ h([zy]G)) + 1

≤ δ(T ) + 1 ≤ δ(G/e) + 1 ≤ 7

3
δ(G/e),

for every α′ ∈ [h(x)h(y)]G/e.

In order to obtain (4.6), without loss of generality we can assume that α ∈ [yz]G. If
L([yz]G) ≤ 2δ(G/e), then we have dG

(
α, h−1

0 ([h(x)h(y)]G/e)
)
≤ dG(α, y) ≤ 2δ(G/e). Assume

that L([yz]G) > 2δ(G/e). Let w be the point in [yz]G with dG(w, z) = δ(G/e). If α ∈ [wy]G \
{w}, then the hyperbolicity of G/e implies dG/e

(
h(α), [h(x)h(y)]G/e ∪ h([zx]G)

)
≤ δ(G/e).

Note that if dG/e

(
h(α), h([zx]G)

)
≤ δ(G/e), then a geodesic γ joining h(α) and h([zx]G) in

G/e contains Ve and, since Ve ∈ [h(x)h(y)]G/e, we obtain

dG/e(h(α), [h(x)h(y)]G/e) ≤ dG/e(h(α), Ve) ≤ L(γ) ≤ δ(G/e).

Thus, we have dG/e(h(α), [h(x)h(y)]G/e) ≤ δ(G/e). Hence, we obtain

dG
(
α, h−1

0 ([h(x)h(y)]G/e)
)
= dG/e(h(α), [h(x)h(y)]G/e) ≤ δ(G/e).

Assume now that α ∈ [zw]G\{z}. Then, there exists α1 ∈ [wy]G\{w} such that dG(α, α1) =
δ(G/e), and we deduce

dG
(
α, h−1

0 ([h(x)h(y)]G/e)
)
≤ dG(α, α1) + dG

(
α1, h

−1
0 ([h(x)h(y)]G/e)

)
≤ 2δ(G/e).

The inequality for α = z is obtained by continuity.
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Remark 4.1.11. Let G be any graph, e ∈ E(G) and T = {γ1, γ2, γ3} a geodesic triangle in
G. Then at least one of the curves h(γ1), h(γ2), h(γ3) is a geodesic in G/e, since otherwise
there exists another geodesic triangle T ′ = {γ′

1, γ
′
2, γ

′
3} with the same vertices that T and such

that the edge e is contained in γ′
1 ∩ γ′

2 ∩ γ′
3.

The following result will be useful.

Theorem 4.1.12. [12, Theorem 2.7] For any hyperbolic graph G, there exists a geodesic
triangle T = {x, y, z} that is a cycle with x, y, z ∈ J(G) and δ(T ) = δ(G).

In order to prove Theorem 4.1.14 we will need the following technical result.

Lemma 4.1.13. Let G be a graph and e ∈ E(G). If G/e is a tree, then

δ(G) ≤ 1.

Proof. If G is a tree, then δ(G) = 0 ≤ 1.
Assume now that G is not a tree. Since G/e is a tree, if an edge e0 is contained in a cycle

in G, then it is contained in some cycle C0 ∈ C(G, e) and it contains A or B. Since any cycle
in C(G, e) contains the edge e, if [A,B] = e, then every cycle in G contains the vertices A
and B. Therefore, any cycle in G has length at most 4.

Theorem 4.1.6 gives that G is hyperbolic since δ(G/e) = 0. Hence, by Theorem 4.1.12
there exist a geodesic triangle T = {x, y, z} in G that is a cycle with x, y, z ∈ J(G) and
p ∈ [xy] with dG(p, [yz] ∪ [zx]) = δ(T ) = δ(G). Since T is a cycle, we have seen that
L(T ) ≤ 4. Thus

δ(G) = dG(p, [yz] ∪ [zx]) ≤ dG(p, {x, y}) ≤
1

2
dG(x, y) ≤

1

4
L(T ) ≤ 1.

The previous results allow to obtain a quantitative version of Theorem 4.1.6.

Theorem 4.1.14. Let G be a graph and e ∈ E(G). Then

1

3
δ(G/e) ≤ δ(G) ≤ 16

3
δ(G/e) + 1. (4.7)

Proof. Without loss of generality we can assume that G is a connected graph, since otherwise
we can consider each connected component. By Theorem 4.1.6 we have that G and G/e are
hyperbolic or not simultaneously. If G and G/e are not hyperbolic, then δ(G) = δ(G/e) = ∞
and (4.7) holds. Assume now that both graphs are hyperbolic.

Let us prove the first inequality in (4.7). If G is a tree, then δ(G/e) = 0 and the
first inequality holds. Assume that G/e is not a tree, thus δ(G/e) > 0. By Theorem
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4.1.12 there exist a geodesic triangle T ′ = {[x′y′], [y′z′], [z′x′]} in G/e that is a cycle with
x′, y′, z′ ∈ J(G/e) and p′ ∈ [x′y′] with dG/e(p

′, [y′z′] ∪ [z′x′]) = δ(T ′) = δ(G/e).
Consider T ⊂ h−1([x′y′] ∪ [y′z′] ∪ [z′x′]) such that T is a cycle with h(T ) = T ′. Define

x := h−1(x′) ∩ T , y := h−1(y′) ∩ T and z := h−1(z′) ∩ T , if Ve /∈ {x′, y′, z′}; otherwise, if
Ve = a′ with a′ ∈ {x′, y′, z′}, then we define a as the midpoint of e. Hence, we can define
gab as the simple curve contained in T joining a and b, and such that h(gab) = [a′b′], for
a, b ∈ {x, y, z} (note that gab = h−1

0 ([a′b′]) if h−1
0 ([a′b′]) is defined as before Lemma 4.1.8, i.e.,

if a′, b′ are not contained in an edge e0 with h−1
0 (e0) ∈ C(G, e)). Then x, y, z ∈ J(G) and T

can be seen as the triangle {gxy, gyz, gzx}. Note that if Ve ∈ {x′, y′, z′}, then T is a geodesic
triangle in G.

We deal with several cases.

(a) If T is a geodesic triangle in G, then by Lemma 4.1.2 we have for any p ∈ h−1(p′)∩gxy

δ(G/e) = δ(T ′) = dG/e(p
′, [y′z′] ∪ [z′x′]) ≤ dG(p, gyz ∪ gzx) ≤ δ(T ) ≤ δ(G)

and so, the first inequality in (4.7) holds.

(b) Assume that T is not a geodesic triangle in G. Thus, we have Ve ∈ T ′ \ {x′, y′, z′},
e ⊂ T and L(T ) = L(T ′) + 1. Since Ve /∈ {x′, y′, z′}, the edge e is contained in exactly one
of gxy, gyz, gzx, and the other two paths are geodesics in G by Proposition 4.1.2.

(b.1) Assume that e ⊂ gxy. Note that e is contained in the interior of gxy (recall that
Ve /∈ {x′, y′, z′}); since x, y ∈ J(G), we have L(gxy) ≥ 2. Therefore, x, y ∈ G \ {e} and
there is no C ∈ C(G, e) with x, y ∈ C. Hence, h−1

0 ([x′y′]) is defined as before Lemma 4.1.8,
gxy = h−1

0 ([x′y′]) and e ⊂ h−1
0 ([x′y′]). Consider a geodesic [xy] in G joining x and y. We have

L([xy]) = L([x′y′]) = L(h([xy])). Note that gxy is not a geodesic by hypothesis. By Lemma
4.1.8 there is p ∈ [xy] such that dG/e(p

′, h(p)) ≤ 2δ(G). Thus, since {[xy], gyz, gzx} is a
geodesic triangle in G, there is p1 ∈ gyz ∪ gzx such that dG(p, p1) ≤ δ(G). Hence, Proposition
4.1.2 gives

δ(G/e) = dG/e(p
′, [y′z′] ∪ [z′x′]) ≤ δG/e(p

′, h(p1)) ≤ dG/e(p
′, h(p)) + dG/e(h(p), h(p1))

≤ 2δ(G) + dG(p, p1) ≤ 3δ(G).

(b.2) Assume now that e ⊂ gyz∪gzx. By symmetry, we can assume that e ⊂ gyz. Note that
gyz is not a geodesic by hypothesis, and that gxy, gzx are geodesics. Consider a geodesic [yz]
in G joining y and z. Since {gxy, [yz], gzx} is a geodesic triangle in G, there is p ∈ [yz] ∪ gzx
such that dG(h

−1
0 (p′), p) ≤ δ(G).

(b.2.1) If p ∈ gzx, then Proposition 4.1.2 gives

δ(G/e) = dG/e(p
′, [y′z′] ∪ [z′x′]) ≤ dG/e(p

′, h(p)) ≤ dG(h
−1
0 (p′), p) ≤ δ(G).

(b.2.2) Assume that p ∈ [yz]. The argument in (b.1) also gives that y, z ∈ G \ {e}, there
is no C ∈ C(G, e) with y, z ∈ C, e ⊂ gyz = h−1

0 ([y′z′]), and L([yz]) = L([y′z′]) = L(h([yz])).
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Therefore, by Lemma 4.1.8 there is p′1 ∈ [y′z′] such that dG/e(h(p), p
′
1) ≤ δ(G). Thus, we

have by Proposition 4.1.2

δ(G/e) = dG/e(p
′, [y′z′] ∪ [z′x′]) ≤ dG/e(p

′, p′1) ≤ dG/e(p
′, h(p)) + dG/e(h(p), p

′
1)

≤ dG(h
−1
0 (p′), p) + δ(G) ≤ 2δ(G).

Hence, the first inequality in (4.7) holds.

Let us prove the second inequality in (4.7). By Theorem 4.1.12 there exist a geodesic
triangle T = {x, y, z} in G that is a cycle with x, y, z ∈ J(G) and p ∈ [xy] with dG(p, [yz] ∪
[zx]) = δ(T ) = δ(G). Since x, y, z ∈ J(G) we have

dG(p, [yz] ∪ [zx]) = dG(p, J(G) ∩ ([yz] ∪ [zx])),

and if dG(p, [yz] ∪ [zx]) = dG(p, q) with q ∈ J(G) ∩ ([yz] ∪ [zx]), then Lemma 4.1.2 gives

dG(p, [yz] ∪ [zx]) = dG(p, q) ≤ dG/e

(
h(p), h(q)

)
+ 1.

If δ(G) ≤ 1, then the second inequality in (4.7) holds. Hence, we can assume that
δ(G) > 1. Note that since δ(G) > 1 we have that G/e is not a tree by Lemma 4.1.13.

Let n be the number of geodesics in G/e of the set
{
h([xy]), h([yz]), h([zx])

}
. By Remark

4.1.11 we have n ∈ {1, 2, 3}.
We consider several cases.

(A) Assume that h([xy]) is a geodesic in G/e.

(A.1) If n = 3, then Lemma 4.1.2 gives

δ(G) = dG(p, [yz] ∪ [zx]) ≤ dG/e

(
h(p), h([yz]) ∪ h([zx])

)
+ 1 ≤ δ(G/e) + 1.

(A.2) Consider the case n = 2. By symmetry we can assume that h([yz]) is a geodesic
in G/e and let [h(z)h(x)] be a geodesic in G/e joining h(z) and h(x). Then there is p′ ∈
h([yz])∪ [h(z)h(x)] with dG/e(h(p), p

′) ≤ δ(G/e). By Lemma 4.1.2, we have dG(p, h
−1
0 (p′)) ≤

dG/e

(
h(p), p′

)
+ 1 ≤ δ(G/e) + 1. If p′ ∈ h([yz]), then h−1

0 (p′) ∈ [yz] and

δ(G) = dG(p, [yz] ∪ [zx]) ≤ dG(p, h
−1
0 (p′)) ≤ δ(G/e) + 1.

Assume that p′ ∈ [h(z)h(x)]. By Lemma 4.1.10, there is p1 ∈ [zx] with dG(h
−1
0 (p′), p1) ≤

(7/3) δ(G/e). Then we have

δ(G) = dG(p, [yz] ∪ [zx]) ≤ dG(p, p1) ≤ dG(p, h
−1
0 (p′)) + dG(h

−1
0 (p′), p1) ≤

10

3
δ(G/e) + 1.

(A.3) If n = 1, then let [h(y)h(z)], [h(z)h(x)] be geodesics in G/e joining h(y), h(z) and
h(z), h(x), respectively. Then there is p′ ∈ [h(y)h(z)] ∪ [h(z)h(x)] with dG/e(h(p), p

′) ≤
δ(G/e). By Lemma 4.1.2 we have dG(p, h

−1
0 (p′)) ≤ dG/e

(
h(p), p′

)
+ 1 ≤ δ(G/e) + 1. By
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symmetry we can assume that p′ ∈ [h(y)h(z)]. By Lemma 4.1.10 there is p1 ∈ [yz] with
dG(h

−1
0 (p′), p1) ≤ (7/3) δ(G/e). Thus,

δ(G) = dG(p, [yz] ∪ [zx]) ≤ dG(p, p1) ≤ dG(p, h
−1
0 (p′)) + dG(h

−1
0 (p′), p1) ≤

10

3
δ(G/e) + 1.

(B) Assume now that h([xy]) is not a geodesic in G/e. Let [h(x)h(y)] be a geodesic in
G/e joining h(x) and h(y). By Lemma 4.1.10 there is p′ ∈ [h(x)h(y)] with dG(p, h

−1
0 (p′)) ≤

2δ(G/e).

(B.1) Consider the case n = 2, i.e., h([yz]) and h([zx]) are geodesics in G/e. Then there
is p′′ ∈ h([yz]) ∪ h([zx]) with dG/e(p

′, p′′) ≤ δ(G/e). By Lemma 4.1.2, we have

dG
(
h−1
0 (p′), h−1

0 (p′′)
)
≤ dG/e(p

′, p′′) + 1 ≤ δ(G/e) + 1.

Thus, h−1
0 (p′′) ∈ [yz] ∪ [zx] and

δ(G) = dG(p, [yz]∪[zx]) ≤ dG(p, h
−1
0 (p′′)) ≤ dG(p, h

−1
0 (p′))+dG

(
h−1
0 (p′), h−1

0 (p′′)
)
≤ 3δ(G/e)+1.

(B.2) Consider the case n = 1. By symmetry we can assume that h([yz]) is a geodesic
in G/e and let [h(z)h(x)] be a geodesic in G/e joining h(z) and h(x). Then there is p′′ ∈
h([yz]) ∪ [h(z)h(x)] with dG/e(p

′, p′′) ≤ δ(G/e). By Lemma 4.1.2, we have

dG
(
h−1
0 (p′), h−1

0 (p′′)
)
≤ dG/e(p

′, p′′) + 1 ≤ δ(G/e) + 1.

If p′′ ∈ h([yz]), then we obtain

δ(G) = dG(p, [yz]∪[zx]) ≤ dG(p, h
−1
0 (p′′)) ≤ dG(p, h

−1
0 (p′))+dG(h

−1
0 (p′), h−1

0 (p′′)) ≤ 3δ(G/e)+1.

If p′′ ∈ [h(z)h(x)], then by Lemma 4.1.10 there is p1 ∈ [zx] with dG(h
−1
0 (p′′), p1) ≤ (7/3) δ(G/e).

Then we have

δ(G) = dG
(
p, [yz] ∪ [zx]

)
≤ dG(p, p1)

≤ dG
(
p, h−1

0 (p′)
)
+ dG

(
h−1
0 (p′), h−1

0 (p′′)
)
+ dG

(
h−1
0 (p′′), p1

)
≤ 16

3
δ(G/e) + 1.

The bounds in Theorem 4.1.14 are sharp, as the following examples show.

Example 4.1.15. Let G0 be the diamond graph, i.e., the complete graph with 4 vertices K4

without one edge (see Figure 4.2). Let e be the edge joining the two vertices with degree 3 in
G0. Then G0/e is isomorphic to the path graph with 3 vertices P3. Clearly, we have δ(G0) = 1
and δ(G0/e) = 0. This fact allows to obtain many graphs G attaining the upper bound in
Theorem 4.1.14: Consider any tree T and fix vertices v ∈ V (T ) and u ∈ V (G0 \ {e}).
Let G be the graph obtained from G0 and T by identifying the vertices u and v. Then
δ(G) = δ(G0) = 1 and δ(G/e) = δ(G0/e) = 0, since G/e and G0/e are trees.



CHAPTER 4. GROMOV HYPERBOLICITY OF MINOR GRAPHS 64

e
G

Ve

G/e
h

Figure 4.2: Example with upper bound in Theorem 4.1.14, i.e., δ(G) = 1 and δ(G/e) = 0.

Example 4.1.16. If T is any tree and e is any edge of T , then T/e is also a tree, δ(T ) =
δ(T/e) = 0, and so, the lower bound in Theorem 4.1.14 is attained.

Proposition 4.1.18 and Theorem 4.1.20 below allows to improve Theorem 4.1.14 in some
special cases. In order to do it we need some previous result.

We say that a vertex e in a graph G is a cut-vertex if G \ v is not connected. We say
that an edge e ∈ E(G) is a cut-edge if G \ e is not connected. A graph is two-connected if
it is connected and it does not contain cut-vertices. Given a graph G, we say that a family
of subgraphs {Gs}s of G is a T-decomposition of G if ∪sGs = G and Gs ∩ Gr is either a
cut-vertex or the empty set for each s ̸= r. Every graph has a T-decomposition, as the
following example shows. Given any edge in G, let us consider the maximal two-connected
subgraph containing it. We call to the set of these maximal two-connected subgraphs {Gs}s
the canonical T-decomposition of G.

In [14] the authors obtain the following result about T-decompositions.

Theorem 4.1.17. [14, Theorem 3] Let G be a graph and {Gs}s be any T-decomposition of
G, then

δ(G) = sup
s

δ(Gs).

The following result improves Theorem 4.1.14 when e is a cut-edge.

Proposition 4.1.18. Let G be a graph and e a cut-edge in G. Then

δ(G/e) = δ(G) = δ(G \ e).

Proof. Consider the T-decomposition {Gs}s of G\e. Then {Gs}s∪{e} is a T-decomposition
of G and Proposition 4.1.17 gives

δ(G) = max
{
sup
s

δ(Gs), δ(e)
}
= max

{
sup
s

δ(Gs), 0
}
= sup

s
δ(Gs) = δ(G \ e).
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For each s, let G′
s be the subgraph of G/e obtained from Gs by replacing the vertex in

{a, b} by ve. Note that G′
s and Gs are isomorphic (and isometric) and, therefore, δ(G′

s) =
δ(Gs). Since {G′

s}s is a T-decomposition of G/e, Proposition 4.1.17 gives

δ(G/e) = sup
s

δ(G′
s) = sup

s
δ(Gs) = δ(G).

Recall that a cactus is a connected graph in which any two cycles have at most one vertex
in common, i.e., every edge belongs to at most one cycle.
The circumference c(G) of the graph G is the supremum of the lengths of cycles in G.

Proposition 4.1.19. Let G be a cactus. Then

δ(G) =
1

4
c(G).

Proof. In order to bound δ(G), by Theorem 4.1.12 it suffices to consider geodesic triangles
T = {x, y, z} that are cycles. Hence, L(T ) ≤ c(G), dG(x, y) ≤ L(T )/2 ≤ c(G)/2 and
dG(p, [yz] ∪ [zx]) ≤ dG(p, {x, y}) ≤ dG(x, y) ≤ c(G)/4 for every p ∈ [xy]. Therefore, δ(G) ≤
c(G)/4. Consider any fixed cycle C in G. Since G is a cactus, dC(x, y) = dG(x, y) for every
x, y ∈ C. Choose x, y ∈ C with dC(x, y) = L(C)/2 and denote by g1, g2 the geodesics in C
joining x and y with g1∪g2 and g1∩g2 = {x, y}. Denote by B the geodesic bigon B = {g1, g2}.
If p is the midpoint in g1, then δ(B) ≥ dG(p, g2) = dG(p, {x, y}) = dG(x, y)/2 = L(C)/4.
Thus δ(G) ≥ c(G)/4, and we conclude δ(G) = c(G)/4

We denote by C(G) the set of cycles C in G with L(C) = c(G) if c(G) < ∞. The following
result improves Theorem 4.1.14 for cacti.

Theorem 4.1.20. Let G be a cactus.

• If either c(G) = ∞ or C(G) contains at least two cycles, then δ(G/e) = δ(G) for every
e ∈ E(G).

• If C(G) contains just a single cycle C, then δ(G/e) = δ(G) if and only if e /∈ E(G).

Proof. Note that G/e is also a cactus for every e ∈ E(G) and c(G/e) is equal to either c(G)
or c(G)1. Assume first that either c(G) = ∞ o C(G) contains at least two cycles, and fix any
e ∈ E(G). Thus, c(G/e) = c(G) and Proposition 4.1.19 δ(G/e) = δ(G). Assume now that
C(G) contains just a single cycle C. If e /∈ E(G), then c(G/e) = c(G) and δ(G/e) = δ(G).
If e ∈ E(G), then c(G/e) = c(G)1 and Proposition 4.1.19 gives δ(G/e) ̸= δ(G).
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4.2 Hyperbolicity of minor graphs

In order to obtain results on hyperbolicity of minor graphs we deal now with other trans-
formation of graphs involved in the definition of minor: the deletion of edges. Let G be a
graph and {ej}j∈J ⊆ E(G). Recall that G\{ej}j∈J is the graph with V (G\{ej}j∈J) = V (G)
and E(G \ {ej}j∈J) = E(G) \ {ej}j∈J . Theorem 4.2.3 below provides quantitative relations
between δ(G \ e) and δ(G), where e is any edge of G.

One can expect that the edge deletion is a monotone transformation for the hyperbolicity
constant. However, the following examples provide two families of graphs in which the
hyperbolicity constant increases and decreases, respectively, by removing some edge.

Example 4.2.1. Consider Gn as a cycle graph Cn with n ≥ 3 vertices and fix en ∈ E(Gn).
Thus, Gn \ en is isomorphic to a path graph Pn. Since δ(Cn) = n/4 and δ(Pn) = 0, we have
δ(Gn) > δ(Gn \ en) and

lim
n→∞

(
δ(Gn)− δ(Gn \ en)

)
= ∞.

Example 4.2.2. Let Ca,b,c be the graph with three disjoint paths joining two vertices with
lengths a ≤ b ≤ c. Consider an edge e of Ca,b,c contained in the path with length a. It
is easy to check that δ(Ca,b,c \ e) = (c + b)/4 and [68, Lemma 19] gives that δ(Ca,b,c) =
(c + min{b, 3a})/4. If 3a < b, then δ(Ca,b,c) < δ(Ca,b,c \ e). In particular, consider Γn =
Cn,4n,4n and fix en ∈ E(Γn) contained in the path with length n. Thus, δ(Γn) = 7n/4 and
δ(Γn \ en) = 2n. So, δ(Γn) < δ(Γn \ en) and

lim
n→∞

(
δ(Γn \ en)− δ(Γn)

)
= ∞.

In [28] the authors obtain quantitative information about the distortion of the hyperbol-
icity constant of the graph G \ e obtained from the graph G by deleting an arbitrary edge e
from it. The following theorem is a weak version of their main result.

Theorem 4.2.3. [28, Theorem 3.15] Let G be a connected graph and e = [a, b] ∈ E(G) with
G \ e connected. Then

max
{1

5
δ(G \ e), 1

4

(
dG\e(a, b) + 1

)}
≤ δ(G) ≤ 6δ(G \ e) + dG\e(a, b). (4.8)

One can deduce from Proposition 4.1.18 and Theorem 4.2.3 that for any finite subset
{e1, . . . , ek} ⊆ E(G), we have that G\{e1, . . . , ek} is hyperbolic if and only if G is hyperbolic.
This is not true for any infinite subset of edges (if G is any non-hyperbolic graph, then
G \ E(G) is hyperbolic). However, we can obtain a similar result for appropriate infinite
subsets of edges.

Consider a subset {ej}j∈J ⊂ E(G) with ej = [aj, bj] for any j ∈ J . We say that {ej}j∈J
is a proper-removal subset if L

(
G, {ej}j∈J

)
< ∞, where

L
(
G, {ej}j∈J

)
:= sup

{
dG\{ej}j∈J

(ak, bk)
∣∣ k ∈ J with ak, bk

in the same connected component ofG \ {ej}j∈J
}
.
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Proposition 4.2.4. Let G be a graph and {ej}j∈J a proper-removal subset of E(G). Then
G \ {ej}j∈J is hyperbolic if and only if G is hyperbolic.

Proof. Define G′ := G \ {ej}j∈J and consider any M ≥ L
(
G, {ej}j∈J

)
< ∞. Consider the

canonical injection i : G′ → G.
Let us assume first that G \ {ej}j∈J is connected. We are going to prove

1

M
dG′(x, y)− 1 ≤ dG(i(x), i(y)) ≤ dG′(x, y) , for every x, y ∈ G′ . (4.9)

Fix x, y ∈ G′ and let η be a geodesic in G′ joining x and y. Since i(η) is a path joining i(x)
and i(y) with length L(i(η)) = L(η), we have dG′(x, y) = L(η) = L(i(η)) ≥ dG

(
i(x), i(y)

)
.

Hence, the second inequality in (4.9) holds.
In order to prove the first inequality in (4.9), consider a geodesic γ in G from i(x) to i(y).

If γ does not contain edges in {ej}j∈J , then i−1(γ) is also a geodesic in G′ joining x with y
and dG′(x, y) = L(i−1(γ)) = L(γ) = dG

(
i(x), i(y)

)
. Assume now that γ contains some edge

ej with j ∈ J . Since γ is a compact set, it contains just a finite amount of edges in {ej}j∈J .
Let {ej0 , ej1 , . . . , ejr} be these edges in γ, in this order. Thus, i−1(γ) is the union of r + 2
geodesics in G′. Let {zk,1, zk,2} be the endpoints of ejk for 0 ≤ k ≤ r with

i−1(γ) = [ x z0,1] ∪ [z0,2 z1,1] ∪ [z1,2 z2,1] ∪ · · · ∪ [zr−1,2 zr,1] ∪ [zr,2 y ].

Since dG′(zk,1, zk,2) ≤ M , we have

dG′(x, y) ≤ dG′(x, z0,1) + dG′(z0,1, z0,2) +
r∑

k=1

(
dG′(zk−1,2, zk,1) + dG′(zk,1, zk,2)

)
+ dG′(zr,2, y)

≤ dG(i(x), i(z0,1)) +M +
r∑

k=1

(
dG(i(zk−1,2), i(zk,1)) +MdG(i(zk,1), i(zk,2))

)
+ dG(i(zr,2), i(y))

≤ M +M
(
dG(i(x), i(z0,1)) +

r∑
k=1

(
dG(i(zk−1,2), i(zk,1)) + dG(i(zk,1), i(zk,2))

)
+ dG(i(zr,2), i(y))

)
= M +ML(γ) = M +MdG(i(x), i(y)),

and we conclude
1

M
dG′(x, y)− 1 ≤ dG(i(x), i(y)).

Hence, i is a (M, 1)-quasi-isometric embedding. Since G′ is connected, i is 1/2-full, i is a
quasi-isometry and Theorem 4.1.4 gives that G′ is hyperbolic if and only if G is hyperbolic.
Furthermore, if G (respectively G′) is δ-hyperbolic, then G′ (respectively G′) is δ′-hyperbolic,
where δ′ is a constant which just depends on δ and M .

Finally, assume that G \ {ej}j∈J is not connected. Let J0 the subset of J such that ej
is a cut-edge of G. Let {Gi}i∈I be the pairwise disjoint (connected) subgraphs of G such
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that
{
{Gi}i∈I , {ej}j∈J0

}
is a T-decomposition of G. Define J i as J i := {j ∈ J | ej ∈ E(Gi)}.

Thus, J =
(
∪i∈I J i

)
∪ J0 and the sets in this union are pairwise disjoint. Also, G′ =

∪i∈I
(
Gi \ {ej}j∈Ji

)
. By Proposition 4.1.18, we have δ(G \ {ej}j∈J0) = δ(G) = supi∈I δ(G

i).
Let us define M := L

(
G, {ej}j∈J

)
.

Assume that G is hyperbolic. Thus, δ(Gi) ≤ δ(G) for any i ∈ I, by Proposition 4.1.17.
Since Gi \ {ej}j∈Ji is connected and L

(
Gi, {ej}j∈Ji

)
≤ M for each i ∈ I, we have proved

that δ(Gi \ {ej}j∈Ji) ≤ δ′, where δ′ is a constant which just depends on δ(G) and M . Since{
Gi \ {ej}j∈Ji

}
i∈I are the connected components of G′, we have δ(G′) ≤ δ′.

A similar argument gives that if G′ is hyperbolic, then δ(G) ≤ δ′, where δ′ is a constant
which just depends on δ(G′) and M .

By Theorem 4.1.14, given any finite subset {e1, . . . , ek} ⊆ E(G), we have thatG/{e1, . . . , ek}
is hyperbolic if and only if G is hyperbolic. This is not true for any infinite subset of edges
(if G is any non-hyperbolic graph, then G/E(G) is hyperbolic). However, we can obtain a
similar result for appropriate infinite subsets of edges.

Consider a subset {ej}j∈J ⊂ E(G) with connected components {Ki}i∈I . We say that
{ej}j∈J is a proper-contraction subset if supi∈I diamG Ki < ∞.

Proposition 4.2.5. Let G be a graph and {ej}j∈J a proper-contraction subset of E(G).
Then G/{ej}j∈J is hyperbolic if and only if G is hyperbolic.

Proof. Define G′ := G/{ej}j∈J and M := supi∈I diamG Ki < ∞. For each j ∈ J , let vej
be the vertex in G′ obtained by identifying the endpoints of ej (note that vej1 = vej2 if
ej1 , ej2 ∈ Ki for some i ∈ I). Consider the natural map h : G → G′ with h(x) := vej for any
x ∈ ej and j ∈ J . We are going to prove

1

M + 1
dG(x, y)− 1 ≤ dG′(h(x), h(y)) ≤ dG(x, y) , for every x, y ∈ G . (4.10)

Fix x, y ∈ G and let η be a geodesic in G joining x and y. Since h(η) is a path joining
h(x) and h(y) with L(h(η)) ≤ L(η), we have dG′

(
h(x), h(y)

)
≤ L(h(η)) ≤ L(η) = dG(x, y).

Hence, the second inequality in (4.10) holds.
In order to prove the first inequality in (4.10), consider a geodesic γ in G′ from h(x) to

h(y). If γ does not contain vertices in {h(Ki)}i∈I , then h−1(γ) is a geodesic in G joining x
with y and dG(x, y) = L(h−1(γ)) = L(γ) = dG′

(
h(x), h(y)

)
. Assume now that γ contains

some vertex h(Ki) with i ∈ I. Since γ is a compact set, it contains just a finite amount of
vertices in {h(Ki)}i∈I . Let {h(Ki0), h(Ki1), . . . , h(Kir)} be these vertices in γ, in this order.
Thus, there is a union of r+ 2 geodesics g0 in G such that h(g0) = γ and L(g0) = L(γ). Let
{zk,1, zk,2} = g0 ∩Kik for 0 ≤ k ≤ r with

g0 = [x z0,1] ∪ [z0,2 z1,1] ∪ [z1,2 z2,1] ∪ · · · ∪ [zr−1,2 zr,1] ∪ [zr,2 y ]
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(it is possible to have z0,1 = z0,2 and/or zr,1 = zr,2; if z0,1 = z0,2 then x ∈ Ki0 , if zr,1 = zr,2
then y ∈ Kir). Since dG(zk,1, zk,2) ≤ diamG Kir ≤ M , we have

dG(x, y) ≤ dG(x, z0,1) + dG(z0,1, z0,2) +
r∑

k=1

(
dG(zk−1,2, zk,1) + dG(zk,1, zk,2)

)
+ dG(zr,2, y)

≤ dG(x, z0,1) +M +
r∑

k=1

(
dG(zk−1,2, zk,1) +M dG(zk−1,2, zk,1)

)
+ dG(zr,2, y)

≤ M + (M + 1)
(
dG(x, z0,1) +

r∑
k=1

dG(zk−1,2, zk,1) + dG(zr,2, y)
)

= M + (M + 1)L(g0) = M + (M + 1)L(γ) = M + (M + 1) dG′(h(x), h(y)),

and we conclude

1

M + 1
dG(x, y)− 1 ≤ 1

M + 1
dG(x, y)−

M

M + 1
≤ dG′(h(x), h(y)).

Hence, h is a (M + 1, 1)-quasi-isometric embedding. Since h is a surjective map (and
then 0-full), h is a quasi-isometry and Theorem 4.1.4 gives that G′ is hyperbolic if and only
if G is hyperbolic.

Finally, since the hyperbolicity constant of any isolated vertex is 0, Propositions 4.2.4
and 4.2.5 give the following qualitative result.

Theorem 4.2.6. Let G be a graph, G1 a minor graph of G obtained by contracting a proper-
contraction subset of E(G), G2 a minor graph of G1 obtained by deleting a proper-removal
subset of E(G1), and G′ a minor graph of G2 (and of G) obtained by deleting any amount
of isolated vertices. Then G is hyperbolic if and only if G′ is hyperbolic.
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4.3 Hyperbolicity and minors of non-simple graphs

Simple graphs are the usual context in the study of hyperbolicity. However, the operation of
contraction is naturally defined for non-simple graphs. For this reason, in this last section we
study the distortion of the hyperbolicity constant by contraction of one edge in non-simple
graphs.

Since we work with non-simple graphs, if there are n1 ≥ 1 edges in G joining v and A
and n2 ≥ 1 edges joining v and B for some v ∈ V (G), then we obtain n1+n2 edges joining v
and Ve in G/e, see Figure 4.3. Thus, in the context of non-simple graphs a cycle C ∈ C(G, e)
is transformed in a double edge in G/e, as in Figure 4.3.

We define the map H : G → G/e in the following way: if x belongs to the edge e, then
H(x) := Ve; if x ∈ G does not belong to e, then H(x) is the “natural inclusion map”. Clearly
H is onto, i.e., H(G) = G/e. Besides, H is an injective map in G \ {e}.

e

G

Ve

G/e

H

Figure 4.3: The map H.

We prove now a version of Proposition 4.1.2 for non-simple graphs.

Proposition 4.3.1. Let G be a non-simple graph and e ∈ E(G). Then

dG/e

(
H(x), H(y)

)
≤ dG(x, y) ≤ dG/e

(
H(x), H(y)

)
+ 1, (4.11)

for every x, y ∈ G.

Proof. We can assume that G is connected. Fix x, y ∈ G and let [xy]G be a geodesic in G
joining x and y. Clearly, H([xy]G) is a path joining H(x) and H(y) with length at most
L([xy]G). Hence, we obtain dG/e

(
H(x), H(y)

)
≤ dG(x, y).

Let γ′ be a geodesic in G/e joining H(x) and H(y). Then there is a path γ in G
with H(γ) = γ′ and L(γ) ≤ L(γ′) + 1 since γ can contain e or a subset of e. Therefore,
dG(x, y) ≤ L(γ) ≤ L(γ′) + 1 = dG/e

(
H(x), H(y)

)
+ 1.

Note that the inequalities in (4.11) are attained. If G is any non-simple graph, {v, w} ̸=
{a, b} and [v, w] ∈ E(G), then dG/e(H(v), H(w)) = 1 = dG(v, w). If G is any non-simple
graph, then dG(a, b) = 1 = dG/e(H(a), H(b)) + 1.

For any simple path γ′ joining two different points in G/e, H−1(γ′) is either a simple
path γ in G or the union of a simple path γ with e. In both cases, we define H−1

0 (γ′) := γ.
If α′ ∈ γ′, then we define H−1

0 (α′) := H−1(α′) ∩H−1
0 (γ′) (note that H−1

0 (α′) = H−1(α′) for
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every α′ ̸= ve and H−1
0 (ve) can be either a, b or e). Hence, if ve /∈ γ′, then H−1

0 (γ′) = H−1(γ′)
and

H |H−1(γ′): H
−1(γ′) −→ γ′

is a bijective map.

One can check that the following simpler versions for non-simple graphs of Lemmas 4.1.8,
4.1.10 and 4.1.13 hold.

Lemma 4.3.2. Let G be a non-simple graph and e ∈ E(G). Assume that for some x, y ∈
G \ {e} there are two geodesics γG and γG/e in G and G/e, respectively, joining x, y and
H(x), H(y), respectively, such that L(γG) = L(γG/e) = L(H(γG)) and e ⊂ H−1

0 (γG/e). Then
we have

dG/e(H(α), γG/e) ≤ δ(G) ∀ α ∈ γG

and
dG/e

(
α′, H(γG)

)
≤ 2δ(G) ∀ α′ ∈ γG/e.

Lemma 4.3.3. Let G be a non-simple graph and e ∈ E(G) such that G/e is not a tree. Let
[xy]G be a geodesic in G joining x, y ∈ J(G). Assume that H([xy]G) is not a geodesic in G/e
and let [H(x)H(y)]G/e be a geodesic in G/e joining H(x) and H(y). Then we have

dG(H
−1
0 (α′), [xy]G) ≤ δ(G/e) + 1 ≤ 7

3
δ(G/e), ∀ α′ ∈ [H(x)H(y)]G/e

and
dG

(
α,H−1

0 ([H(x)H(y)]G/e)
)
≤ 2δ(G/e), ∀ α ∈ [xy]G.

Hence, the main results also hold for non-simple graphs.

Theorem 4.3.4. Let G be a non-simple graph and e ∈ E(G). Then

1

3
δ(G/e) ≤ δ(G) ≤ 16

3
δ(G/e) + 1.

Proposition 4.3.5. Let G be a non-simple graph and e a cut-edge in G. Then

δ(G/e) = δ(G) = δ(G \ e).

Theorem 4.3.6. Let G be a non-simple graph, G1 a minor graph of G obtained by con-
tracting a proper-contraction subset of E(G), G2 a minor graph of G1 obtained by deleting a
proper-removal subset of E(G1), and G′ a minor graph of G2 (and of G) obtained by deleting
any amount of isolated vertices. Then G is hyperbolic if and only if G′ is hyperbolic.





Conclusions

The main aim of this work is to study the graphs with small hyperbolicity constants, i.e.,
the graphs which are like trees (in the Gromov sense). In Chapter 3 we give a partial answer
to the question:

What is the structure of graphs with small hyperbolicity constant?
Two of our main results are Theorems 3.1.8 and 3.2.14, which characterize in two simple
ways the graphs G with δ(G) = 1 (the case δ(G) < 1 is known, see Theorem 3.1.1).

We also characterize the graphs G with δ(G) = 5
4
in Theorem 3.2.21. Theorems 3.1.2

and 3.2.9, Corollary 3.2.16 and Proposition 3.1.9 give necessary conditions and a sufficient
condition in order to have δ(G) = 5

4
. Proposition 3.1.10 gives a necessary condition in order

to have δ(G) = 3
2
. (Recall that Theorem 2.4.2 shows that δ(G) is a multiple of 1

4
.)

Although it is not possible to obtain bounds for the diameter of graphs with small
hyperbolicity constant, in Section 4 we obtain such bounds for the effective diameter if
δ(G) < 3

2
(see Proposition 3.2.5 and Theorems 3.2.9 and 3.2.14).

This is the only case where we can obtain them, since Remark 3.2.19 shows that it is not
possible to obtain similar bounds if δ(G) ≥ 3

2
.

Furthermore, Corollary 3.2.17 provides an explicit formula for the hyperbolicity constant
of many graphs.

In Chapter 4 we obtain the invariance of the hyperbolicity under the contraction of a
finite number of edges. Besides, we obtain quantitative information about the distortion of
the hyperbolicity constant of the graph G/e obtained from the graph G by contracting an
arbitrary edge e from it for simple and non-simple graphs, in Sections 4.1 and 4.3, respec-
tively. In Sections 4.2 and 4.3 we obtain the invariance of the hyperbolicity on many minor
graphs as a consequence of these results for simple and non-simple graphs, respectively.

Furthermore, this work provides information about the hyperbolicity constant of minor
graphs.
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The results in this work appear in [11, 10, 32]; these papers have been published or submitted
to prestigious international mathematical journals. These results were presented in the
following international and national conferences and Seminars:

• VIII Jornadas de Matemática Discreta y Algoŕıtmica, July 2014, Tarragona, Spain.

• Seminar on Orthogonality, Approximation Theory and Applications. Group of Applied
Mathematical Analysis (GAMA), May 2015, Universidad Carlos III de Madrid, Spain.

• III Congreso de Jóvenes Investigadores RSME, September 2015, Murcia, Spain.

• Seminario de Matemáticas, November 2015, Universidad Autónoma de Guerrero, México.

• XWorkshop of Young Researchers in Mathematics, September 2016, Universidad Com-
plutense de Madrid, Spain.
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Open problems

In this work, we have studied the hyperbolicity of an important class of graphs: minor
graphs.

We are interested in the study of Gromov hyperbolicity of other interesting class: ∆-
regular graphs.

Hyperbolic cubic (3-regular) graphs are studied in some previous works, and we think
that it is possible to extend many of these results to the context of ∆-regular graphs, for
every ∆ ≥ 3.

In particular, we want to characterize the ∆-regular graphs with small hyperbolicity
constants, to use the T-decompositions in the study of Gromov hyperbolicity of ∆-regular
graphs, and to find relationships between the hyperbolicity constant of a ∆-regular graph
and its complement.

Another interesting problem is to obtain inequalities relating the hyperbolicity constant
and other parameters used in Graph Theory. In particular, we want to relate the hyperbol-
icity constant and the differential of a graph.
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[76] Portilla, A., Rodŕıguez, J. M. and Touŕıs, E., Gromov hyperbolicity through decompo-
sition of metric spaces II, The Journal of Geometric Analysis 14 (2004), 123-149.
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