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Resumen

Uno de los problemas abiertos en la teoŕıa de grafos es la caracterización de cualquier grafo
por un polinomio. La investigación en este área ha sido impulsada en gran parte por las
ventajas que ofrece el uso de las computadoras que hacen que trabajar con grafos sea más sim-
ple. En esta Tesis introducimos el polinomio de alianza de un grafo. El polinomio de alianza
de un grafo G con orden n y grado máximo δ1 es el polinomio A(G; x) =

∑δ1
k=−δ1

Ak(G) x
n+k,

donde Ak(G) es el número de k alianzas defensivas exactas en G. También desarrollamos e
implementamos un algoritmo que calcula de manera eficiente el polinomio de alianza.

En este trabajo obtenemos algunas propiedades de A(G; x) y sus coeficientes para:

• Grafos caminos, ciclos, completos y estrellas. En particular, hemos demostrado que se
caracterizan mediante sus polinomios de alianza.

• Grafos cúbicos (grafos con todos sus vértices de grado 3), ya que son una clase muy
interesante de grafos con muchas aplicaciones. Hemos demostrado que sus polinomios
de alianza verifican unimodalidad. Además, calculamos el polinomio de alianza para
grafos cúbicos de orden pequeño, los cuales satisfacen unicidad.

• Grafos regulares (grafos con todos sus vértices de igual grado). En particular, se
caracteriza el grado de los grafos regulares por el número de coeficientes distintos de
cero de su polinomio de alianza. Además, se demuestra que la familia de polinomios
de alianza de grafos conexos ∆-regulares con grado pequeño es muy especial, ya que
no contiene polinomios de alianza de grafos conexos que no sean ∆-regulares.

Si X es un espacio métrico geodésico y x1, x2, x3 ∈ X , un triángulo geodésico T =
{x1, x2, x3} es la unión de tres geodésicas [x1x2], [x2x3] y [x3x1] de X . El espacio X es
δ-hiperbólico (en el sentido de Gromov) si todo lado de todo triángulo geodésico T de X
está contenido en la δ-vecindad de la unión de los otros dos lados. Se denota por δ(X) la
constante de hiperbolicidad óptima de X , es decir, δ(X) := inf{δ > 0 : X es δ-hiperbólico }.
El estudio de los grafos hiperbólicos es un tema interesante dado que la hiperbolicidad de un
espacio métrico geodésico es equivalente a la hiperbolicidad de un grafo más sencillo asociado
al espacio.

Hemos obtenido información acerca de la constante de hiperbolicidad de los grafos cúbicos;
dichos grafos son muy importantes en el estudio de la hiperbolicidad, ya que para cualquier
grafo G con grado máximo acotado existe un grafo cúbico G∗ tal que G es hiperbólico si
y sólo si G∗ es hiperbólico. En esta memoria conseguimos caracterizar los grafos cúbicos
con constante de hiperbolicidad pequeña. Además, se obtienen cotas para la constante de
hiperbolicidad del grafo complemento de un grafo cúbico; nuestro principal resultado dice
que para cualquier grafo cúbico finito G no isomorfo a K4 o K3,3, se cumple la relación
5k/4 6 δ

(
G
)
≤ 3k/2, donde k es la longitud de todas las aristas en G.



Review

One of the open problems in graph theory is the characterization of any graph by a
polynomial. Research in this area has been largely driven by the advantages offered by the
use of computers which make working with graphs: it is simpler to represent a graph by a
polynomial (a vector) that by the adjacency matrix (a matrix). We introduce the alliance
polynomial of a graph. The alliance polynomial of a graph G with order n and maximum
degree δ1 is the polynomial A(G; x) =

∑δ1
k=−δ1

Ak(G) x
n+k, where Ak(G) is the number of

exact defensive k-alliances inG. Also, we develop and implement an algorithm that computes
in an efficient way the alliance polynomial.

We obtain some properties of A(G; x) and its coefficients for:

• Path, cycle, complete and star graphs. In particular, we prove that they are charac-
terized by their alliance polynomials.

• Cubic graphs (graphs with all of their vertices of degree 3), since they are a very inter-
esting class of graphs with many applications. We prove that they verify unimodality.
Also, we compute the alliance polynomial for cubic graphs of small order, which satisfy
uniqueness.

• Regular graphs (graphs with the same degree for all vertices). In particular, we char-
acterize the degree of regular graphs by the number of non-zero coefficients of their
alliance polynomial. Besides, we prove that the family of alliance polynomials of con-
nected ∆-regular graphs with small degree is a very special one, since it does not
contain alliance polynomials of graphs which are not connected ∆-regular.

If X is a geodesic metric space and x1, x2, x3 ∈ X , a geodesic triangle T = {x1, x2, x3} is
the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X . The space X is δ-hyperbolic
(in the Gromov sense) if any side of T is contained in the δ-neighborhood of the union
of the two other sides, for every geodesic triangle T in X . We denote by δ(X) the sharp
hyperbolicity constant of X , i.e., δ(X) := inf{δ > 0 : X is δ-hyperbolic }. The study of
hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space
is equivalent to the hyperbolicity of a graph related to it.

We obtain information about the hyperbolicity constant of cubic graphs. These graphs
are also very important in the study of Gromov hyperbolicity, since for any graph G with
bounded maximum degree there exists a cubic graph G∗ such that G is hyperbolic if and only
if G∗ is hyperbolic. We find some characterizations for the cubic graphs which have small
hyperbolicity constants. Besides, we obtain bounds for the hyperbolicity constant of the
complement graph of a cubic graph; our main result of this kind says that for any finite cubic
graph G which is not isomorphic either toK4 or toK3,3, the inequalities 5k/4 6 δ

(
G
)
≤ 3k/2

hold, if k is the length of every edge in G.
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Introduction

Graph theory is a very old subject that has many modern applications. In this PhD Thesis
we study two topics on graph theory: polynomials of graphs and hyperbolic graphs.

One of the open problems in graph theory is the characterization of any graph by a
polynomial. In recent years there have been many works on graph polynomials. Research in
this area has been largely driven by the advantages offered by the use of computers which
make working with graphs: it is simpler to represent a graph by a polynomial (a vector)
that by the adjacency matrix (a matrix).

Some parameters of a graph allow to define polynomials on the graph, for instance, the
parameters associated to matching sets [47, 55], independent sets [28, 65], domination sets
[3, 5, 4], chromatic numbers [104, 113] and many others. These polynomials are interesting
since they compress information about the structure of the graph. Unfortunately, these
polynomials do not solve the problem, since there are non-isomorphic graphs with the same
polynomial.

In this work we choose the exact index of alliance in order to define the alliance polynomial
of graph. We prove that this polynomial characterizes many classes of a graphs. In the light of
these results, we conjecture that any graph can be characterized by our alliance polynomial,
i.e., that non-isomorphic graphs have different polynomials.

In Chapter 3 we develop and implement an algorithm that computes in an efficient
way the alliance polynomial. We also obtain several properties of alliance polynomials. In
particular, we compute the alliance polynomial for some graphs and we study its coefficients;
we show also that some of them are unimodal. We investigate the alliance polynomials of
path, cycle, complete and complete bipartite graphs. Also we prove that the path, cycle,
complete and star graphs are characterized by their alliance polynomials.

The main aim of Chapter 4 is to obtain further results about the alliance polynomial of
cubic graphs (graphs with all of their vertices of degree 3), since they are a very interesting
class of graphs with many applications (see, e.g., [25, 29, 42, 88]). In particular, we prove
that the family of alliance polynomials of cubic graphs is a very special one, since it does
not contain alliance polynomials of graphs which are not cubic. Furthermore, we obtain
(computationally) the alliance polynomials of cubic graphs with small order and we prove
that they satisfy uniqueness.

In Chapter 5 we obtain additional results on the alliance polynomial of regular graphs
(graphs with all vertices with the same degree), since they are also a very interesting class
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5

of graphs. We prove that the family of alliance polynomials of connected ∆-regular graphs
with small degree is a very special one, since it does not contain alliance polynomials of
graphs which are not connected ∆-regular.

Finally, Chapter 7 deals with hyperbolic cubic graphs.
Gromov hyperbolicity was introduced by Gromov in the setting of geometric group theory

[40], [54], [57], [58], but has played an increasing role in analysis on general metric spaces [12],
[22], [23], with applications to the Martin boundary, invariant metrics in several complex
variables [12] and extendability of Lipschitz mappings [79]. The concept of Gromov hyper-
bolicity grasps the essence of negatively curved spaces like the classical hyperbolic space,
Riemannian manifolds of negative sectional curvature, and of discrete spaces like trees and
the Cayley graphs of many finitely generated groups. The concept of hyperbolicity appears
also in discrete mathematics, algorithms and networking. Another important application of
these spaces is secure transmission of information on the internet (see [68], [69],[70]). The
study of mathematical properties of Gromov hyperbolic spaces and its applications is a topic
of recent and increasing interest in graph theory.

Cubic graphs are very important in the study of Gromov hyperbolicity, since for any graph
G with bounded maximum degree there exists a cubic graph G∗ such that G is hyperbolic
if and only if G∗ is hyperbolic (see [18, Section 4] and [88, Theorem 2.2]). We find some
characterizations for the cubic graphs which have small hyperbolicity constants, i.e., the
graphs which are like trees (in the Gromov sense). Besides, we obtain bounds for the
hyperbolicity constant of the complement graph of a cubic graph; our main result of this
kind says that for any finite cubic graph G which is not isomorphic either to K4 or to K3,3,
the inequalities 5k/4 ≤ δ

(
G
)
≤ 3k/2 hold, if k is the length of every edge in G. This is a

very precise result, since it implies that δ
(
G
)
is either 5k/4 or 3k/2, by [17, Theorem 2.6].

The results in this work appear in [34, 35, 99, 100]; these papers have been published or
submitted to journals which appear in the Journal Citation Reports.

These results were presented in the following international and national conferences:

• Workshop of Young Researchers in Mathematics 2013, September 2013, Universidad
Complutense de Madrid, Spain.

• VIII Encuentro Andaluz de Matemática Discreta, Octubre 2013, Universidad de Sevilla,
Spain.

Our results will be presented also in the conference:

• IX Jornadas de Matemática Discreta y Algoŕıtmica en Tarragona, Julio 2014, Univer-
sitat Rovira I Virgili.



Chapter 1

A brief introduction to graph theory

Graph theory is a very old topic, but it is used in many modern applications. Its basic
ideas were introduced in the eighteenth century by the Swiss mathematician Leonhard Euler
(1707-1783).

In 1736 Leonhard Euler published the article Solutio problematis ad geometriam situs
pertinentis which gives a solution to a problem concerning the geometry of position, known
by the name The Seven Bridges of Königsberg Problem. This work is considered the first
article on what is now known as graph theory.

The city of Königsberg in Prussia (now Kaliningrad, Russia) was divided by the river
Pregel in four zones. The problem was to find a walk through the city that would cross each
bridge once and only once. Euler found that such a path was impossible, for its existence was
necessary that at most two of the four land zones were joined by an odd number of bridges.
Euler established, too, that this was not sufficient condition for a solution of the problem,
however did not demonstrate these claims. It was not until 1873 that a demonstration was
published. Its author, Hierholzer, unaware apparently the work of Euler.

Figure 1.1: The Seven Bridges of Königsberg.
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CHAPTER 1. A BRIEF INTRODUCTION TO GRAPH THEORY 7

In recent years, discrete mathematics has undergone considerable development in the area
of graph theory, framed in combinatory, but meanwhile has evolved enough to be considered
an art in itself. This theory allows simple modeling any system in which there is a binary
relation between objects, and this is why its scope is very broad and covers areas within the
same mathematical, engineering, sociology, linguistics and so on. For example, a computer
network can be represented and explored by a graph, where the vertices represent terminals
and the edges represents connections (which, in turn, can be wired or wireless connections).

This chapter aims to present, in an organized manner, the concepts, terms and notations
of graph theory that appear in different parts of this work.

1.1 Graphs

Many real-world situations can conveniently be described by means of a diagram consisting
of a set of points together with lines joining certain pairs of these points. For example,
computers, roads, railways or electric networrks. Note that in this type of diagrams we are
interested mainly if two given points are connected by a line, the way they come together is
immaterial. The mathematical abstraction of situations of this type gives rise to the concept
of graphs. The following definitions can be found in [21, 43].

Definition 1.1.1. (Graph)
A graph G is an ordered pair (V (G), E(G)) consisting of a set V (G) 6= ∅ of vertices

and a set E(G), disjoint from V (G), of edges, together with an incidence function ψG that
associates with each edge of G an unordered pair of (not necessarily distinct) vertices of G.
If e is an edge and u and v are vertices such that ψG(e) = {u, v}, then e is said to join u
and v, and the vertices u and v are called the ends of e.

Sometimes declare V and E without using the (G) unless if it is necessary to differentiate,
then use V (G) and E(G).

We denote the numbers of vertices and edges in G by n = |V (G)| and m = |E(G)|,
respectively; these two basic parameters are called the order and size of G, respectively. We
say that a graph G is finite if and only if n < ∞ and m < ∞. Otherwise we say that the
graph is infinite. Since the edges are not ordered pairs of vertices, we are always dealing
with non-oriented graphs.

An edge joining the vertices u ∈ V (G) and v ∈ V (G) on many occasions is denoted by
[uv], but we will use the notation [u, v] to denote this edge, since the notation [uv] will be
used in this work for geodesics, which will be discussed in Chapter 7.

Any graph with just one vertex is referred to as trivial graph. All other graphs are
non-trivial.
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1.2 Adjacency of vertices, edges incidence and vertex

degree

Graphs are so named because they can be represented graphically, and it is this graphical
representation which helps us to understand many of their properties. Each vertex is indi-
cated by a point, and each edge by a line joining the points representing its ends. Most of
the definitions and concepts in graph theory are suggested by its graphical representation as
illustrated in Figure 1.2.

A

B

D

C

1

3

5

2 4

6 7

Figure 1.2: The graph of the bridges of Konigsberg.

We support us in this representation. We say that two vertices u ∈ V (G), v ∈ V (G) are
adjacent or neighbours if [u, v] ∈ E(G) and we also denote it by u ∼ v; likewise, two edges
are adjacent if they have one vertex in common; similarly, if e = [u, v] we say that the edge
e ∈ E(G) is incident to the vertices u and v. The set of neighbours of a vertex v in a graph
G is denoted by NG(v), i.e., NG(v) := {u ∈ V (G) : [u, v] ∈ E(G)}.

Pairs of non-adjacent vertices or edges are said to be independent. More formally, a set
of vertices and edges is independent (or stable) if none of its pairs of elements are adjacent.
In Figure 1.2, the vertices B and D are an independent; besides, each vertex separately is
an independent set.

1.3 Representations of graphs

Although drawings are a convenient means of specifying graphs, they are clearly not suitable
for storing graphs in computers, or for applying mathematical methods to study their prop-
erties. For these purposes, we consider two matrices associated with a graph, its incidence
matrix and its adjacency matrix.

Let G = (E, V ) with n = |V | and m = |E|. The incidence matrix of G is the n × m
matrix MG := (mve), where mve is the number of times (0, 1, or 2) that vertex v and edge e
are incident. Clearly, the incidence matrix is just another way of specifying the graph. The
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adjacency matrix of G is the n × n matrix AG := (auv), where auv is the number of edges
joining vertices u and v, each loop counting as two edges. Incidence and adjacency matrices
of the graph G are shown in Figure 1.3.

y

x

u
v

w

a

b

c

d

e
fg

G

a b c d e f g h
u 1 0 0 0 0 1 0 2
v 1 1 0 0 1 0 0 0
w 0 1 1 1 0 0 0 0
x 0 0 1 1 1 1 1 0
y 0 0 0 0 0 0 1 0

MG

u v w x y
u 2 1 0 1 0
v 1 0 1 1 1
w 0 1 0 2 0
x 1 1 2 0 1
y 0 0 0 1 0

AG

Figure 1.3: Representation of incidence and adjacency matrices of G.

Because most graphs have many more edges than vertices, the adjacency matrix of a
graph is generally much smaller than its incidence matrix and thus requires less storage
space. When dealing with simple graphs, an even more compact representation is possible.
For each vertex v, the neighbours of v are listed in some order. A list (NG(v) : v ∈ V )
of these lists is called an adjacency list of the graph. Simple graphs are usually stored in
computers as adjacency lists. The adjacency matrix is the easiest way to save information
from a graph, in the memory of a computer. It is vital to handle this type of representation
for the development of this work.

1.4 Degree of a vertex

The degree of a vertex is the number of neighbors it has in the graph. The degree of v ∈ V (G)
is denoted by deg(v) := |NG(v)|. For a nonempty set X ⊆ V (G), and a vertex v ∈ V (G),
NX(v) denotes the set of neighbors that v has in X , i.e., NX(v) := {u ∈ X : u ∼ v}, and the
degree of v in X will be denoted by degX(v) = |NX(v)|. We denote the degree of a vertex
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vi ∈ V (G) by deg(vi) = degG(vi) (or by degi for short) and the degree sequence of G by
{deg1, deg2, . . . , degn} (ordered as follows: deg1 ≥ deg2 ≥ · · · ≥ degn).

The number ρ(G) := min{deg(v) : v ∈ V (G)} is the minimum degree of G and the
number ∆(G) := max{deg(v) : v ∈ V (G)} is its maximum degree. In Figure 1.4, ρ(G1) = 0
and ∆(G2) = 4.

If the degree of a vertex is 0, we say that is an isolated vertex. In Figure 1.4, the vertex
D in the graph G1 is an isolated vertex.

A D

B C

f
g

h

G1

A

B
c

d

e

G2

Figure 1.4: Simple graph G1 and non-simple graph G2.

Definition 1.4.1. (Loop, Link)
An edge with identical ends is called a loop, and an edge with distinct ends a link. Two

or more links with the same pair of ends are said to be multiple edges.

In the graph G2 of Figure 1.4, the edge c is a loop, and all other edges are links; the
edges e and d are multiple edges.

A simple graph is one that has a single edge joining any two adjacent vertices, i.e., a
graph without loops and multiple edges (see the graph G1 in Figure 1.4).

Although some authors consider non-simple graphs (allowing loops and multiple edges),
unless otherwise stated, we will work with simple graphs and then by graph we mean simple
graph. In Chapter 2 we will address some polynomials such as: matching [47, 55], indepen-
dent [28, 65], domination [3, 4], chromatic [20, 104] and clique polynomials [59, 65] which are
defined on simple graphs. In Chapters 3, 4 and 5 we will introduce the alliance polynomial of
simple graphs. In Chapter 6 and 7 we will study hyperbolic graphs. It has proven in [18] that
the study of the hyperbolicity on graphs can be reduced to the study of the hyperbolicity
on simpler graphs. In particular, the authors prove that the study of the hyperbolicity on a
graph with loops and multiple edges can be reduced to the study of the hyperbolicity in the
same graph without its loops and with simple edges replacing the multiple edges.

1.5 Subgraphs

Apart from the study of the characteristics or properties of a graph in its entirety, one can
also consider only a region or a part thereof. For example, we can study arbitrary sets of



CHAPTER 1. A BRIEF INTRODUCTION TO GRAPH THEORY 11

vertices and edges of any graph. Moreover, in many cases, it is appropriate to consider
graphs that are included “within” other. We will call them subgraphs.

Definition 1.5.1. (Subgraph)
If G = (V,E) is a graph then G1 = (V1, E1) is a subgraph of G if ∅ 6= V1 ⊆ V and

E1 ⊆ E where each edge E1 is incident to vertices of V1.

See in Figure 1.5 the subgraphs G1 and G2 of the graph G. A especially relevant class of
subgraphs in this work are the induced subgraphs.

G G1 G2

Figure 1.5: As subgraph G1 and an induced subgraph G2 of the graph G.

Definition 1.5.2. (Induced subgraph)
A subgraph obtained by vertex deletions only is called an induced subgraph. If X is the

set of vertices deleted, the resulting subgraph is denoted by G −X. Frequently, it is the set
Y := V \X of vertices which remain that is the focus of interest.

Particular types of subgraphs are obtained by removing in some graph a vertex or an
edge. We have formalized this idea in the following definitions. Let v be a vertex of a graph
G = (V (G), E(G)). The subgraph G− v of G is that graph whose vertex set is V (G)− {v}
and edge set is E(G−v) (all edges of the graph G except the incident edges to v). Therefore,
G− v is the subgraph of G induced by V (G)\{v}.

In Figure 1.5, G2 is an induced subgraph of G. We can see graphically that it is the
result of removing a vertex in the graph G.

The subgraph of G induced by Y ⊆ V (G) is denoted by 〈Y 〉. Thus 〈Y 〉 is the subgraph
of G whose vertex set is Y and whose edge set consists of all edges of G which have both
ends in Y .

1.6 Connectivity of graphs

One of the most significant property can have a graph, is to be connected. To understand
this concept, it is necessary to give some definitions that describe us which means going from
one vertex to another.
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Definition 1.6.1. (Path)
A path of a graph G = (V,E) is a sequence of vertices P = {v0, v1, v2, . . . , vn} such that

vi−1 is adjacent to vi, for i = 1, 2, . . . , n; a simple path is a path in which all vertices are
different.

Definition 1.6.2. (Cycle)
By cycle we mean a simple closed curve, i.e., a path with different vertices, unless the

last one, which is equal to the first vertex.

The length of a path or a cycle is the number of its edges. A path or cycle of length k
is called a k-path or k-cycle, respectively; the path or cycle is odd or even according to the
parity of k.

Definition 1.6.3. (Connectivity)
A graph is connected if, for every partition of its vertex set into two nonempty sets

X and Y , there is an edge with one end in X and one end in Y ; otherwise, the graph is
disconnected or non-connected.

Given a connected graph G = (V,A) and any two distinct vertices u, v ∈ V , we can find
a path that connects them. Examples of connected and disconnected graphs are displayed
in Figure 1.6.

G1 G2

Figure 1.6: Representation of a connected graph G1 and a disconnect graph G2.

A non-connected graph is formed by different “blocks” of vertices, each of which is a
connected graph, what we call a connected component.

Definition 1.6.4. (Connected component)
A connected component of a graph G is a connected subgraph of G which is not properly

contained on any other connected subgraph of G, that is, a connected component of G is a
subgraph that is maximal with respect to the property of being connected.

In a graph G we define the distance of two vertices u, v denoted by dG(u, v) or d(u, v)
as the length of a shortest u− v path in G (a path joining u and v); if no such path exists,
we set d(u, v) := ∞. In a connected graph G, for every u, v ∈ V (G) we have dG(u, v) < ∞.
The greatest distance between any two vertices in G is the diameter of V (G), denoted by
diamV (G).
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1.6.1 Hamiltonian cycle

In this section we give a brief introduction to the Hamiltonian paths and cycles. W. R.
Hamilton (1805-1865) invented (and patented) a game in which it was to tour 20 cities
(vertices) in the world without going through any more than once. The cities were connected
by 30 edges, forming the graph of an icosahedron.

A Hamiltonian cycle is a cycle in a graph G that visits each vertex in V (G) exactly once.
Hamiltonian path is a non-closed path containing all vertices of the graph. A graph that
contains a Hamiltonian cycle is called a Hamiltonian graph (see, for example, Dodecahedron
G1 in Figure 1.7). The Herschel graph G2 in Figure 1.7 is not Hamiltonian because it is
bipartite and has an odd number of vertices.

The problem of finding a Hamiltonian cycle (or path) in an arbitrary graph is known
to be NP-complete (there is no general method of resolution). The Petersen graph G3 in
Figure 1.7 is not a Hamiltonian graph but can not be easily deduced. We will see a sufficient
condition for a graph to be Hamiltonian.
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G1 G2 G3

Figure 1.7: Dodecahedron G1, Herschel graph G2 and Petresen graph G3.

The following theorem is a well known result in graph theory which will be useful.

Theorem 1.6.5 (Dirac 1952). A graph with order n > 3 is Hamiltonian if every vertex has
degree n/2 or greater.

Bondy and Chvátal noted that the proof of Theorem 1.6.5 can be modified to obtain a
stronger result.

Corollary 1.6.6 (Bondy and Chvátal 1974). Let G be a graph and u and v non-adjacent
vertices in G such that deg(u)+deg(v) = n. Then G is Hamiltonian if and only if G+[u, v]
is Hamiltonian.

The following Ore’s Theorem has as corollary Theorem 1.6.5.

Theorem 1.6.7 (Ore 1960). Suppose that G is a graph with n ≥ 3 and deg(u)+deg(v) ≥ n
for each pair of non-adjacent vertices u 6= v. Then G is Hamiltonian.
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1.7 Some special graphs

Some graphs appear frequently in many applications and, hence, they have standard names.

Definition 1.7.1. (Path graph)
A path graph is a non-empty graph P = (V,E) with V = {v1, v2, . . . , vn}, n ≥ 2 and

E = {[v1, v2], [v2, v3], . . . , [vn−1, vn]}. The path graph with n vertices is denoted by Pn. The
vertices v1 and vn are linked by Pn and are called its ends; the vertices v1, v2, . . . , vn−1 are
the inner vertices of Pn.

b b

b b

bb

b

b b

P2

P3

P4

bbbbb
Pn

Figure 1.8: The paths graphs.

Definition 1.7.2. (Cycle graph)
A cycle graph of n vertices is a graph G = (V,E) with V = {v1, v2, . . . , vn}, n ≥ 3 and

E = {[v1, v2], [v2, v3], . . . , [vn−1, vn], [vn, v1]}. It is denoted by Cn.

b
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b b

b b
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b
b

b
b

b

C5 CnC3

Figure 1.9: The Cicles graphs.

Definition 1.7.3. (Complete graph)
A complete graph is a graph in which every pair of vertices are joined by exactly one edge,

i.e., all pairs of vertices of G are adjacent. The complete graph with n vertices is denoted by
Kn. At each vertex v ∈ V (G) we have degG(v) = n− 1.
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K3 K4 K5

Figure 1.10: The complete graphs.
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Definition 1.7.4. (Empty graph)
An empty graph is a graph whose edge set is empty. We denote by En the empty graph

with n vertices. In an empty graph all vertices have degree 0.

Definition 1.7.5. (Bipartite graph)
A graph is bipartite if its vertex set can be partitioned into two nonempty subsets V1 and

V2 so that no edge has both ends in V1 or both ends V2.

Definition 1.7.6. (Complete bipartite graph)
A bipartite graph is said to be a complete bipartite graph if each vertex of V1 is adjacent

with each vertex of V2. If |V1| = m and |V2| = n, then this graph is denoted by Km,n.

b

b

b

b

b b

b

b
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b
b b b

b b b

K2,2 K2,4 K3,3

Figure 1.11: The complete bipartite graphs.

Definition 1.7.7. (Star graph)
The complete bipartite graph Kn−1,1 is called an n star graph and it is denote by Sn.
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Figure 1.12: The stars graphs.

Definition 1.7.8. (Wheel graph)
The wheel graph Wn is a graph with n vertices formed by connecting a single vertex to

each vertex of a cycle Cn−1.

Definition 1.7.9. (Regular graph)
A graph G = (V,E) is regular if all vertices have the same degree k, and we say that it

is k-regular. Every regular graph G satisfies the equality ρ(G) = ∆(G).

Definition 1.7.10. (Tree)
A tree is an acyclic and connected graph, i.e., a connected graph without cycles.
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Figure 1.13: The wheels graphs.

1.8 Operations with graphs

In this section we define some of the most usual operations in graph theory and we will
use them throughout the work. These operations produce new graphs from one or several
graphs. We have unitary operations also called graph editing operations. They create a new
graph from the original graph. Some examples of unitary operations are: adding or deleting
a vertex or an edge, the contraction of an edge, line graph or graph complement. We also
work with binary operations that create a new graph from two initial graphs G1(V1, E1) and
G2(V2, E2), such as: union of graphs or several kinds of products of graphs based on the
Cartesian product of the set of vertices.

1.8.1 Unitary operations

Most of the subgraphs worthwhile studying are those that differ minimally from the initial
graphs, because they retain much of their properties and have small differences that show
important details.

The operations of deletion and contraction of an edge are essential in the study of the
polynomials in graphs.

The graph obtained by deleting an edge e ∈ E of a graph G = (E, V ), is the subgraph of
G denoted G− e or G \ e defined as G \ e = (V ;E \ e). We say that a subgraph is expansive
when it contains all the vertices of the initial graph.

The graph obtained by contracting an edge e in G, and denoted by G/e, results by
identifying the endpoints of e followed by removing e. When e is a loop, G/e is the same as
G \ e. It is not difficult to check that both deletion and contraction are commutative, and
thus, for a subset of edges X , both G \X and G/X are well defined. Also, if e 6= f , then
(G \ e)/f and (G/f) \ e are isomorphic; thus for disjoint subsets X , X

′ ⊆ E(G), the graph
(G \X)/X

′

is well-defined. A graph H isomorphic to (G \X)/X
′

for some choice of disjoint
edge sets X and X

′

is called a minor of G.
Let us introduce another operation: adding an edge e of a graph G is the result of adding

an edge to the set E(G) connecting two vertices in V (G); it is denoted by G+ e.
Given a graph G with a finite number of connected components, an edge e ∈ E(G) is a

bridge or cut edge of G if the subgraph G \ e has more connected components than G.
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Proposition 1.8.1. Let G be graph with a finite number of connected components. The edge
e ∈ E(G) is a bridge if and only if e does not belong to any cycle of G.

Remove a vertex in a graph is not as simple as delete an edge, because when we remove a
vertex all incident edges on it lose one end. Consequently, a good definition of this action is
necessary: Deleting a vertex v of a graph G is to remove v from the set of vertices V (G) and
all the incident edges on v from the set of edges E(G), obtaining a subgraph of G denoted
by G− v or G \ v.

Similarly, ifG is a graph with a finite number of connected components, a vertex v ∈ V (G)
is a cut vertex of G if G− v has more connected connected components than G.

We can obtain also the graph G ∪ {v} by adding to the graph G a single disjoint vertex
v (i.e., v /∈ V (G)). This operation is called vertex addition.

Definition 1.8.2. (Complement)
The complement G of the graph G = (V,E) is the graph whose vertex set is V and whose

edges are the pairs of non-adjacent vertices of G.

If E = {[u, v]|u, v ∈ V, u 6= v} is the set of all possible edges and E = E\E denotes the
complement with respect to E, then G = (V,E).

1.8.2 Binary operations

Now we will see other operations that are applied to two or more graphs giving rise to new
graphs. One of the most basic ways of combining graphs is by union.

The disjoint union of graphs, sometimes referred to as simply graph union is defined as
follows. For two graphs G1 = (V1, E1) and G2 = (V2, E2) with disjoint vertex sets V1 and V2
(and hence disjoint edge sets), their union is the graph G1 ∪G2 := (V1 ∪ V2, E1 ∪ E2). It is
a commutative and associative operation.

The graph join G1]G2 of two graphs is their graph union with all the edges that connect
the vertices of the first graphG1 with the vertices of the second graphG2. It is a commutative
operation. The figure shows graph join of the cycle graph C3 and the path graph P3.

⊎
=

Figure 1.14: Join of a cycle C3 and a path P3.

The Cartesian product of the graphs G and H is the graph G2H whose vertex set is
V (G) × V (H) and whose edge set is the set of all pairs [(u1, v1), (u2, v2)] such that either
[u1, u2] ∈ E(G) and v1 = v2, or [v1, v2] ∈ E(H) and u1 = u2 (see Figure 1.15).
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Figure 1.15: Cartesian product of a path P2 and a cycle C4.

We introduce now the corona of two graphs, defined by Frucht and Harary in 1970, see
[52].

Definition 1.8.3. Let G1 and G2 be two graphs with V (G1)∩V (G2) = ∅. The corona of G1

and G2, denoted by G1 � G2, is defined as the graph obtained by taking one copy of G1 and
a copy of G2 for each vertex v ∈ V (G1), and then joining each vertex v ∈ V (G1) to every
vertex in the v-th copy of G2.

From the definition, it clearly follows that the corona product of two graphs is a non-
commutative and non-associative operation.

Figure 1.16 shows the corona of the graphs C4 and C3.

� =

Figure 1.16: Corona C4 � C3.

We will use also the strong product of graphs defined by Sabidussi in [105].

Definition 1.8.4. Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) be two graphs. The
strong product G1 �G2 of G1 and G2 has V (G1)× V (G2) as vertex set, so that two distinct
vertices (u1; v1) and (u2; v2) of G1 �G2 are adjacent if either u1 = u2 and [v1, v2] ∈ E(G2),
or [u1, u2] ∈ E(G1) and v1 = v2, or [u1, u2] ∈ E(G1) and [v1, v2] ∈ E(G2).

Note that the strong product of two graphs is commutative.

1.9 Isomorphisms in graphs

It is evident that the importance of a graph is not in the names of the vertices nor in they
way that we draw it. The characteristic property of a graph is the way in which the vertices
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Figure 1.17: The strong product of a path P2 and a cycle C6.

are connected by edges. This motivates the following definition.

Definition 1.9.1. (Isomorphisms)
Let G = (V,E) and G

′

= (V
′

, E
′

) be two graphs. We say that G and G
′

are isomorphic,
and write G ' G

′

, if there exists a bijection ϕ : V → V
′

with [u, v] ∈ E ⇔ [ϕ(u), ϕ(v)] ∈ E
′

for all u, v ∈ V .

In other words, a isomorphism is a bijective mapping between the vertices of V and V
′

preserving the connection of vertices. In this case, G and G
′

are mathematically identical;
perhaps the appearance varies, but remain adjacency, structure, paths, cycles, number of
vertices, number of edges, ...

b
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b b
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b b

bb

b b b

b bb

G1 G2
G3

Figure 1.18: Isomorphic and non-isomorphic graphs.

In Figure 1.18 the graphs G1 and G2 are non-isomorphic, but the graphs G2 and G3 are
isomorphic. Note that when two graphs are isomorphic we see them as the same graph. In
fact, these two graphs are two possible graphical representations of the same space.



Chapter 2

Polynomials and alliances in graphs

One of the open problems in graph theory is the characterization of any graph by a polyno-
mial. In recent years there have been many works on graph polynomials such as [4, 45, 65,
104, 106]. Research in this area has been largely driven by the advantages offered by the
use of computers which make working with graphs: it is simpler to represent a graph by a
polynomial (a vector) that by the adjacency matrix (a matrix).

Several polynomials have emerged in order to solve this problem, such as the characteristic
polynomial of a graph [106], the independence and clique [28, 59], the chromatic [20, 104],
the matching [45, 55], the domination [3, 4] and the Tutte [53, 56]. These polynomials are
interesting since they compress information about the structure of the graph. Unfortunately,
these polynomials do not solve the problem, since there are different graphs with the same
polynomials.

In this chapter, we will make a brief introduction to these polynomials. At the end of this
chapter we introduce the alliance polynomial. We prove in Chapter 3 that this polynomial
characterizes many classes of graphs. In the light of these results, we conjecture that any
graph G can be characterized by our alliance polynomial.

2.1 Some polynomials of a graph

2.1.1 The characteristic polynomial of a graph

Definition 2.1.1. (Characteristic polynomial of a matrix )
We call characteristic polynomial of a matrix A to the determinant of the matrix λIn−A,

and we denote it by PA(λ):

PA(λ) := det(λIn − A),

where In is the identity matrix of order n.

We say that λ is an eigenvalue or characteristic value of A if PA(λ) = 0.

20
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Let G be a graph of order n and AG its adjacency matrix. As AG is a square matrix of
order n, we can compute the characteristic polynomial of AG.

Definition 2.1.2. (Characteristic polynomial of a graph)
Let G be a graph of order n and AG its adjacency matrix. The characteristic polynomial of

G is the characteristic polynomial of AG and we denote it by P (G;λ). Thus the characteristic
polynomial of G is given by

P (G;λ) := det(λIn −AG).

Example: Let G be the graph given by Figure 2.1.

Figure 2.1: Graph K3

The adjacency matrix of G is:

v1 v2 v3
v1 0 1 1
v2 1 0 1
v3 1 1 0

The characteristic polynomial of AG is given by:

P (G;λ) = det(λIn − AG) = det



λ −1 −1
−1 λ −1
−1 −1 λ


 = λ3 − 3λ− 2.

Proposition 2.1.3. Let G be a graph of order n, with connected components of G1, G2, . . . , Gr.
Then

P (G;λ) = P (G1 ∪G2 ∪ · · · ∪Gr;λ) = P (G1;λ)P (G2;λ) · · ·P (Gr;λ).

2.1.2 The independence polynomial of a graph

A stable or independent set in a graph is a set of pairwise non-adjacent vertices. The stability
number α(G) is the size of a maximum stable set in the graph G. There are three different
kinds of structures that one can see by observing the behavior of stable sets of a graph: the
enumerative structure, the intersection structure, and the exchange structure.
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Definition 2.1.4. (Independence polynomial of a graph) The independence polyno-
mial of G is defined as

I(G; x) =
∑α(G)

k=0 skx
k = s0 + s1x+ s2x

2 + · · ·+ sα(G)x
α(G),

where sk is the number of stable sets of cardinality k in G. By convention we assume that
s0 = 1.

The independence polynomial was defined by Gutman and Harary (1983), and it is a
good representative of the enumerative structure. In [67] a number of general properties of
the independence polynomial of a graph are presented. As examples, we mention that:

I(G1 ∪G2; x) = I(G1; x) · I(G2; x),

I(G1 ]G2; x) = I(G1; x) + I(G2; x)− 1.

The following equalities are very useful in order to compute of the independence polyno-
mial of many graphs (see [66, 67]).

Theorem 2.1.5. For all graph G and H, we have:

(i) I(G; x) = I(G− v; x) + x · I(G−N(v); x) for every v ∈ V (G).

(ii) I(G1 �H ; x) = (I(H ; x))n · I(G; x
I(H;x)

), where n = |V (G)| and G �H is the corona of
G and H.

Independence polynomial was defined as a generalization of matching polynomial of a
graph (see Section 2.1.4), because the simple matching polynomial of a graph G and the
independence polynomial of its line graph are identical. Recall that given a graph G, its line
graph L(G) is the graph whose vertex set is the edge set of G, and two vertices in L(G) are
adjacent if they share an end in G.

G1 G2

Figure 2.2: The graph G1 and its line graph G2.

For instance, the graphs G1 and G2 in Figure 2.2 satisfy G2 = L(G1) and, hence,
I(G2; x) = 1 + 6x + 7x2 + x3 = M(G1; x), where M(G1; x) is the matching polynomial
of the graph G1.



CHAPTER 2. POLYNOMIALS AND ALLIANCES IN GRAPHS 23

2.1.3 The dependence and clique polynomial of a graph

The dependence polynomial was first introduced by Fisher [47], who studied the following
problem: How many n letter words can be made from an m letter alphabet if certain pairs
of letters commute? Fisher and Solow [48] defined the dependence polynomial as follows:

Definition 2.1.6. (Dependence polynomial of a graph)
Let cj be the number of complete subgraphs of size j in a graph G. Then the dependence

polynomial of G is

fG(x) := 1− c1x+ c2x
2 − c3x

3 + · · ·+ (−1)kckx
k,

where k, is the clique number of the graph G, i.e., the size of a greatest complete subgraph in
G. Note that cj is the number of independent sets of vertices of size j in G, the complement
of G.

For a set S of words with an operation on them we assign a graphGS such that V (GS) = S
and two vertices are joined if they commute. Fisher [47] proved that the generating function
for the above problem is precisely 1

fGS
(x)

.

If we change the signs of all negative coefficients in fG(x) to positive signs, we obtain a
polynomial which is called the clique polynomial of G. We denote it by C(G; x).

Definition 2.1.7. (Clique polynomial of a graph)
Let cj be the number of complete subgraphs of size j in a graph G. Then the clique

polynomial of G is

C(G; x) = 1 + c1x+ c2x
2 − c3x

3 + · · ·+ ckx
k.

We can deduce from the definition of the independence polynomial that ck(G) = sk(G)
we have the identity and, hence,

C(G; x) = I(G; x).

Obviously, we also have

C(G; x) + C(G; x) = I(G; x) + I(G; x).

The following results are easily obtained. If G1 and G2 are two vertex-disjoint graphs, then:

C(G1 ∪G2; x) = C(G1; x) + C(G2; x)− 1 and I(G1 ∪G2; x) = I(G1; x) · I(G2; x),

C(G1 ]G2; x) = C(G1; x) · C(G2; x) and I(G1 ]G2; x) = I(G1; x) + I(G2; x)− 1.

.
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2.1.4 The matching polynomial of a graph

A spanning subgraph of a graph G is a subgraph of G which contains every vertex of G. By a
matching M of a graph G we will mean a spanning subgraph of G consisting of vertices and
edges only, i.e., the connected components of M are either vertices or edges. If M contains
k edges, then M will be called a k-matching. If G has n vertices and M contains k = [n/2]
(the integer part of n/2) edges, then M will be called a maximal matching. If n is even then
the maximal matching will be called a perfect or complete matching. It is clear that if G
contains n vertices, then a k-matching in G contains n− 2k vertices.

Let M be a k-matching in G, and let us assign “weights” w1 and w2 to each node and
edge respectively in M . Let us associate with M the weight wn−2k

1 wk
2 . If ak is the number

of k-matchings in G, then the total weight of the k-matchings in G will be akw
n−2k
1 wk

2 . By
adding the weights of all k-matchings in G, for all possible values of k, we will obtain a
polynomial in w1 and w2. This polynomial will be called the matching polynomial of G
[45, 55, 67].

Definition 2.1.8. (Matching polynomial of a graph)
The matching polynomial of G, denoted by M(G;w), is defined by

M(G;w) :=
∑n/2

k=0 akw
n−2k
1 wk

2 .

Here, w = (w1, w2) is called the weight vector associated with the matching polynomial.

If we put w1 = w2 = w, then the resulting polynomial in the single variable w is called
the simple matching polynomial of G.

The coeficient of wn−2k
1 wk

2 is the number of sets of k independent edges in G. Since a
matching in one component of a graph cannot affect matchings in other components, we get
the following result [45].

Proposition 2.1.9. Let G be a graph consisting of r components Gl, G2, . . . , Gr. Then

M(G;w) =
∏r

i=1M(Gi;w).

2.1.5 The chromatic polynomial of a graph

The chromatic polynomial of a graph was introduced by Birkhoff and Lewis in their attack
to the problem of the four colors. This classical problem emerged 147 years ago and was
resolved in 1978 by Appel and Haken [10].

A coloring (or vertex coloring) is an assignment of colors to the vertices of a graph such
that two vertices that share an edge have different colors.

The terminology of using colors to tag vertices comes from the problem of coloring maps.
Tags as red or blue are only used when the number of colors is small, and usually the colors
are represented by the integers (1, 2, 3, . . . , k).
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A coloring using at most k colors is called a (proper) k-coloring. The smallest number of
colors needed to color a graph G is called the chromatic number of G and it is denoted by
χ(G). A graph with a (proper) k-coloring is k-colorable and it is k-chromatic if its chromatic
number is exactly k. A subset of vertices with the same color is called a color class. Each
class is an independent set. That is, a k-coloring is the same as a partition of the vertex set
into k independent sets, and terms k-partite and k-colorable have the same meaning.

The chromatic polynomial counts the number of ways in which a graph can be colored
given a number of colors.

Definition 2.1.10. (Chromatic polynomial of a graph)
Let G be a graph and let k positive integer with 1 ≤ k ≤ n. Let PG(k) be the number of

ways of coloring the graph G using the colors of the collection (1, . . . , k).

For example, the graph in Figure 2.3 can not be colored with only 2 colors. Using 3 colors,
the graph can be colored in 12 different ways. With 4 colors, can be colored 24+4·12 different
ways: using all four colors together, there are 4! = 24 valid colorings (every assignment with
4 colors to a graph with four vertices is a proper coloring); and for each choice of 3-coloring
of the four colors, there are 12 valid colorings.
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Figure 2.3: This graph can be 3-colored in 12 different ways.

The chromatic polynomial is a polynomial function P (G; t) which counts the number of
t-colorations in G, i.e., P (G, k) = PG(k) for 1 ≤ k ≤ n. For the graph in Figure 2.3 we have
P (G, t) = t(t− 1)2(t− 2) and P (G, 4) = 72.

The following are chromatic polynomials of some graphs:
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P (Kn, t) = t(t− 1)(t− 2) . . . (t− (n− 1)).

P (G, t) = t(t− 1)n−1, if G is a tree with n vertices.

P (Cn, t) = (t− 1)n−1 + (−1)n(t− 1).

P (G, t) = t(t− 1)(t− 2)(t7 − 12t6 + 67t5 − 230t4 + 529t3 − 814t2 + 775t− 352), if G is the
Petersen graph.

Two graphs are said to be chromatically equivalent if they have the same chromatic
polynomial. Figure 2.4 shows chromatically equivalent non-isomorphic graphs.
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bbbb
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bb

bb

Figure 2.4: Three graphs with chromatic polynomial (t− 2)(t− 1)3t.

2.1.6 The Tutte polynomial of a graph

The Tutte polynomial, also called the dichromate or the Tutte Whitney polynomial, is a
polynomial in two variables which plays an important role in graph theory and computer
science. It contains information about how the graph is connected.

Definition 2.1.11. (Tutte polynomial of a graph)
For a graph G = (V,E) we define the Tutte polynomial as

TG(x, y) :=
∑

A⊆E(x− 1)k(A)−k(E)(y − 1)k(A)+|A|−|V |,

where k(A) denotes the number of connected components of the graph (V,A).

Tutte’s original definition of TG is equivalent but less easily stated. For connected G we
set

TG(x, y) =
∑

i,j tijx
iyj,

where tij denotes the number of spanning trees of “internal activity i and external activity
j”.

At y = 0, the Tutte polynomial specialises to the chromatic polynomial, P (G, t) =
(−1)|V |−k(G)tk(G)TG(1− t, 0), where k(G) denotes the number of connected components of G.
In particular, TG(2, 0) = (−1)|V |P (G,−1) gives the number of acyclic orientations.
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2.1.7 The domination polynomial of a graph

In this section we state the definition of domination polynomial and some of its properties.
In graph theory, a dominating set for a graph G = (V,E) is a subset D of V such that every
vertex not in D is adjacent to at least one member of D. The domination number γ(G) is
the number of vertices in a smallest dominating set for G.

Definition 2.1.12. (Domination polynomial of a graph)
Let D(G, i) be the family of dominating sets of a graph G with cardinality i and let

d(G, i) = |D(G, i)|. The domination polynomial D(G, x) of G is defined as

D(G, x) =
∑|V (G)|

i=γ(G) d(G, i)x
i,

where γ(G) is the domination number of G.

For example, the path graph with 4 vertices P4 has one dominating set of cardinality
4, and four dominating sets of cardinalities 3 and 2; its domination polynomial is then
D(P4, x) = x4+4x3+4x2. As another example, it is easy to see that D(Kn, x) = (1+x)n−1,
for every n ∈ N.

Theorem 2.1.13. If a graph G has r components G1, . . . , Gr, then

D(G, x) = D(G1, x) · · ·D(Gr, x).

2.2 Defensive alliances in graphs

The study of the mathematical properties of alliances in graphs started in [78]. The defensive
alliances in graphs is a topic of recent and increasing interest in graph theory; see, for
instance [31, 50, 63, 95, 96, 107, 108, 109, 110]. The study of defensive alliances as a graph-
theoretic concept has recently attracted a great deal of attention due to some interesting
applications in a variety of areas, including quantitative analysis of secondary RNA structures
[64] and national defense [94]. Besides, defensive alliances are the mathematical model of
web communities. Adopting the definition of Web community proposed recently in [49],
“a Web community is a set of web pages having more hyperlinks (in either direction) to
members of the set than to non-members”.

Consider a (not necessarily connected) graph G = (V,E) of order |V | = n. Recall that
we denote two adjacent vertices u and v by u ∼ v. For a nonempty set X ⊆ V , and a vertex
v ∈ V , NX(v) denotes the set of neighbors that v has in X : NX(v) := {u ∈ X : u ∼ v}, and
the degree of v in X will be denoted by

δX(v) = |NX(v)|.
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We denote the degree of a vertex vi ∈ V by δ(vi) = δG(vi) (or by δi for short) and the degree
sequence of G by {δ1, δ2, . . . , δn} (ordered as follows δ1 ≥ δ2 ≥ · · · ≥ δn; then δ1 = ∆(G) and
δn = ρ(G) are the maximum and minimum degree of G, respectively).

The subgraph induced by S ⊂ V will be denoted by 〈S〉 and the complement of the set
S ⊂ V will be denoted by S̄ = V \ S.

A nonempty set S ⊆ V is a defensive k-alliance in G = (V,E), k ∈ [−δ1, δ1] ∩ Z, if 〈S〉
is connected and, for every v ∈ S,

δS(v) > δS̄(v) + k. (2.2.1)

A vertex v ∈ S is said to be k-satisfied by the set S, if (2.2.1) holds. Notice that (2.2.1)
is equivalent to

δ(v) > 2δS̄(v) + k (2.2.2)

and
2δS(v) > δ(v) + k. (2.2.3)

Note that we just consider the value of k in the set of integers K := [−δ1, δ1] ∩ Z. In
some graphs G, there are some values of k ∈ K, such that do not exist defensive k-alliances
in G. For instance, in the star graph Sn do not exist defensive k-alliances for k > 2. Besides,
V (G) is a defensive δn-alliance in G. Notice that for any S there exists some k ∈ K such
that it is a defensive k-alliance in G.

Given S ⊆ V with 〈S〉 connected, we define

kS := max{k ∈ K : S is a defensive k-alliance}. (2.2.4)

We say that kS is the exact index of alliance of S, or also, S is an exact defensive
kS-alliance in G, see e.g. [31].

Proposition 2.2.1. Let G be a graph and let S ⊂ V . The following statements are equiva-
lents:

1. k is the exact index of alliance of S.

2. S is a defensive k-alliance in G with one vertex v ∈ S such that δS(v) = δS(v) + k.

3. S is a defensive k-alliance but it is not a defensive (k + 1)-alliance in G.

Proof. (1) =⇒ (2) Seeking for a contradiction assume that for all v ∈ S we have δS(v) >
δS(v)+k, then we obtain δS(v) ≥ δS(v)+ (k+1) for every v ∈ S; then S is a defensive
(k + 1)-alliance. This is the contradiction we were looking for, since k is a maximum;
so, there is v ∈ S such that δS(v) = δS(v) + k.

(2) =⇒ (3) Since there exists v ∈ S with δS(v) = δS(v) + k, we have that S is not a
defensive (k + 1)-alliance in G.
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(3) =⇒ (1) It is easy to check that k = kS.

Remark 2.2.2. The exact index of alliance of S in G is

kS = min
v∈S

{δS(v)− δS(v)}. (2.2.5)

2.2.1 The alliance polynomial of a graph

Definition 2.2.3. (Alliance polynomial of a graph)
Let G be a graph with order n. We define the alliance polynomial of G with variable x

as follows:

A(G; x) =
∑

S⊆V

σG(S) · xn+kS , (2.2.6)

where σG(S) = 1 if 〈S〉 is nonempty and connected in G, and σG(S) = 0 otherwise.

Other expression for this alliance polynomial is the following:

A(G; x) = xn
∑

k∈K

Ak(G)x
k, (2.2.7)

with Ak(G) the number of exact defensive k-alliances in G.
In Chapters 3, 4 and 5 we will obtain interesting properties of these alliance polynomials.



Chapter 3

Properties of the alliance polynomial

In this chapter we will get some properties of alliance polynomial (see Section 3.1).
A finite sequence of real numbers (a0, a1, a2, ..., an) is said to be unimodal if there is some

k ∈ {0, 1, ..., n}, called the mode of the sequence, such that

a0 ≤ ... ≤ ak−1 ≤ ak and ak ≥ ak+1 ≥ ... ≥ an;

the mode is unique if ak−1 < ak and ak > ak+1. A polynomial is called unimodal if the
sequence of its coefficients is unimodal.

We present in Section 3.1 an algorithm that computes in an efficient way the alliance
polynomial. In Section 3.2, we compute the alliance polynomial for some graphs and study
its coefficients; in particular, we show that some of them are unimodal. We investigate the
alliance polynomials of path, cycle, complete and complete bipartite graphs. Also we prove
that the path, cycle, complete and star graphs are characterized by their alliance polynomials.
Finally, in Section 3.3 we show that the alliance polynomial characterizes many graphs that
are not distinguished by other usual polynomials of graphs.

3.1 Alliance polynomials

Let G be a graph with order n. Recall that we define the alliance polynomial of a graph G
with variable x as follows:

A(G; x) =
∑

S⊆V

σG(S) · xn+kS , (3.1.1)

where σG(S) = 1 if 〈S〉 is nonempty and connected in G, and σG(S) = 0 otherwise.
Other expression for this alliance polynomial is the following:

A(G; x) = xn
∑

k∈K

Ak(G)x
k, (3.1.2)

30
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with Ak(G) the number of exact defensive k-alliances in G.

As an example, we compute now the alliance polynomial of the complete bipartite graph
K3,3.

Note that since K3,3 is a cubic graph, we have Ak(K3,3) = 0 for k ∈ {−2, 0, 2}. In order
to obtain A(K3,3; x), we compute its non-zero coefficients.

A−3(K3,3) = 6: Since K3,3 is a cubic graph, the number of exact defensive (−3)-alliances is
|V (K3,3)| = 6.

A−1(K3,3) = 33: We have that S ⊂ V (K3,3) is an exact defensive (−1)-alliance, if both
parts of K3,3 have some vertex in S and one of them has just one vertex. Then a
combinatorial argument gives the result.

A1(K3,3) = 15: We have that S ⊂ V (K3,3) is an exact defensive 1-alliance, if S 6= V (K3,3)
and S contains at lest two vertices of both parts of K3,3. Thus, we obtain the result
from combinatorial arguments.

A3(K3,3) = 1: The unique exact defensive 3-alliance is the set of vertices of K3,3.

Then, we obtain
A(K3,3; x) = 6x3 + 33x5 + 15x7 + x9.

We propose now an algorithm that facilitates the efficient computation of the alliance
polynomial of a graph G with order n. Let W = {S1, . . . , S2n−1} be the collection of
nonempty subsets of V .

Algorithm 3.1.1.
Input: adjacency matrix of G.
Output: alliance polynomial of G.

The algorithm starts with A(G; x) = 0 and continues with the following steps, for 1 6

j 6 2n − 1.

1. If 〈Sj〉 is a connected subgraph, then go to step (2), else replace j by j + 1 and apply
this step again.

2. Compute kSj
.

3. Add one term xn+kSj to A(G; x).

4. Replace j by j + 1 and apply step (1) again.
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This algorithm for computing the alliance polynomial of a graph shows a complexity
O(m2n) where m is the number of edges of G; furthermore, when it is running on ∆-regular
graphs its complexity is O(n2n). The algorithm looks for the 2n − 1 nonempty induced
subgraphs of G. In step (1), for each induced subgraph, it analyzes if it is connected or not,
using Depth-First Search (DFS) algorithm. It is a well known result that DFS algorithm
complexity is O(m). Furthermore, it is easy to check that step (2) has cost O(n) and step
(3) has cost O(1).

Remark 3.1.2. Let G1 and G2 be isomorphic graphs. Then A(G1; x) = A(G2; x).

The following proposition shows general properties of the alliance polynomials.

Proposition 3.1.3. Let G be a graph. Then A(G; x) satisfies the following properties:

i) All real zeros of A(G; x) are non-positive numbers.

ii) The value 0 is a zero of A(G; x) with multiplicity n− δ1 ≥ 1.

iii)
∑δ1

i=k Ai(G) is the number of defensive k-alliances in G for every k ∈ K.

iv) If G has at least an edge and its degree sequence has exactly r different values {c1, c2, . . . , cr},
then A(G; x) has at least r + 1 terms: xn−c1 , . . . , xn−cr , xn+δn.

v) A(G; x) is a symmetric polynomial (either an even or an odd function) if and only if
the degree sequence of G has either all values even or all odd.

Proof. We prove separately each item.

i) Since the coefficients of A(G; x) are non-negatives, we have the result.

ii) Since n + k > n − δ1 for any k ∈ K, we have a common factor xn−δ1 in A(G; x) and
A−δ1(G) 6= 0.

iii) If S is an exact defensive r-alliance in G with r > k, then we have δS(v) ≥ δS(v) + r >
δS(v) + k for all v ∈ S; in fact, S is a defensive k-alliance in G. This finishes the proof,
since an exact defensive r-alliance in G with r < k is not a defensive (r + 1)-alliance
and r + 1 6 k.
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iv) Consider v1, v2, . . . , vr ∈ V with δG(vi) = ci for all i = 1, . . . , r. Note that {vi} for
i = 1, . . . , r is an exact defensive (−ci)-alliance, since 0 = δSi

(vi) = δSi
(vi)− ci = ci− ci.

Therefore, that makes appear the term xn−ci in A(G; x) for all i = 1, . . . , r. Consider
now a connected component S of G and u a vertex in S with δG(u) = δn. Hence, S is
an exact defensive δn-alliance in G, since we have

δS(v) = δG(v) ≥ δS(v) + δn = δn, ∀v ∈ S (3.1.3)

and δS(u) = δn. So, that makes appear the term xn+δn in A(G; x).

v) In order to prove the directed implication assume that A(G; x) is an even polynomials
(the case odd is analogous). Let c be any element of the degree sequence of G and v ∈ V
with δ(v) = c. By item v) we have A−c(G) 6= 0, then n − c is even and c ∼= n(mod 2).
So, we conclude that the elements in the degree sequence of G are either all even or all
odd numbers.

Finally, we prove the converse implication. Consider S ⊆ V an exact defensive k-
alliance. By Proposition 2.2.1, there exists v ∈ S with

2δS(v) = δG(v) + k.

This finishes the proof since δG(v) + k is even.

In Chapter 1 we have given the definition of a cut vertex. Now we define a cut vertex set
of a graph G = (V,E) as a subset X ( V such that 〈V \X〉 is a non-connected graph.

Theorem 3.1.4. Let G be any graph with order n. Then we have the following statements
hold.

1. A(G; 1) < 2n, and it is the number of connected induced subgraphs 〈S〉 in G.

2. The number of cut vertex sets of G is 2n − 1−A(G; 1).

Proof. By (3.1.1), we have

A(G; 1) =
∑

S⊂V

σG(S).

Thus, A(G; 1) is the number of connected induced subgraph 〈S〉 in G; this amount is less
that 2n, since we have 2n − 1 nonempty subsets of V .

Let ck(G) be the number of cut vertex sets of cardinality k for 0 6 k < n and sk(G) be
the number of connected induced subgraphs of G with order k for 0 < k 6 n. Note that X
is a cut vertex set if and only if V (G) \X induces a non-connected subgraph.Conversely, if
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X ⊂ V (G) is not a cut vertex set of G then 〈V (G) \ X〉 is connected. Then, we have the
following equality for every 0 < k 6 n

cn−k(G) + sk(G) =

(
n

k

)
.

Finally, we obtain the result since A(G; 1) =
∑n

k=1 sk(G).

The following theorem shows some properties of coefficients and degree of any alliance
polynomial.

Theorem 3.1.5. Let A(G; x) be the alliance polynomial of a graph G with Degmin(A(G; x))
and Deg(A(G; x)) the minimum degree and maximum degree of its terms, respectively. Then
A(G; x) satisfies the following statements:

i) Degmin(A(G; x)) = n−δ1 and its coefficient A−δ1(G) is the number of vertices in G with
degree δ1.

ii) A−δ1+1(G) is the number of vertices in G with degree δ1 − 1.

iii) Aδn(G) > 0.

iv) n + δn ≤ Deg(A(G; x)) ≤ n+ δ1.

v) Aδ1(G) is equal to the number of connected components in G which are δ1-regular.

vi) There not exist defensive k-alliances in G for k > Deg(A(G; x))− n.

Proof. We prove separately each item.

i) The minimum value of K is −δ1, so Degmin(A(G; x)) > n − δ1. Consider now the sets
Sv = {v} with δG(v) = δ1, then 〈Sv〉 is connected and Sv is an exact defensive (−δ1)-
alliance. Finally, it is clear that any S ∈ V with more than one vertex is not an exact
defensive (−δ1)-alliance, since for any v ∈ S we have

δS(v)− δS(v) ≥ 1− (δ1 − 1) > −δ1 + 1. (3.1.4)

Then, A−δ1(G) is the number of vertices in G with degree δ1. Note that, consequently,
A−δ1(G) 6 n and A−δ1(G) = n if and only if G is a regular graph.

ii) Similarly to the previous item, we consider the sets Sv = {v} with δG(v) = δ1 − 1 and
we obtain A−δ1+1(G) ≥ NVδ1−1 where NVi := {number of vertices in G with degree i};
therefore, we obtain the equality since any S ⊂ V with more than one vertex is an exact
defensive k-alliance for k ≥ −δ1 + 2 by (3.1.4).
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iii) This is a consequence of Proposition 3.1.3 iv).

iv) Item iii) gives the first inequality. The second one holds since δ1 is the maximum value
of K.

v) By (3.1.2), Aδ1(G) is the number of defensive δ1-alliance in G. We characterize this by
the number of connected components in G which is δ1-regular. First, note that if S is
a defensive δ1-alliance, then S is an exact defensive δ1-alliance since δ1 is the maximum
value in K. Clearly, any connected component in G which is δ1-regular is an exact
defensive δ1-alliance.

Now, consider an exact defensive δ1-alliance S in G. Hence, for any v ∈ S we have

δS(v) ≥ δS(v) + δ1 =⇒ δ1 ≥ δS(v) ≥ δS(v) + δ1 ≥ δ1.

Then, we have δS(v) = δG(v) = δ1 for every v ∈ S and conclude that S is a connected
component in G which is δ1-regular.

vi) Suppose that there is a defensive k-alliance S in G, in fact, kS ≥ k. Then, that makes
appear the term xn+kS in A(G; x) and so,

n + k ≤ n+ kS ≤ Deg(A(G; x)).

Proposition 3.1.6. Let G be any connected graph. Then G is regular if and only if

Aδ1(G) = 1. (3.1.5)

Proof. If G is regular, then by Theorem 3.1.5 v) we obtain Aδ1(G) = 1. Besides, if Aδ1(G) =
1, then there is an exact defensive δ1-alliance S in G with δS(v) > δS̄(v) + δ1 > δ1 for every
v ∈ S (i.e., δS(v) = δ1 for every v ∈ S). So, the connectivity of G gives that G is a δ1-regular
graph.

Proposition 3.1.7. Let G be any graph and G1 any proper subgraph of G. Then

A(G; x) 6= A(G1; x).

Proof. Since G1 is a proper subgraph of G, all connected induced subgraph of G1 is a
connected induced subgraph of G and at less one edge e (with endpoints u, v ∈ V ) of G is
not contained in G1. Hence, since 〈{u, v}〉 is connected in G but is no connected in G1, we
have A(G; 1) > A(G1; 1) by Theorem 3.1.4.
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Theorem 3.1.8. Let G = G1∪. . .∪Gr be the disjoint union of the graphs G1, . . . , Gr (r > 2)
with orders n1, . . . , nr, respectively. Then we have

A(G; x) = xn−n1A(G1; x) + . . .+ xn−nrA(Gr; x), (3.1.6)

where n := n1 + . . .+ nr.

Proof. Since every connected induced subgraph of G is a connected induced subgraph of Gi

for some 1 6 i 6 r, and every exact defensive k-alliance in G is an exact defensive k-alliance
in Gi for some 1 6 i 6 r, we have that K(G) =

⋃r
i=1K(Gi) and

Ak(G) = Ak(G1) + . . .+ Ak(Gr), for k ∈ K(G).

So, we have

Ak(G)x
n+k = xn−n1Ak(G1)x

n1+k + . . .+ xn−nrAk(Gr)x
nr+k, for k ∈ K(G).

Finally, if we sum in k ∈ K(G), then we obtain the result.

This result allows to obtain the alliance polynomial of the graph G ∪ {v} obtained by
adding to the graph G a single disjoint vertex v (i.e., v /∈ V (G)). This operation is called
vertex addition.

Corollary 3.1.9. Let G be any graph with order n and let v be a vertex such that v /∈ V (G).
Then

A(G ∪ {v}; x) = xA(G; x) + xn+1.

The n-vertex edgeless graph or empty graph is the complement graph for the complete
graph Kn; it is commonly denoted as En for n > 1.

Corollary 3.1.10. Let n be a natural number with n > 1. If A(G; x) = nxn, then G is an
isomorphic graph to En.

Proof. Note that the empty graph E1 satisfies A(E1; x) = x. So, by Theorem 3.1.8 or
Corollary 3.1.9 we have that

A(En+1) = xA(En; x) + xn+1, ∀n ≥ 1.

This implies that A(En; x) = nxn. The uniqueness follows from items iii) and iv) in
Theorem 3.1.5.

Corollary 3.1.11. Let G be any graph with order n. Then

A(G ∪ Em; x) = xmA(G; x) +mxn+m.
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Theorem 3.1.12. Let G1, G2 be two graphs with order n1 and n2, respectively. Then

A(G1 ]G2; x) = A(G1; x) + A(G2; x) + Ã(G1, G2; x),

where Ã(G1, G2; x) is a polynomials with Ã(G1, G2; 1) = (2n1 − 1)(2n2 − 1) and

Deg
(
Ã(G1, G2; x)

)
= Deg

(
A(G1 ∪G2; x)

)
.

Proof. Let us define Ã(G1, G2; x) = A(G1 ] G2; x) − A(G1; x) − A(G2; x). First, if S1 is a
defensive alliance in G1 which provides a term xn1+kS1 in A(G1; x), then S1 provides a term
xn1+n2+kS1

−n2 = xn1+kS1 in A(G1 ] G2; x). It follows immediately that we obtain A(G1; x)
as an addend in A(G1 ]G2; x) when S1 runs on the defensive alliances in G1. Similarly, we
obtain A(G2; x) as an addend in A(G1 ] G2; x) when we consider the defensive alliances in
G2.

In order to complete the summation in A(G1 ] G2; x) we consider R1 ⊆ V (G1) (being
either a defensive alliance in G1 or not) with 1 6 r1 6 n1 elements and R2 ⊆ V (G2) (being
either a defensive alliance in G2 or not) with 1 6 r2 6 n2 elements. Note that any R1 ∪ R2

is a defensive alliance in G1 ]G2 since 〈R1 ∪ R2〉 is connected. By Theorem 3.1.4, we have

Ã(G1, G2; 1) =

n1∑

i=1

n2∑

j=1

(
n1

i

)(
n2

j

)
=

(
n1∑

i=1

(
n1

i

))( n2∑

j=1

(
n2

j

))
= (2n1 − 1)(2n2 − 1).

However, the exact index of alliance of R1∪R2 in G1]G2 depends strongly on the particular
geometry (topology) of G1 and G2. In general, we can not determine the exact index of
alliance of R1 ∪ R2 given its cardinality and degree sequence.

It is obvious that terms in A(G1 ] G2; x) provided from every R1 ∪ R2 with maximum
degree are obtained from R∗

1 and R
∗
2 defensive alliances with 〈R∗

1〉, 〈R∗
2〉 connected subgraphs

and highest exact index of alliance in G1 and G2, respectively. Hence,

Deg
(
Ã(G1, G2; x)

)
= n1 + n2 +max{kR∗

1
, kR∗

2
},

where the maximum is taken over all R∗
1, R

∗
2 defensive alliances in G1, G2, respectively. So,

(3.1.6) finishes the proof since

Deg
(
A(G1 ∪G2; x)

)
= max

{
n2 +Deg

(
A(G1; x)

)
, n1 +Deg

(
A(G2; x)

)}

= n1 + n2 +max{kR∗

1
, kR∗

2
},

where the maximum is taken over all R∗
1, R

∗
2 defensive alliances in G1, G2, respectively.

Theorem 3.1.12 allows to obtain the following result which will be useful (see Section
3.2.2). We denote by G the complement graph of G (recall that Kn is isomorphic to the
empty graph En).
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Theorem 3.1.13. Let n,m be two positive integers. Then we have

A(Kn ]Km; x) = A(Kn; x)Ãm(x) +mxm (3.1.7)

where Ãm(x) is a polynomial which just depend of m, in fact,

Ãm(x) =

m∑

r=0

(
m

r

)
xmin{2r,m+1}.

Proof. First, we fix S ⊂ V (Kn) with 1 6 s 6 n elements. Note that S provides a term x2s−1

in A(Kn; x). Consider R ⊂ V (Km) with 0 6 r 6 m elements. Now we compute the exact
index of alliance of HR = S ∪ R in Kn ]Km. We have

δHR
(v)− δHR

(v) = (r+ s− 1)− (n− s+m− r) = 2s− 1− (n+m) + 2r, for every v ∈ S

and

δHR
(v)− δHR

(v) = s− (n− s) = 2s− 1− (n +m) +m+ 1, for every v ∈ R.

Then, HR provides a term x2s−1+min{2r,m+1} for each R. Therefore, for each S we obtain the
polynomial x2s−1 · Ãm(x) when R runs in the subsets of V (Km). In order to complete the
sum, note that the defensive alliances without elements of V (Kn) are just the single vertices
of V (Km). Then (3.1.1) gives the result.

Also, we can compute the alliance polynomials of Kn ]Km (see Proposition 3.2.7) and
Kn ]Km (see Proposition 3.2.13).

3.2 Characterization of some classes of graphs by their

alliance polynomials

In this section we obtain the explicit formulae for alliance polynomials of some classical
classes of graphs using combinatorial arguments. We also study fundamental properties
such as unimodality and the uniqueness of these polynomials.

Figure 3.1 shows two graphs G1 and G2 with the same order, size, degree sequence and
number of induced subgraphs; however, these graphs have different alliance polynomials.
A simple computation gives A(G1; x) = 2x7 + 4x8 + 27x9 + 50x10 + 11x11 and A(G2; x) =
2x7 + 4x8 + 30x9 + 47x10 + 11x11.
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G1 G2

Figure 3.1: Graphs with same order, size, degree sequence and number of connected induced
subgraphs such that A(G1; x) 6= A(G2; x).

3.2.1 Polynomials for path and cycle graphs

Proposition 3.2.1. Let Pn be a path graph with order n ≥ 2. Then

A(Pn; x) = (n− 2) xn−2 + 2 xn−1 +
(n− 2)(n+ 1)

2
xn + xn+1. (3.2.8)

Proof. We analyze the subsets with different cardinality separately.
Let us consider any subset S of V (Pn) with connected induced subgraph 〈S〉, and |S| = r

with r = 1, . . . , n.
If r = 1, then there are n alliances.

• Since there are two vertices with degree 1, we have 2 exact defensive (−1)-alliances.
So, that makes appear the term

2xn−1.

• Since there are n−2 vertices with degree 2, we have n−2 exact defensive (−2)-alliances.
So, that makes appear the term

(n− 2)xn−2.

Consider now the case 2 ≤ r ≤ n−1. The connectivity of 〈S〉 allows to compute kS since
it is a sub-path with r vertices. Then we have n − r + 1 exact defensive 0-alliances, since
at least one endpoint of any induced Pr attains the exact index of alliance kPr

= 0. So, we
have the terms

(n− r + 1)xn, for every 2 ≤ r ≤ n− 1.

Finally, if r = n, then S = V (Pn). We have just one exact defensive 1-alliance, with the
term

xn+1.

Then, we obtain

A(Pn; x) = (n− 2) xn−2 + 2 xn−1 +
n−1∑

r=2

(n− r + 1) xn + xn+1,

= (n− 2) xn−2 + 2 xn−1 +
(n− 2)(n+ 1)

2
xn + xn+1.
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We have the following consequences of Proposition 3.2.1.

Corollary 3.2.2. Let Pn be the path graph with n vertices. Then A(Pn; x) is unimodal if
and only if 2 6 n 6 4.

Proof. By simple computation we can check that A(Pn; x) is unimodal for 2 6 n 6 4, since
A(P2; x) = 2x+x3, A(P3; x) = x+2x2 +2x3+x4 and A(P4; x) = 2x2+2x3+5x4+x5. But,
for n > 4 we have that A−2(Pn) = n− 2 > 2 = A−1(Pn) < (n− 2)(n+ 1)/2 = A0(Pn).

Now we characterize graphs G with A(G; x) = A(Pt; x).

Theorem 3.2.3. Let t be a natural number with t > 2. If A(G; x) = A(Pt; x), then G is an
isomorphic graph to Pt.

Proof. Let us consider a graph G with A(G; x) = A(Pt; x); denote by n the order of G and
by ∆G the maximum degree of G.

Assume first that t > 3. By items i) and ii) in Theorem 3.1.5, n − ∆G = t − 2, G has
t− 2 vertices of degree ∆G, and 2 vertices of degree ∆G − 1. So, we have n > t.

Assume now that t = 2. Then A(G; x) = A(P2; x) = 2x + x3. By Theorem 3.1.5 i),
n−∆G = 1 and G has 2 vertices of maximum degree ∆G. So, we have n > t.

Hence, n > t for every t > 2.
By Theorem 3.1.5 iv), we have t + 1 ≥ n + δG where δG is the minimum degree of G.

So, δG is either 0 or 1. Hence, if n > t, then n = t + 1 and δG = 0. Besides, the maximum
degree of A(G; x) is greater than t + 1 since G has a connected component with vertex of
positive degree. This is a contradiction, thus n = t and then t − ∆G = t − 2 if t > 3, and
2−∆G = 1 if t = 2; therefore, ∆G = 2 if t > 3, and ∆G = 1 if t = 2.

Hence, if t = 2, G is an isomorphic graph to P2. If t > 3, then G has t − 2 vertices
of degree 2 and 2 vertices of degree 1. If G is disconnected, then A(G; x) has at least two
terms xk with k > t, one for each connected component. But this is a contradiction since
A(G; x) = A(Pt; x). So, G is connected and this implies that G is an isomorphic graph to
Pt.

Proposition 3.2.4. Let Cn be a cycle graph with order n ≥ 3. Then

A(Cn; x) = nxn−2 + n(n− 2) xn + xn+2. (3.2.9)

Proof. We analyze the subsets with different cardinality separately.
Let us consider any subset S of V (Cn) with connected induced subgraph 〈S〉, and |S| = r

with r = 1, . . . , n.
If r = 1, then we have n exact defensive (−2)-alliances. So, that makes appear the term

nxn−2.
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Consider now the case 2 ≤ r ≤ n− 1. The connectivity of 〈S〉 allows to compute kS since it
is a path with r vertices. Then we have n exact defensive 0-alliances, since the end vertices
of the induced Pr attain the exact index of alliance kPr

= 0. So, we have the term

nxn, for every 2 6 r 6 n− 1.

Finally, if r = n, then S = V (Cn). We have an exact defensive 2-alliance with the term

xn+2.

Then, we obtain A(Cn; x) = nxn−2 + n(n− 2) xn + xn+2.

Corollary 3.2.5. Let Cn be a cycle graph with order n > 3. Then A(Cn; x) is unimodal.

Here we want to characterize graphs G with A(G; x) = A(Ct; x).

Theorem 3.2.6. Let t be a natural number with t > 3. If A(G; x) = A(Ct; x), then G is an
isomorphic graph to Ct.

Proof. Let us consider a graph G with order n such that A(G; x) = A(Ct; x); denote by ∆G

the maximum degree of G and by δG its minimum degree. By Theorem 3.1.5 i), G has t
vertices of degree ∆G, so n ≥ t. Besides, n+ δG ≤ t + 2 ≤ n +∆G. Hence, δG ≤ 2.

Assume that n > t. Then δG is either 0 or 1.
If δG = 0, then Proposition 3.1.3 iv) makes appear the term xn. Since xt+1 does not

appear in A(Ct; x), we obtain n ≥ t + 2. Furthermore, it appears one term, associated to
one connected component with vertices of positive degree, with exponent n +∆G > n, but
this is impossible since A(Ct; x) has degree t + 2.

Hence δG = 1 and n = t+ 1. So, by Theorem 3.1.5 i), G has t vertices of degree ∆G = 3
and one vertex of degree 1. Denote by v the vertex of G with degree 1 and by S the connected
component of G containing v. Clearly, S is an exact defensive 1-alliance in G, and then the
term x(t+1)+1 appears in A(G; x); but S \ {v} is an exact defensive 1-alliance in G. This is
a contradiction since there is just one term xt+2 in A(G; x).

Hence, we have n = t. Besides, by Theorem 3.1.5 i), G is a regular graph and ∆G = 2.
Since A(Ct; x) is a monic polynomial with degree t+2, the number of connected components
of G is 1 by Theorem 3.1.5 v), and so, G is connected.

3.2.2 Polynomials for complete graphs

Since Kn+1 is an isomorphic graph to Kn ] K1 for every n > 1, Theorem 3.1.13 has the
following consequences.

Proposition 3.2.7. Let Kn be a complete graph with order n ≥ 1. Then

A(Kn; x) =
(x2 + 1)n − 1

x
. (3.2.10)
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Proposition 3.2.7 gives the following results.

Corollary 3.2.8. Let Kn be the complete graph with order n. Then A(Kn; x) is unimodal.

Now we characterize graphs G with A(G; x) = A(Kt; x).

Theorem 3.2.9. If A(G; x) = A(Kt; x), then G is an isomorphic graph to Kt.

Proof. Consider a graph G with order n such that A(G; x) = A(Kt; x). By Theorem 3.1.5 i),
G has t vertices of maximum degree ∆G = n−1, so n ≥ t. Denote by v1, v2, . . . , vt the vertices
of G with maximum degree n− 1. Hence, we have that G contains a clique 〈{v1, v2, . . . , vt}〉
isomorphic to Kt. If n > t, then Proposition 3.1.7 gives A(G; x) 6= A(Kt; x). So, we obtain
that n = t. Finally, since n = t, G is an (t−1)-regular graph. Therefore, G is an isomorphic
graph to Kt.

Since a complete graph without one of its edges Kn/e is isomorphic to Kn−2 ] K2 for
every n > 3, Theorem 3.1.13 has the following consequence.

Proposition 3.2.10. Let Kn/e be a complete graph without one of its edges, with n ≥ 2
vertices. Then,

A(Kn/e; x) =
(x2 + 1)n − (x4 − x3)(x2 + 1)n−2 + x3 − 2x2 − 1

x
. (3.2.11)

Proposition 3.2.10 gives the following results.

Corollary 3.2.11. Let Kn/e be the complete graph with n ≥ 2 vertices, without one of its
edges. Then A(Kn/e; x) is unimodal if and only if 2 6 n 6 4.

Proof. We can check that A(Kn/e; x) is unimodal for 2 6 n 6 4, since A(K2/e; x) =
A(E2; x) = 2x2, A(K3/e; x) = A(P3; x) = x + 2x2 + 2x3 + x4 and A(K4/e; x) = 2x +
2x2 + 5x3 + 2x4 + 2x5 + x6. But, for n > 4 we have that A−(n−1)(Kn/e) = n − 2 > 2 =
A−(n−2)(Kn/e) <

(
n
2

)
− 1 = A−n+3(Kn/e).

Now we characterize graphs G with A(G; x) = A(Kt/e; x).

Theorem 3.2.12. Let t be a natural number with t > 2. If A(G; x) = A(Kt/e; x), then G
is an isomorphic graph to Kt/e.

Proof. If t = 2, then the result follows from Corollary 3.1.10. Assume now that t > 3.
Let us consider a graph G with order n such that A(G; x) = A(Kt/e; x). By items i) and

ii) in Theorem 3.1.5, G has t − 2 vertices of maximum degree ∆G = n − 1 and 2 vertices
of degree n − 2, so n ≥ t. Denote by v1, . . . , vt−2 the vertices of G with maximum degree
n − 1 and by w1, w2 the vertices with degree n − 2. Hence, we have that G contains a
subgraph 〈{v1, . . . , vt−2, w1, w2}〉 which is either a clique or an isomorphic graph to Kt/e,
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depending on whether or not w1 is adjacent to w2 in G. If n > t, then Proposition 3.1.7
gives A(G; x) 6= A(Kt; x). So, we obtain that n = t.

Note that any nonempty subset S of V (G) induces a connected subgraph 〈S〉 of G, if
S 6= {w1, w2}. Obviously, A(G; 1) = 2t − 2 and this is a characterization of the graph Kt/e,
since a graph with one more induced connected subgraph is isomorphic to Kt. Furthermore,
any graph G with order t obtained from Kt by removing at least two edges, does not satisfy
the condition A(G; 1) = 2t − 2. Since A(G; x) = A(Kt/e; x) and G has order t, then G is
isomorphic to Kt/e.

3.2.3 Polynomials for completed bipartite graphs

Since Kn ]Km = Kn,m, an argument similar to the ones in the proofs of Theorems 3.1.12
and 3.1.13 allows to obtain A(Kn ]Km; x).

Proposition 3.2.13. Let Kn,m be a complete bipartite graph with n,m > 1. Then

A(Kn,m; x) = nxn +mxm +
n+m∑

k=2

∑

i,j>0 , i+j=k

(
n

i

)(
m

j

)
xn+m+min{2i−n,2j−m}. (3.2.12)

Proof. Fix n ≥ 1 and m ≥ 1. Let us consider any subset S of V (Kn,m) with connected
induced subgraph 〈S〉 and |S| = k with k = 1, . . . , n+m.

If k = 1, then there are n+m alliances.

• If S is a vertex associated to n, we have n exact defensive (−m)-alliances. So, that
makes appear the term

nxn+m−m.

• If S is a vertex associated to m, we have m exact defensive (−n)-alliances. So, that
makes appear the term

mxn+m−n.

Consider now the case 2 ≤ k ≤ n + m. Obviously, any subset S of V (G) with k ≥ 2
elements induces a connected subgraph of Kn,m, if and only if it contains elements in both
parts. Then, we have

(
n
i

)(
m
j

)
exact defensive min{j − (m− j), i− (n− i)}-alliances for each

couple i, j > 0 such that i + j = k (by choosing i vertices associated to n and j vertices
associated to m).

So, we have the terms

∑

i,j>0, i+j=k

(
n

i

)(
m

j

)
xn+m+min{2j−m,2i−n}.
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Then, we obtain

A(Kn,m; x) = nxn +mxm +

n+m∑

k=2

∑

i,j>0 , i+j=k

(
n

i

)(
m

j

)
xn+m+min{2i−n,2j−m}.

The complete bipartite graph Kn−1,1 is called an n star graph Sn. We have the following
consequence of Theorem 3.1.13 (since Sn is an isomorphic graph to K1 ] Kn−1 for every
n > 2) or Proposition 3.2.13.

Corollary 3.2.14. Let Sn be star graph with order n ≥ 2. Then

A(Sn; x) = A(Kn−1,1; x) =

b(n−1)/2c∑

k=0

(
n− 1

k

)
x2k+1 + (n− 1)xn−1 + xn+1

n−1∑

k=dn/2e

(
n− 1

k

)
.

(3.2.13)

Here we want to characterize graphs G with A(G; x) = A(St; x).

Theorem 3.2.15. Let t be a natural number with t > 2. If A(G; x) = A(St; x), then G is
an isomorphic graph to St.

Proof. If t = 2 then Theorem 3.2.3 gives the result. Fix t > 3.
Let us consider a graph G with order n such that A(G; x) = A(St; x). Since

Degmin(A(G; x)) = 1, there is v ∈ V (G) such that v ∼ w for all w ∈ V (G) \ {v}. Therefore,
G is a connected graph, δG (the minimum degree of G) is greater that 0 and G contains an
isomorphic subgraph GS of Sn. Hence, any S ⊆ V (G) which induces a connected subgraph
〈S〉 in GS, induces a connected subgraph in G, too. So,

A(G; 1) ≥ A(GS; 1) = A(Sn; 1). (3.2.14)

Since Deg(A(G; x)) = t + 1, we have n+ δG ≤ t + 1, and so, n ≤ t. But, by (3.2.13), we
have

2n > A(G; 1) = t− 1 +
t−1∑

k=0

(
t− 1

k

)
= 2t−1 + t− 1 > 2t−1,

and this condition implies that n ≥ t. Thus, n = t.
Seeking for a contradiction assume that there are w1, w2 ∈ V (G)\{v} such that w1 ∼ w2.

Then, {w1, w2} induces a connected subgraph in G, but not in GS; and so,

A(G; 1) > A(St; 1) =⇒ A(G; x) 6= A(St; x).

This is the contradiction we were looking for, and so, G is isomorphic to St.
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3.3 Distinctive power of alliance polynomial

In this section we explain the distinctive power of the alliance polynomial of a graph. This
is an interesting difference with others well-known polynomials of graphs.

We denote by D(G; x) the domination polynomial of G (see [3]), by I(G; x) the inde-
pendence polynomial of G (see [65]), by M(G; x) the matching polynomial (see [47]), by
P (G; x) the characteristic polynomial, by T (G; x, y) the Tutte polynomial (see [114]), by
Pchr(G; x, y) the bivariate chromatic polynomial introduced in [104], and by Q(G; x, y) the
subgraph component polynomial introduced in [112].

We say that a graph G is characterized by a graph polynomial f if for every graph G′

such that f(G′) = f(G) we have that G′ is isomorphic to G. The class of graphs K is
characterized by a graph polynomial f if every graph G ∈ K is characterized by f .

This notion has been studied in [82, 86], for the chromatic polynomial, the Tutte poly-
nomial and the matching polynomial. It is shown, e.g., that several well-known families of
graphs are determined by their Tutte polynomial, among them the class of wheels, squares
of cycles, complete multipartite graphs, ladders, Möbius ladders, and hypercubes. In Section
3.2.1, we have proved that path, cycle, complete and star graphs are characterized by their
alliance polynomials. In [100] the authors prove that the family of alliance polynomials of
cubic graphs is a special one, since it does not contain alliance polynomials of graphs which
are not cubic; and they also prove that the cubic graphs with at most 10 vertices are charac-
terized by their alliance polynomials. Furthermore, in [35] the authors prove a similar result
for the family of alliance polynomials of ∆-regular connected graphs with ∆ 6 5, i.e., it does
not contain alliance polynomials of graphs which are not connected ∆-regular.

G3 G4

Figure 3.2: Graphs with same characteristic polynomial.

We denote by G12G2 and G1 �G2 the Cartesian and the strong products of G1 and G2,
respectively.

Proposition 3.3.1. For the graphs Gi, i = 1, ..., 6, from Figures 3.1, 3.2, 3.3 and for P4,
K1,3, P5, P2 ∪ C3, K3,3, P22C3, P2 � P3 and E2 ] P4 we have

(1) P (G3; x) = P (G4; x) but A(G3; x) 6= A(G4; x).

(2) M(P2 ∪ C3; x) =M(P5; x) but A(P2 ∪ C3; x) 6= A(P5; x).

(3) I(P2 � P3; x) = I(E2 ] P4; x) but A(P2 � P3; x) 6= A(E2 ] P4; x).
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G5 G6

Figure 3.3: Graphs with same bivariate chromatic polynomial.

(4) D(K3,3; x) = D(P22C3; x) but A(K3,3; x) 6= A(P22C3; x).

(5) Pchr(G5; x, y) = Pchr(G6; x, y) but A(G5; x) 6= A(G6; x).

(6) T (P4; x, y) = T (K1,3; x, y) but A(P4; x) 6= A(K1,3; x).

(7) Q(G1; x, y) = Q(G2; x, y) but A(G1; x) 6= A(G2; x).

Proof. Proposition 3.1.3 v) gives that A(G3; x), A(P2 � P3; x) and A(G5; x) are symmetric
polynomials, but A(G4; x), A(E2 ] P4; x) and A(G6; x) are not symmetric; then A(G3; x) 6=
A(G4; x), A(P2 � P3; x) 6= A(E2 ] P4; x) and A(G5; x) 6= A(G6; x). Besides, by Theorem
3.2.3 we have that P4 and P5 are characterized by their alliance polynomials, and so, A(P2∪
C3; x) 6= A(P5; x) and A(P4; x) 6= A(K1,3; x). Furthermore, by [100, Proposition 3.1] we have
A(K3,3; x) 6= A(P22C3; x). Besides, A(G1; x) 6= A(G2; x) (see the beginning of Section 3.2).
A simple computation gives P (G3; x) = P (G4; x),M(P2∪C3; x) =M(P5; x), I(P2�P3; x) =
I(E2 ] P4; x) and D(K3,3; x) = D(P22C3; x). So, items (1), (2), (3) and (4) hold. Item (5)
follows from [44]. Since Tutte polynomial does not distinguish trees of the same size, we
deduce item (6). Finally, Q(G1; x, y) = Q(G2; x, y) follows from [112], and we have item
(7).

The results in Section 3.2 and [35, 100] suggest the conjecture that every graph can be
characterized by its alliance polynomial, although it seems hard to be proved.

However, if our conjecture turned out to be false, we think that the study of the following
problem could be of interest.

Problem 3.3.2. Are there graphs distinguished by P (G; x), M(G; x), I(G; x), D(G; x),
Pchr(G; x, y), T (G; x, y) or Q(G; x, y) which are not distinguished by A(G; x)?



Chapter 4

Alliances polynomial of cubic graphs

The main aim of this chapter is to obtain further results about the alliance polynomial of
cubic graphs (graphs with all of their vertices of degree 3), since they are a very interesting
class of graphs with many applications (see, e.g., [25, 29, 42, 88]).

In Section 4.1 we obtain some properties of alliance polynomials of cubic graphs; besides,
we prove that the family of alliance polynomials of cubic graphs is a very special one, since
it does not contain alliance polynomials of graphs which are not cubic (see Theorem 4.1.6).
Finally, in Section 4.2 we obtain (computationally) the alliance polynomials of cubic graphs
with small order and we prove that they satisfy uniqueness. Recall that the subgraph induced
by S ⊂ V will be denoted by 〈S〉 and the complement of the set S ⊂ V will be denoted by
S = V \S.

4.1 Computing the alliance polynomials of cubic graphs

In this section we study the alliance polynomials of cubic graphs. We recall some previous
results for alliance polynomials of general graphs (not necessarily cubic) which appear in
Chapter 3 and that will be useful (see Proposition 3.1.3, Theorem 3.1.5 and Theorem 3.1.4).

Theorem 4.1.1. Let G be any graph. Then, A(G; x) satisfies the following properties:

i) A(G; x) does not have zeros in the interval (0,∞).

ii) A(G; 1) < 2n, and it is the number of connected induced subgraph 〈S〉 in G.

iii) A(G; x) is a symmetric polynomial (i.e., an even or odd function of x) if and only if the
degree sequence of G has either all values odd or all even.

iv) The monomial with minimum degree of A(G; x) has exponent n− δ1 and the coefficients
A−δ1(G) and A−δ1+1(G) are the number of vertices in G with degree δ1 and δ1 − 1,
respectively.

47
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v) n + δn ≤ Deg(A(G; x)) ≤ n+ δ1.

vi) Aδ1(G) is equal to the number of connected components of G which are δ1-regular.

Recall that by cycle we mean a simple closed curve, i.e., a path with different vertices,
unless the last one, which is equal to the first vertex. The following lemma is a well known
result of graph theory.

Lemma 4.1.2. If r > 2 is a natural number and G is any graph with δ(v) > r for every
v ∈ V (G), then there exists a cycle η in G with L(η) > r + 1.

Theorem 4.1.3. Let G be any cubic graph. Then,

A(G; x) = A−3(G) x
n−3 + A−1(G) x

n−1 + A1(G) x
n+1 + A3(G) x

n+3,

with A−3(G) = n < m 6 A−1(G) and A1(G) > A3(G).

Proof. Since G is 3-regular, by Theorem 4.1.1 iv) we obtain that A−3(G) = n and by item
iii) we have A−2(G) = A0(G) = A2(G) = 0 and then

A(G; x) = nxn−3 + A−1(G) x
n−1 + A1(G) x

n+1 + A3(G) x
n+3.

Note that if u, v ∈ V (G) with u ∼ v, then {u, v} is an exact defensive (−1)-alliance in G.
Thus, we obtain A−1(G) > m. Besides, by Theorem 4.1.1 vi) we have that A3(G) is equal to
the number of connected components in G. Assume that G has r > 1 connected components.
Let us consider {Gi}ri=1 the connected components of G, and denote by gi the girth of Gi for
1 6 i 6 r. Note that gi > 0 for 1 6 i 6 r, by Lemma 4.1.2. Besides, we have that V (gi) is
an exact defensive 1-alliance in G since δV (gi)(v) = 2 and δV (gi)

(v) = 1 for every v ∈ V (gi).
So, for each connected component in G there is at least one exact defensive 1-alliance, and
then A1(G) > A3(G).

Corollary 4.1.4. The alliance polynomial A(G; x) is unimodal for every cubic graph G.

The n-vertex edgeless graph or empty graph is a graph without edges and with n vertices,
and it is commonly denoted as En for n > 1.

The following result which appear in Chapter 3 will be useful.

Theorem 4.1.5. The empty graph En with n vertices is the unique graph such that

A(En; x) = nxn. (4.1.1)

Theorem 4.1.6. Let G be any cubic graph and G∗ any graph. If A(G∗; x) = A(G; x) then
G∗ is cubic with the same order, size and number of connected components of G.
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Proof. Since G is a cubic graph with order n, by Theorems 4.1.3 and 4.1.1 vi) we have

A(G∗; x) = A(G; x) = nxn−3 + A−1(G)x
n−1 + A1(G)x

n+1 + A3(G)x
n+3,

with A3(G) is the number of connected components of G. Let us denote by n1 the order of
G∗ and by δ and ∆ the minimum and the maximum degree of G∗, respectively.

By Theorem 4.1.1 iv), we have

n1 −∆ = n− 3

and
n ≤ n1.

Hence, n1 ≥ n and ∆ ≥ 3. Also we have

n1 + δ 6 n + 3

by Theorem 4.1.1 v).
Furthermore, if ∆ = 3, then n1 = n and so, G∗ is 3-regular since A−3(G

∗) = n. Since G∗

and G are cubic graphs with the same order, they also have the same size; Theorem 4.1.1
vi) gives that they have the same number of connected components.

We will finish the proof by checking that ∆ = 3.

Seeking a contradiction, assume that ∆ > 3 (then n1 > n) and denote by k = n1 − n =
∆− 3.

Assume that ∆ > 6 (i.e., k > 3). By Theorem 4.1.5 there exists a connected component
G0 of G∗ with δG0

(v) = δ(v) > 1 for every v ∈ V (G0); if S = V (G0), then δS(v) = δ(v) > 1,

and so, k
(G∗)
S > 1. Hence, A(G∗; x) has at least one term with exponent greater than n1,

Deg(A(G∗; x)) ≥ n1 + k
(G∗)
S > n1 > n + 3 = Deg(A(G; x)),

and A(G∗; x) 6= A(G; x), which is a contradiction. Thus, ∆ = 4 or ∆ = 5.

Assume that ∆ = 5, then n1 = n+2. By Theorem 4.1.1 iv), we have that G∗ has exactly
n vertices with degree 5; and so, by Theorem 4.1.1 iii), we have that the other two vertices
of G have degree 1 or 3. Since n1 + δ 6 n + 3, we obtain δ = 1.

Assume that G∗ has two vertices v1 and v2 with degree 1. In this case, if v1 ∼ v2, then
G∗ is a disconnected graph with at least one connected component which is 5-regular since
V (G∗)\{v1, v2} induces a 5-regular subgraph G1 of G

∗. Since V (G1) is an exact defensive 5-
alliance, Deg(A(G∗; x)) > n1+5 and we have Deg(A(G∗; x)) > n1+5 > n+3 = Deg(A(G; x)).
If v1 � v2 but there exists w ∈ V (G∗) such that w ∼ v1 and w ∼ v2, then let us consider
the connected component G2 of G∗ containing {v1, v2, w}. The set S = V (G2) \ {v1, v2, w}
is a defensive 3-alliance in G∗, since for any v ∈ S we have δS(v) ≥ 4 and δS(v) ≤ 1. Then,
Deg(A(G∗; x)) ≥ n1 + 3 > n+ 3 = Deg(A(G; x)). If v1 � v2 but there not exists w ∈ V (G∗)
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with w ∼ v1 and w ∼ v2, then let us consider the connected component G3 of G
∗ containing

v1 and S = V (G3) \ {v1, v2}. The set S is a defensive 3-alliance in G∗, since for all v ∈ S we
have δS(v) ≥ 4 and δS(v) ≤ 1. Then, Deg(A(G∗; x)) ≥ n1 + 3 > n+ 3 = Deg(A(G; x)).

Consider now the case of G∗ containing two vertices v1 and v2 with degree 1 and 3,
respectively. If v1 ∼ v2, then let us consider the connected component G4 of G∗ containing
{v1, v2} and S = V (G4) \ {v1, v2}. Then, S is a defensive 3-alliance in G∗, since for all v ∈ S
we have δS(v) ≥ 4 and δS(v) ≤ 1. Then, Deg(A(G∗; x)) ≥ n1 + 3 > n + 3 = Deg(A(G; x)).
If v1 � v2, let G5 be the connected component of G∗ containing v1 and S = V (G5) \ {v1}.
Hence, S is an exact defensive 3-alliance in G∗, since δS(v2)− δS(v2) = 3 − 0 if v2 ∈ S and
δS(v) − δS(v) > 4 − 1 for any v ∈ S \ {v2}. Then, Deg(A(G∗; x)) ≥ n1 + 3 > n + 3 =
Deg(A(G; x)).

So, it is not possible to have ∆ = 5.

Assume that ∆ = 4, then n1 = n + 1. If G∗ is a disconnected graph, then there exists a
connected component 〈S∗〉 of G∗ such that 〈S∗〉 is 4-regular and so, S∗ is an exact defensive
4-alliance in G∗. Therefore, Deg(A(G∗; x)) = n1 + 4 > n + 3 = Deg(A(G; x)). Thus, G∗ is
connected, and δ = 2 by Theorem 4.1.1 iii). So, we have that G∗ has exactly n vertices with
degree 4 and other vertex w with degree 2. Let v1, v2 ∈ V (G∗)\{w} with v1 6= v2, v1 ∼ w and
v2 ∼ w. Consider {u1, . . . , un−2} := V (G∗) \ {w, v1, v2}. Let Gi be the connected component
of 〈V (G∗) \ {ui}〉 ⊂ G∗ containing w, and Si = V (Gi), for each 1 6 i 6 n− 2. Note that Si

is an exact defensive 2-alliance since δSi
(w)− δSi

(w) = 2, for each 1 6 i 6 n− 2. Note that
if i 6= j and uj /∈ Si then ui ∈ Sj, and so, Si 6= Sj since ui /∈ Si; furthermore, if uj ∈ Si then
Si 6= Sj since uj /∈ Sj . Then, we obtain that A2(G

∗) > n− 1, and thus A3(G) > n− 1. This
contradicts Theorem 4.1.1 vi) since G is a cubic graph with order n.

So, it is not possible to have ∆ = 4.

This result allows to obtain the uniqueness of the alliance polynomial of a cubic graph
by computing the alliance polynomials of every cubic graph with the same order.

4.2 Computing the alliance polynomials for cubic graphs

with small order

In this section, we obtain (computationally) the alliance polynomials of cubic graphs with
small order, showing that they satisfy uniqueness. Theorem 4.1.6 suggest to compute the
alliance polynomials of cubic graphs using Algorithm 3.1.1.

We compute the alliance polynomial of cubic graphs with orders at most 10. Since their
alliance polynomials are different, these cubic graphs with small orders are characterized by
their alliance polynomials.

Let G be a cubic graph with order n.
If n = 4 then G is isomorphic to K4 and Theorem 4.1.6 gives the uniqueness.
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If n = 6 then G is isomorphic either to K3,3 or to the Cartesian product P22C3; hence,
Theorem 4.1.6 gives the uniqueness of their alliance polynomials since A(K3,3; x) = 6x3 +
33x5 + 15x7 + x9 and A(P22C3; x) = 6x3 + 33x5 + 11x7 + x9. Notice that these alliance
polynomials are equal except for the coefficient of x7; it is an interesting fact since many
parameters of these graphs are different.

Cub1
8
' K4 ∪K4 Cub2

8
' P22C4

Cub3
8

Cub4
8 Cub5

8
Cub6

8

Figure 4.1: Cubic graphs with order 8.

Graph Alliance polynomial Graph Alliance polynomial

Cub18 8x5 + 12x7 + 8x9 + 2x11 Cub48 8x5 + 94x7 + 20x9 + x11

Cub28 8x5 + 128x7 + 30x9 + x11 Cub58 8x5 + 118x7 + 24x9 + x11

Cub38 8x5 + 132x7 + 32x9 + x11 Cub68 8x5 + 126x7 + 28x9 + x11

Table 4.1: Alliance polynomials of cubic graph with order 8.

Figure 4.1 shows the cubic graphs with order 8 and Table 4.1 their alliance polynomials;
since they are different, Theorem 4.1.6 gives their uniqueness.

Notice that except for Cub18 (a non-connected graph), the coefficients of the others are
quite alike; Cub38 and Cub48 have the largest and smallest coefficients, respectively. Also,
these alliance polynomials are equal except for the coefficients of x7 and x9; besides, their
coefficients except for the leading one are even numbers.
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Cub1
10

Cub2
10

Cub3
10

Cub4
10

Cub5
10

Cub6
10

Cub7
10

Cub8
10

Cub9
10

Cub10
10

Cub11
10

Cub12
10

Cub13
10

Cub14
10

Cub15
10

Cub16
10

Cub17
10

Cub18
10

Cub19
10 Cub2010 Cub2110
Figure 4.2: Cubic graphs with order 10.
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Graph Alliance polynomial Graph Alliance polynomial Graph Alliance polynomial

Cub110 10x7 + 480x9 + 77x11 + x13 Cub810 10x7 + 407x9 + 56x11 + x13 Cub1510 10x7 + 272x9 + 42x11 + x13

Cub210 10x7 + 425x9 + 67x11 + x13 Cub910 10x7 + 357x9 + 53x11 + x13 Cub1610 10x7 + 419x9 + 62x11 + x13

Cub310 10x7 + 435x9 + 65x11 + x13 Cub1010 10x7 + 387x9 + 55x11 + x13 Cub1710 10x7 + 372x9 + 54x11 + x13

Cub410 10x7 + 451x9 + 69x11 + x13 Cub1110 10x7 + 307x9 + 55x11 + x13 Cub1810 10x7 + 351x9 + 50x11 + x13

Cub510 10x7 + 404x9 + 61x11 + x13 Cub1210 10x7 + 304x9 + 48x11 + x13 Cub1910 10x7 + 176x9 + 36x11 + x13

Cub610 10x7 + 462x9 + 67x11 + x13 Cub1310 10x7 + 267x9 + 43x11 + x13 Cub2010 10x7 + 39x9 + 19x11 + 2x13

Cub710 10x7 + 393x9 + 61x11 + x13 Cub1410 10x7 + 424x9 + 67x11 + x13 Cub2110 10x7 + 39x9 + 15x11 + 2x13

Table 4.2: Alliance polynomials of cubic graph with order 10.

Figure 4.2 shows the cubic graphs with order 10 and Table 4.2 their alliance polynomials.
Since they are different, Theorem 4.1.6 gives their uniqueness.

There are two non-connected cubic graphs Cub2010 and Cub2110; notice that their alliance
polynomials are equal except for the coefficient of x11, this is an expected result since Cub2010 '
K4 ∪ K3,3, Cub

21
10 ' K4 ∪ P22C3 and A(K3,3; x), A(P22C3; x) are equal except for one

coefficient.
Notice that, except for the two non-connected graphs, the coefficients of the polynomials

of cubic graphs with order 10 are similar; Cub110 (Petersen’s graph) and Cub
19
10 have the largest

and smallest coefficients, respectively. Furthermore, the coefficients of x9 of the alliance
polynomials of connected graphs are different; however, some of them are equal except for
this coefficient. For example, A(Cub210; x), A(Cub

6
10; x) and A(Cub

14
10; x) have a term of the

form 67x11; note that A(Cub210; x) = A(Cub1410; x) + x9. There are two other couples of
these alliance polynomials with just one different coefficient: A(Cub510; x), A(Cub

7
10; x) and

A(Cub1010; x), A(Cub
11
10; x).

Proposition 4.2.1. Every cubic graph of order at most 10 is characterized by its alliance
polynomial.
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The alliance polynomial A(G; x) is of special interest, since it counts the connected
induced subgraphs of G. In Chapter 3 Theorem 3.1.4 ii) will be useful to obtain the following
results.

The previous computations of alliance polynomials of cubic graphs with at most 10
vertices allow to obtain the following consequence, see Table 4.3.

Corollary 4.2.2. Any two cubic graphs with order at most 10 have different number of
connected induced subgraphs, and different number of cut vertex sets.

G A(G; 1) 2n − 1− A(G; 1) G A(G; 1) 2n − 1−A(G; 1) G A(G; 1) 2n − 1− A(G; 1)
Cub14 15 0 Cub16 55 8 Cub26 51 12
Cub18 30 225 Cub28 167 88 Cub38 173 82
Cub48 123 132 Cub58 151 104 Cub68 163 92
Cub110 568 455 Cub210 503 520 Cub310 511 512
Cub410 531 492 Cub510 476 547 Cub610 540 483
Cub710 465 558 Cub810 474 549 Cub910 421 602
Cub1010 453 570 Cub1110 373 650 Cub1210 363 660
Cub1310 321 702 Cub1410 502 521 Cub1510 325 698
Cub1610 492 531 Cub1710 437 586 Cub1810 412 611
Cub1910 223 800 Cub2010 70 953 Cub2110 66 957

Table 4.3: Numbers of connected induced subgraphs and cut vertex sets of cubic graphs.

We recall the distinctive power of the alliance polynomial of a graph. This is an interesting
difference with others well-known polynomials of graphs.

We say that a graph G is characterized by a graph polynomial f if for every graph G′ such
that f(G′) = f(G) we have that G′ is isomorphic to G. A set of graphs K is characterized
by a graph polynomial f if every graph G ∈ K is characterized by f .

In Chapter 3 we prove that path, cycle, complete, complete without one edge and star
graphs are characterized by its alliance polynomials. In this work, we prove that the family
of alliance polynomials of cubic graphs is a special one, since it does not contain alliance
polynomials of graphs which are not cubic; and Proposition 4.2.1 gives that the cubic graphs
with at most 10 vertices are characterized by their alliance polynomials. Furthermore, in the
next Chapter we prove a similar result for the family of alliance polynomials of ∆-regular
connected graphs with ∆ 6 5, i.e., it does not contain alliance polynomials of graphs which
are not connected ∆-regular.

The computations in this section and the results in Chapter 3 suggest the conjecture that
every graph can be characterized by its alliance polynomial, although it seems hard to be
proved.



Chapter 5

Alliances polynomial of regular graphs

The main aim of this chapter is to obtain further results about the alliance polynomial
of regular graphs (graphs with all vertices with the same degree), since they are a very
interesting class of graphs.

We study the alliance polynomials of regular graphs and their coefficients in Section 5.1.
In Section 5.2 we focus on the alliance polynomials of connected regular graphs; besides,
we prove that the family of alliance polynomials of connected ∆-regular graphs with small
degree is a very special one, since it does not contain alliance polynomials of graphs which
are not connected ∆-regular.

5.1 Computing the alliance polynomials of regular

graphs

Below, a quick reminder of some previous results for alliance polynomials of general graphs
(not necessarily regular) which appear in Chapter 3 and that will be useful (see Proposition
3.1.3, Theorem 3.1.5 and Theorem 3.1.4). We denote by Deg(p) the degree of the polynomial
p.

Theorem 5.1.1. Let G be any graph. Then A(G; x) satisfies the following properties:

i) A(G; x) does not have zeros in the interval (0,∞).

ii) A(G; 1) < 2n, and it is the number of connected induced subgraphs in G.

iii) If G has at least an edge and its degree sequence has exactly r different values, then
A(G; x) has at least r + 1 terms.

iv) A(G; x) is a symmetric polynomial (i.e., an even or an odd function of x) if and only if
the degree sequence of G has either all values odd or all even.
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v) A−∆(G) and A−∆+1(G) are the number of vertices in G with degree ∆ and ∆ − 1,
respectively.

vi) A∆(G) is equal to the number of connected components in G which are ∆-regular.

vii) n + δ ≤ Deg(A(G; x)) ≤ n +∆.

We show now some results about the alliance polynomial of regular graphs and their
coefficients. If p is a polynomial we denote by Degmin(p) the minimum degree of their
non-zero coefficients.

Theorem 5.1.2. For any ∆-regular graph G, its alliance polynomial A(G; x) satisfies the
following properties:

i) A−∆+2i(G) is the number of connected induced subgraphs of G with minimum degree i
(0 6 i 6 ∆).

ii) Degmin

(
A(G; x)

)
= n−∆ and A−∆(G) = n.

iii) Deg
(
A(G; x)

)
= n+∆. Furthermore,

n =
Degmin

(
A(G; x)

)
+Deg

(
A(G; x)

)

2
(5.1.1)

and

m = A−∆(G)
Deg

(
A(G; x)

)
−Degmin

(
A(G; x)

)

4
=

Deg2
(
A(G; x)

)
−Deg2min

(
A(G; x)

)

8
.

iv) 1 6 A∆(G) 6 n/(∆+1). Furthermore, G is a connected graph if and only if A∆(G) = 1.

v) If ∆ > 0, then A−∆+2(G) > m and A∆−2(G) > n+n0 with n0 the number of cut vertices;
in particular, A∆−2(G) > n.

vi) A(G; x) is either an even or an odd function of x. Furthermore, A(G; x) is an even
function of x if and only if n +∆ is even.

vii) The unique real zero of A(G; x) is x = 0, and its multiplicity is n−∆.

Proof. We prove each item separately.

i) Let us consider S ⊂ V with S an exact defensive (2i−∆)-alliance in G. Then, we have
for all v ∈ S

2δS(v) > δ(v) + 2i−∆ = ∆+ 2i−∆ ⇔ δS(v) > i,

besides, the equality holds at some w ∈ S. We have the result since A−∆+2i(G) is the
number of exact defensive (2i−∆)-alliance in G.
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ii) One can check directly that if S is a single vertex, then S is an exact defensive (−∆)-
alliance; furthermore, it is clear that any S ⊆ V with 〈S〉 connected and more than one
vertex is not an exact defensive (−∆)-alliance, since for any v ∈ S we have

δS(v)− δS(v) ≥ 1− (∆− 1) = −∆+ 2. (5.1.2)

Consequently A−∆(G) = n, since G is a ∆-regular graph.

iii) The maximum value in K is ∆, so Deg
(
A(G; x)

)
is at most n + ∆. We have that

each connected component of G is an exact defensive ∆-alliance since δ(v) = ∆ for any
vertex v. Then, A∆(G) > 0 and Deg

(
A(G; x)

)
= n +∆. Besides, the other results are

consequences of the well known fact 2m = n∆ and the previous results.

iv) By item i), A∆(G) is the number of connected induced subgraphs of G with minimum
degree ∆; hence, A∆(G) is the number of connected components of G. Besides, since
any connected component has cardinality greater than ∆, we obtain the upper bound
of A∆(G).

v) If u, v ∈ V with u ∼ v, then S := {u, v} is an exact defensive (2 − ∆)-alliance since
1 = δS(u) = δS(u)+2−∆ and 1 = δS(v) = δS(v)+2−∆. Thus, we obtain A−∆+2(G) >
m. Note that if ∆ = 1, we have the second inequality. Assume that ∆ > 2. Without
loss of generality we can assume that G is connected; otherwise, it suffices to analyze
each connected component of G. Let us define Sv := V \ {v} for any v ∈ V . Since
δSv

(u) > ∆−1, δSv
(u) 6 1 for every u ∈ Sv and both equalities hold for every w ∈ N(v),

we have that Sv is an exact defensive (∆−2)-alliance if v is a non-cut vertex, or contains
at least two exact defensive (∆− 2)-alliances if v is a cut vertex.

vi) The first statement is a consequence of Theorem 5.1.1 iv). Consider an exact defensive
k-alliance S in G. So, there exists v ∈ S with

2δS(v) = δ(v) + k = ∆+ k.

Then, ∆ ≡ k (mod 2), n+ k ≡ n +∆ (mod 2) and we have the result.

vii) Since Degmin

(
A(G; x)

)
= n−∆, we have that x = 0 is a zero of A(G; x) with multiplicity

n − ∆. The positivity of all coefficients of A(G; x) gives A(G; x) 6= 0 for every x > 0.
Finally, by item vi), A(G; x) = (−1)n+∆A(G;−x) 6= 0 for every x < 0.

Theorem 5.1.3. Let G be any connected graph. Then G is regular if and only if A∆(G) = 1.
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Proof. If G is regular, then by Theorem 5.1.1 vi) we obtain A∆(G) = 1. Besides, if A∆(G) =
1, then there is an exact defensive ∆-alliance S in G with δS(v) > δS̄(v) + ∆ > ∆ (i.e.,
δS(v) = ∆ and δS(v) = 0) for every v ∈ S. So, the connectivity of G gives that G is a
∆-regular graph.

Theorem 5.1.4. Let G1, G2 be two regular graphs. If A(G1; x) = A(G2; x), then G1 and G2

have the same order, size, degree and number of connected components.

Proof. Let n1, n2 be the orders of G1 and G2, respectively, and ∆1,∆2 the degrees of G1 and
G2, respectively. Then, by Theorem 5.1.2 ii) and iii) we have

n1 −∆1 = n2 −∆2 and n1 +∆1 = n2 +∆2

and we conclude
n1 = n2 and ∆1 = ∆2.

Hence, both graphs have the same size. Finally, since A∆1
(G1) = A∆2

(G2), they have the
same number of connected components by Theorem 5.1.1 vi).

Corollary 5.1.5. Let G1, G2 be two regular graphs with orders n1 and n2, and degrees ∆1

and ∆2, respectively. If n1 6= n2 or ∆1 6= ∆2, then A(G1; x) 6= A(G2; x).

The next theorem characterizes the degree of any regular graph by the number of non-zero
coefficients of its alliance polynomial.

Theorem 5.1.6. Let G be any ∆-regular graph with order n. Then A(G; x) has ∆ + 1
non-zero coefficients. Furthermore,

A(G; x) =
∆∑

i=0

A∆−2i(G) x
n+∆−2i,

with A−∆(G) = n, A∆(G) > 1, and

A∆−2i(G) >
n
(
∆
i

)

min{∆, n− i} for 1 6 i 6 ∆− 1 if ∆ > 0.

Proof. Since G is ∆-regular, by Theorem 5.1.2 we have A−∆(G) = n, A∆(G) > 1 and A(G; x)
is an even or an odd function of x. Assume now that ∆ > 0 and fix 1 6 i 6 ∆ − 1. Let us
consider u ∈ V and v1, . . . , vi different vertices in N(u). Denote by Su := V \ {v1, . . . , vi}.
Then, we have that δSu

(v) > ∆ − i and δSu
(v) 6 i for every v ∈ Su; furthermore, the

equalities hold at u. Let S∗
u ⊂ Su such that 〈S∗

u〉 is the connected component of 〈Su〉 which
contains u. So, S∗

u is an exact defensive (∆− 2i)-alliance and A∆−2i(G) > 0. Since each set
S∗
u can appear at most n− i times (once for each S∗

w with w ∈ V \ {v1, . . . , vi}), and at most
∆ times (once for each S∗

w with w ∼ v1), we obtain A∆−2i(G) > n
(
∆
i

)
/min{∆, n− i}.
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Recall that Hamiltonian cycle is a cycle in a graph that visits each vertex exactly once.
A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. The following
theorem is a well known result in graph theory which will be useful.

In what follows we will use the following notation: for any A,B ⊂ V , we denote by
N(A,B) the number of edges with one endpoint in A and the other endpoint in B.

Theorem 5.1.7. Let G be any ∆-regular graph with order n < 2∆. Then A∆−2(G) = n.

Proof. Notice that ∆ > 2, since otherwise, such a graph G does not exist; furthermore,
n > ∆ + 1 > 3. We have that G is a Hamiltonian graph by Theorem 1.6.5. Besides, by
Theorem 5.1.2 i), we have that A∆−2(G) is the number of connected induced subgraphs of G
with minimum degree ∆− 1. Let us consider u ∈ V and define Su := V \ {u}. Since G is a
Hamiltonian graph, 〈Su〉 is connected. Besides, we have δSu

(v) > ∆−1 > δSu
(v)+∆−2 for

all v ∈ Su and the equality holds at w ∈ N(u). So, Su is an exact defensive (∆− 2)-alliance
in G and A∆−2(G) > n.

Seeking for a contradiction assume that there is an exact defensive (∆−2)-alliance S ⊂ V
with |S| 6 n− 2. Notice that |S| > ∆ > n/2, by Theorem 5.1.2 i). Then, since any vertex
in S has degree ∆ in G with at most one edge among S and S, we have

N(S, S) +N(S, S) =
|S|∆
2

+
N(S, S)

2
6

|S|∆
2

+
|S|
2

=
|S|(∆ + 1)

2
.

Besides, since |S| = n− |S|, we have

N(S, S) 6
(n− |S|)(n− |S| − 1)

2
.

If m denotes the size of G, then

0 = 2
(
N(S, S) +N(S, S) +N(S, S)

)
− 2m

6 |S|(∆ + 1) + (n− |S|)(n− |S| − 1)− n∆

= |S|2 + |S|(∆ + 2− 2n) + n2 − n− n∆.

Define P (x) := x2 + x(∆ + 2− 2n) + n2 − n− n∆; then P (|S|) > 0. Since

P
(n
2

)
=
n2

4
+
n

2
(∆ + 2− 2n) + n2 − n− n∆

=
n2

4
+
n∆

2
+ n− n2 + n2 − n− n∆

=
n

4
(n− 2∆) < 0

and
P (n− 2) = (n− 2)2 + (n− 2)(∆ + 2− 2n) + n2 − n− n∆

= (n− 2)2 + (n− 2)(∆− n)− (n− 2)2 + n2 − n− n∆

= n− 2∆ < 0,
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we obtain that P (|S|) < 0. This is the contradiction we were looking for, so, there not exists
an exact defensive (∆− 2)-alliance S with |S| 6 n− 2. This finishes the proof since V is an
exact defensive ∆-alliance.

Lemma 5.1.8. Let G be any ∆-regular graph with order n, ∆ > 3 and 2∆ 6 n 6 2∆ + 1.
If G contains two cliques of cardinality ∆, then these cliques are disjoint. In particular, G
contains at most two cliques of cardinality ∆.

Proof. Seeking for a contradiction, assume that there exist S1, S2 ⊂ V cliques of cardinality
∆ with S1 ∩ S2 6= ∅. Denote by r the number r := |S1 ∩ S2|; then 1 6 r 6 ∆ − 1. Note
that for any v ∈ S1 ∩ S2 we have δS1∪S2

(v) = |S1| − 1 + |S2 \ S1| = ∆ − 1 + ∆ − r, so,
we obtain r = ∆ − 1. Then, we have |S1 ∪ S2| = ∆ + 1 and ∆ − 1 6 |S1 ∪ S2| 6 ∆.
Besides, we have N(S1 ∪ S2, S1 ∪ S2) = 2 = |(S1 ∪ S2) \ (S1 ∩ S2)| and, since |S1 ∪ S2| 6 ∆,
N(S1 ∪ S2, S1∪S2) > |S1 ∪ S2| > ∆−1. Since N(S1∪S2, S1 ∪ S2) = N(S1 ∪ S2, S1∪S2), we
obtain ∆ = 3 and n = 6; therefore, G is a graph isomorphic to either K3,3 or the Cartesian
product P22K3. Thus, we obtain that there are not two non-disjoint cliques in G with
cardinality ∆. This finishes the proof since, by n 6 2∆ + 1, it is impossible to have three
disjoint cliques of cardinality ∆ contained in G.

Remark 5.1.9. If G is a ∆-regular graph with n 6 2∆+1, then G does not contain a clique
of cardinality greater than ∆, since 2(∆ + 1) > 2∆ + 1 > n.

Remark 5.1.10. Let G be any ∆-regular graph with order n and ∆ > 1 such that G has
two disjoint cliques of cardinality ∆. Then

1. If n = 2∆, then G is isomorphic to the Cartesian product graph P22K∆.

2. If n = 2∆ + 1, then ∆ is even (since n∆ = 2m) and G can be obtained from P22K∆

by removing ∆/2 copy edges of P2 and connecting the ∆ vertices with degree ∆ − 1
with a new vertex. In particular, if S is a clique of cardinality ∆ in G, then S is not
an exact defensive (∆− 2)-alliance.

Theorem 5.1.11. Let G be any ∆-regular graph with order n, size m, ∆ > 3 and 2∆ 6

n 6 2∆ + 1. Then n 6 A∆−2(G) 6 n+m+ 2.

Proof. Note that if ∆ = 3 then n = 6, and G is a graph isomorphic to either K3,3 or P22K3.
Thus, a simple computation gives 6 6 A1(K3,3) = 15 6 6 + 9 + 2 and 6 6 A1(P22K3) =
11 6 6 + 9 + 2.

Assume now that ∆ > 4. Clearly, G is a connected graph and diamG = 2, since
2∆ > n− 2.

First we prove that G does not have cut vertices. If n = 2∆, then G is a Hamiltonian
graph by Theorem 1.6.5. If n = 2∆+1, seeking for a contradiction assume that there is a cut
vertex w in G. Let S1, S2 ⊂ V with S1 ∪ S2 ∪ {w} = V such that 〈S1〉 and 〈S2〉 are disjoint.
Without loss of generality we can assume that |S1| 6 ∆ 6 |S2|. Since δS1

(w), δS2
(w) > 1,
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δS1
(w)+ δS2

(w) = ∆ and δS1
(u) 6 |S1|−1 6 ∆−1 for all u ∈ S1, we have δS1

(w) = |S1| and
δS1

(u) = ∆ − 1 for all u ∈ S1. Then, we obtain that |S1| = ∆, but this is a contradiction
since δS1

(w) = ∆ − δS2
(w) 6 ∆ − 1 < ∆ = |S1| = δS1

(w). Then, G does not have cut
vertices.

By Theorem 5.1.2 i), we have that A∆−2(G) is the number of connected induced subgraphs
of G with minimum degree ∆− 1; thus, any exact defensive (∆− 2)-alliance S in G verifies
|S| > ∆. Let us consider u ∈ V and denote by Su := V \ {u}. Since G does not have cut
vertices, 〈Su〉 is connected. Besides, we have δSu

(v) > ∆− 1 > δSu
(v) +∆− 2 for all v ∈ Su

and the equality holds for every v ∈ N(u); so, Su is an exact defensive (∆ − 2)-alliance in
G. Thus, A∆−2(G) > n.

Let us consider u1, u2 ∈ V with u1 6= u2 and define Su1,u2
:= V \ {u1, u2}. If u1 � u2,

then there is w ∈ V with u1, u2 ∈ N(w) since δ(u1) + δ(u2) = 2∆ > |Su1,u2
|; in fact, Su1,u2

is not a defensive (∆ − 2)-alliance in G. So, Su1,u2
may be an exact defensive (∆ − 2)-

alliance in G, if u1 ∼ u2; then there are at most m exact defensive (∆ − 2)-alliances with
n − 2 vertices. Consider now u1, . . . , ur ∈ V with 3 6 r 6 ∆ − 1 and ui 6= uj if i 6= j.
Note that Sr := V \ {u1, . . . , ur} is not a defensive (∆ − 2)-alliance in G if r > 3, since
N(Sr, Sr) > r(∆−r+1) = 2∆−r+(r−2)(∆−r) > 2∆+1−r > |Sr|. Besides, if r = 3 and
∆ > 5 (thus ∆− r > 2) we have the same inequality and then Sr is not a defensive (∆− 2)-
alliance in G. Note that, if r = 3 and n = 2∆, then N(Sr, Sr) > 2∆− r + (r − 2)(∆− r) >
2∆ − r = n − r > |Sr| and we also conclude that Sr is not a defensive (∆ − 2)-alliance in
G. However, if r = 3, ∆ = 4 and n = 2∆ + 1 (thus, n = 9), then Sr may be an exact
defensive (∆ − 2)-alliance in G. But a simple computation gives that these five graphs G
verify A2(G) < 9 + 18 + 2.

We analyze separately the cases n = 2∆ and n = 2∆+1. Assume first that n = 2∆. We
only need to compute the possible exact defensive (∆−2)-alliances in G with cardinality ∆,
since every defensive (∆ − 2)-alliance has at least ∆ vertices and n = 2∆. If S is an exact
defensive (∆−2)-alliance in G, then S is a clique of cardinality ∆ and by Lemma 5.1.8 there
are at most 2 exact defensive (∆−2)-alliances with ∆ vertices. Assume now that n = 2∆+1.
So, ∆ is even. We only need to compute the possible exact defensive (∆ − 2)-alliances in
G with cardinalities ∆ and ∆ + 1. If S is an exact defensive (∆ − 2)-alliance in G with
|S| = ∆ + 1, then δS(u) > ∆ − 1 for every u ∈ S and δS(u0) = ∆ for some u0 ∈ S, since
otherwise δS(u) = ∆−1 for every u ∈ S and we conclude (∆+1)(∆−1) = |S|(∆−1) = 2mS,
with mS the size of 〈S〉, which is not possible since ∆ is even. Hence, N(S, S) 6 ∆;
furthermore, since |S| = ∆, δS(v) > 1 for all v ∈ S, and so, S is a clique. If S is an exact
defensive (∆ − 2)-alliance in G with |S| = ∆, then δS(u) > ∆ − 1 for every u ∈ S and S
is a clique of cardinality ∆. Lemma 5.1.8 completes the proof since if G has two cliques of
cardinality ∆, then they are disjoint and Remark 5.1.10 gives that S is not an exact defensive
(∆− 2)-alliance in G.

Theorem 5.1.12. Let G be a ∆-regular connected graph with order n and let G∗ be a graph
with order n1 and, minimum and maximum degrees δ1 and ∆1, respectively. If A(G∗; x) =
A(G; x), then G∗ is a connected graph with exactly n vertices of degree ∆1 = ∆ + n1 − n,
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n1 > n, ∆1 > ∆ and δ1 ≡ ∆1(mod 2).
Furthermore, if n1 > n, then the following inequalities hold:

∆1 + δ1 + 2

2
6 ∆. (5.1.3)

δ1 + 2 < ∆ < ∆1, (5.1.4)

∆ + 1 6 ∆1 6 2∆− 3, (5.1.5)

δ1 + 4 6 ∆1. (5.1.6)

Proof. Since A(G∗; x) = A(G; x) is a symmetric polynomial by Theorem 5.1.2 vi), we con-
clude that δ1 ≡ ∆1(mod 2) by Theorem 5.1.1 iv). By Theorems 5.1.1 v) and 5.1.2 ii), G∗

has n vertices of maximum degree ∆1, so, n1 ≥ n; besides, n1 −∆1 = n −∆. Note that if
n1 = n then G∗ is a ∆-regular graph with A∆(G

∗) = 1, so, Theorem 5.1.3 gives that G∗ is a
connected graph.

Assume that n1 > n. Denote by t := n1 − n = ∆1 − ∆. Let v1, . . . , vn ∈ V (G∗) be
the vertices in G∗ with degree ∆1 and define S := {v1, . . . , vn}. Note that for any v ∈ S
we have δS(v) > ∆1 − t = t + (∆1 − 2t) > δS(v) + ∆1 − 2t; hence, S contains a defensive
(∆1 − 2t)-alliance S1 and kS1

> ∆1 − 2t. Therefore, there is at least one term of degree
greater or equal than n1 + ∆1 − 2t in A(G∗; x). Since xn1+∆1−2t = xn+∆, S1 is an exact
defensive (∆1−2t)-alliance in G∗. Finally, note that if 〈S〉 is not a connected subgraph (i.e.,
S1 6= S), then in A(G∗; x) appear at least two terms xn+∆, but this is a contradiction since
A(G; x) is a monic polynomial by Theorem 5.1.1 vi). Hence, 〈S〉 is connected. Since the
degree of A(G∗; x) is n+∆ = n1+∆1−2t, then S is an exact defensive (∆1−2t)-alliance in
G∗; therefore, there exists 1 6 j 6 n such that ∆1 = δ(vj) = 2δS(vj) +∆1 − 2t, and we have
δS(vj) = t. Since |S| = n = n1 − t and |S| = t, S ⊆ N(vj) and G

∗ is a connected graph.
Also, since G∗ is connected, A(G∗; x) = A(G; x), kS = ∆1 − 2t and kV (G∗) = δ1, we have

δ1 6 ∆1 − 2t. We are going to prove δ1 < ∆1 − 2t; seeking for a contradiction assume that
δ1 = ∆1 − 2t. Since G∗ is connected, kV (G∗) = δ1 = ∆1 − 2t = kS and this contradicts that
A(G∗; x) is a monic polynomial. Therefore, δ1 < ∆1 − 2t. But, since δ1 ≡ ∆1(mod 2) we
obtain δ1 + 2 6 ∆1 − 2(∆1 −∆) = 2∆−∆1, so (5.1.3) holds.

Besides, since ∆1 > ∆, (5.1.3) gives δ1 + 2 < ∆, and so, (5.1.4) holds. Furthermore, we
have ∆ + 1 6 ∆1 and (5.1.3) gives (5.1.5), since δ1 > 1. Finally, since ∆ 6 ∆1 − 1, (5.1.3)
provides (5.1.6).

5.2 Alliance polynomials of regular graphs with small

degree

The theorems in this section can be seen as a natural continuation of the studies in [34, 100]
in the sense of showing the distinctive power of the alliance polynomial of a graph. In
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particular, we show that the family of alliance polynomials of ∆-regular graphs with small
degree ∆ is a special family of alliance polynomials since there not exists a non ∆-regular
graph with alliance polynomial equal to one of their members, see Theorems 5.2.1 and 5.2.4.

Theorem 5.2.1. Let G be a ∆-regular graph with 0 6 ∆ 6 3 and G∗ another graph. If
A(G∗; x) = A(G; x), then G∗ is a ∆-regular graph with the same order, size and number of
connected components of G.

Proof. In Chapter 4 Theorem 4.1.5 we obtain the uniqueness of the alliance polynomials of
0-regular graphs (the empty graphs).

By Theorems 5.1.1 iii) and 5.1.6 we have that 1-regular graphs are the unique graphs
which has exactly two non-zero terms in its alliance polynomial; besides, Theorems 5.1.1 vi)
and 5.1.2 ii) give the uniqueness of these alliance polynomials.

In order to obtain the result for ∆ = 2, denote by n, n1, the orders of G,G
∗, respectively,

and let δ1,∆1 be the minimum and maximum degree of G∗. By Theorem 5.1.6 we have
A(G; x) = nxn−2 + A0(G)x

n + A2(G)x
n+2, thus, by Theorem 5.1.1 iii) the degree sequence

of G∗ has at most two different values. If G∗ is regular then Theorem 5.1.4 gives the result.
Therefore, seeking for a contradiction assume that the degree sequence of G∗ has exactly
two different values (i.e., G∗ is bi-regular). By Theorems 5.1.1 iv) and 5.1.2 vi) we have
δ1 ≡ ∆1(mod 2). By Theorems 5.1.1 v) and 5.1.2 ii) we have A−∆1

(G∗) = A2(G) = n < n1

and n − 2 = n1 − ∆1, so, we have ∆1 > 2. By Theorems 5.1.1 vii) and 5.1.2 iii) we have
n1+ δ1 6 n+2, so, we obtain 0 6 δ1 6 1. If δ1 = 0, then there is a connected component G′

of G∗ which is ∆1-regular. So, kV (G′) = ∆1 and Deg
(
A(G∗; x)

)
= n1+∆1 > n+2, which is a

contradiction. Thus, we can assume that δ1 = 1. Then, we have n1 = n+1; and so, ∆1 = 3.
We prove now that A1(G

∗) > n. Let u0, v0 be the vertices of G
∗ with δ(u0) = 1 and v0 ∼ u0.

If G∗ is not connected, then it has a 3-regular connected component G∗
0; since V (G∗

0) is an
exact defensive 3-alliance, then Deg

(
A(G∗; x)

)
> n1+3 > n+2 = Deg

(
A(G; x)

)
, which is a

contradiction and we conclude that G∗ is connected. Let us define Sv := V (G∗)\{v} for any
v ∈ V (G∗) \ {v0}. Since δSv

(u) > 2, δSv
(u) 6 1 for every u ∈ Sv \ {u0} and both equalities

hold for every w ∈ N(v), and δSv
(u0) = 1, δSv

(u0) = 0, we have that Sv is an exact defensive
1-alliance or contains an exact defensive 1-alliance if v is a cut vertex. Thus, A1(G

∗) > n.
Besides, Theorem 5.1.2 iv) gives A2(G) 6 n/3 < n 6 A1(G

∗), so, A(G; x) 6= A(G∗; x). This
is the contradiction we were looking for, and so, we conclude n1 = n and ∆1 = 2, and we
obtain the result for ∆ = 2.

Finally, in Chapter 4 Theorem 4.1.6 gives the result for ∆ = 3.

Now we prove a similar result for ∆-regular graphs with ∆ > 3. First, we prove some
technical results which will be useful.

Lemma 5.2.2. Let G1 be a graph with minimum and maximum degree δ1 and ∆1, respec-
tively, and let n > 3 be a fixed natural number. Assume that G1 has order n1 > n with
exactly n vertices of degree ∆1, and such that its alliance polynomial A(G1; x) is symmetric.
The following statements hold:
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1. If δ1 = 1, then A(G1; x) is not a monic polynomial of degree 2n− n1 +∆1.

2. If δ1 = 2, then we have 2n1 < 2∆1+n or A(G1; x) is not a monic polynomial of degree
2n− n1 +∆1.

Proof. Seeking for a contradiction assume that A(G1; x) is a monic polynomial with degree
2n − n1 +∆1. By hypothesis, we have n different vertices v1, . . . , vn in G1 with degree ∆1.
Denote by S the set S := {v1, . . . , vn}. The argument in the proof of Theorem 5.1.12 gives
that G1 is a connected graph, S is an exact defensive

[
∆1 − 2(n1 − n)

]
-alliance in G1 and

there is w ∈ S with S ⊆ N(w). Let u ∈ S with δ(u) = δ1.
First assume that δ1 = 1. So, Sw := S \{w} contains a defensive

[
∆1−2(n1−n)

]
-alliance

since δSw
(v) > ∆1−

(
|S∪{w}|− |{u}|

)
= ∆1− (n1−n) and δSw

(v) 6 |S∪{w}|−1 = n1−n
for all v ∈ Sw; thus, in A(G1; x) appears at least one term of degree greater or equal than
2n − n1 + ∆1 associated to Sw, but this is impossible since A(G1; x) is monic of degree
2n− n1 +∆1. This is the contradiction we were looking for.

Assume now that δ1 = 2. Let w′ ∈ V (G1) \ {w} with w′ ∼ u. If w′ ∈ S then Sw

is a defensive
[
∆1 − 2(n1 − n)

]
-alliance since u /∈ N(v) for every v ∈ Sw. This implies a

contradiction as above. So, we can assume that w′ ∈ Sw. Note that if w′ � w then Sw is a
defensive

[
∆1 − 2(n1 − n)

]
-alliance since δSw

(w′)− δSw
(w′) > (∆1 − n1 + n)− (n1 − n) and

δSw
(v)− δSw

(v) > (∆1 − n1 + n)− (n1 − n) for all v ∈ Sw \ {w′}, but this is impossible since
A(G1; x) is a monic polynomial of degree n1 + ∆1 − 2(n1 − n). Then, we can assume that
w′ ∼ w. Note that if δS(w

′) < n1−n then Sw is a defensive
[
∆1−2(n1−n)

]
-alliance, but this

is impossible, too. So, we can assume that S ⊆ N(w′). Notice that if there is u′ ∈ S with
d(u′, {w,w′}) > 2, then we can check that S \ {u′} is a defensive

[
∆1 − 2(n1 − n)

]
-alliance,

which is impossible. Thus, we can assume that S ⊆ N(w) ∪N(w′); in fact,

n− 2 = |S \ {w,w′}| 6 δS\{w′}(w) + δS\{w}(w
′) = 2[∆1 − (n1 − n)− 1].

Since S ⊆ N(w) ∪N(w′), if n− 2 = 2[∆1 − (n1 − n)− 1] then S ∩N(w) ∩N(w′) = ∅, and

δS\{w,w′}(v) > ∆1 − (n1 − n) and δS\{w,w′}(v) 6 n1 − n, for every v ∈ S \ {w,w′}.

Hence, S \ {w,w′} is a defensive
[
∆1 − 2(n1 − n)

]
-alliance, which is impossible. Then

n− 2 < 2[∆1 − (n1 − n)− 1] and this finishes the proof.

Lemma 5.2.3. Let G1 be a graph with minimum and maximum degree 2 and ∆1, respectively,
and let n > 3 be a fixed natural number. Assume that G1 has order n1 > n with exactly
n vertices of degree ∆1, and such that its alliance polinomial A(G1; x) is symmetric. If
n < 2[∆1 − (n1 − n)] and A(G1; x) is a monic polynomial of degree 2n − n1 + ∆1, then
A2(n−n1)+∆1−2(G1) > n.

Proof. By hypothesis, there exist different vertices v1, . . . , vn in G1 with degree ∆1. The
arguments in the proof of Lemma 5.2.2 give that G1 is a connected graph where S :=
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{v1, . . . , vn} is the unique exact defensive
[
∆1 − 2(n1 − n)

]
-alliance in G1 and there are

w,w′ ∈ S with S ⊂ N(w)∩N(w′). Note that Su := S\{u} is a defensive
[
∆1−2(n1−n)−2

]
-

alliance for any u ∈ S, since for all v ∈ Su we have

δSu
(v) > ∆1 −

∣∣Su

∣∣ and δSu
(v) 6

∣∣Su

∣∣ = n1 − n + 1.

Note that δS(v) > ∆1−(n1−n) > n/2 for every v ∈ S. Since 〈S〉 is Hamiltonian by Theorem
1.6.5, we have that Su induces a connected subgraph for any u ∈ S. Since S is the unique
exact defensive

[
∆1−2(n1−n)

]
-alliance in G1, Su is an exact defensive

[
∆1−2(n1−n)−2

]
-

alliance for any u ∈ S. Therefore, we have A∆1−2(n1−n)−2(G1) > n.
Denote by u′ a vertex of G1 with δ(u′) = 2. Since v � u′ for any v ∈ S \ {w,w′} we

have |S| − 1 > δS(v) > δS(w) + 1, and so, δS(w) 6 |S| − 2 and there are u1, u2 ∈ S \ {w,w′}
with u1, u2 /∈ N(w); then u1, u2 /∈ N(w) ∩ N(w′). Note that S \ {u1, u2} is a defensive[
∆1 − 2(n1 − n)− 2

]
-alliance in G1, since

δS\{u1,u2}(w)− δS\{u1,u2}
(w) = ∆1 − 2δS\{u1,u2}

(w) > ∆1 − 2(n1 − n+ 1),

δS\{u1,u2}(w
′)− δS\{u1,u2}

(w′) = ∆1 − 2δS\{u1,u2}
(w′) > ∆1 − 2(n1 − n+ 1),

and

δS\{u1,u2}(v)− δS\{u1,u2}
(v) > ∆1 − 2(n1 − n+ 1) for all v ∈ S \ {u1, u2, w, w′}.

Then S \ {u1, u2} is an exact defensive
[
∆1 − 2(n1 − n) − 2

]
-alliance and this finishes the

proof.

Theorem 5.2.4. Let G be a connected ∆-regular graph with ∆ 6 5 and G∗ another graph.
If A(G∗; x) = A(G; x), then G∗ is a connected ∆-regular graph with the same order and size
of G.

Proof. If 0 6 ∆ 6 3, then the result follows from Theorem 5.2.1. Assume that 4 6 ∆ 6 5.
Let n, n1 be the orders of G,G∗, respectively, and let δ1,∆1 be the minimum and maximum
degree of G∗, respectively. By Theorem 5.1.12, G∗ is a connected graph and n1 > n. Seeking
for a contradiction assume that n1 > n.

Assume first ∆ = 4. By Theorem 5.1.12 we have n1 = n+∆1−4, ∆1 > 4 and ∆1+δ1 6 6.
Thus, we have ∆1 = 5 and δ1 = 1, and then n1 = n+ 1. Then, Theorem 5.1.12 and Lemma
5.2.2 give that A(G; x) = A(G∗; x) is not a monic polynomial of degree n1 +3 = n+4. This
is the contradiction we were looking for, and we conclude n1 = n.

Assume now ∆ = 5. By Theorem 5.1.12 we have n1 = n+∆1 − 5, ∆1 > 5, ∆1 + δ1 6 8,
δ1 + 4 6 ∆1 and δ1 ≡ ∆1(mod 2). Thus, we have the following cases:

Case 1 δ1 = 1 and ∆1 = 7,

Case 2 δ1 = 2 and ∆1 = 6.
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Lemma 5.2.2 gives that A(G; x) is not a monic polynomial of degree n+ 5 in Case 1; this is
the contradiction we were looking for, and we conclude n1 = n. In Case 2 we have n1 = n+1.
Since A(G; x) is a monic polynomial of degree n+5, Lemma 5.2.2 gives that n < 10. Hence,
Lemma 5.2.3 gives that A2(G

∗) > n; however, Theorem 5.1.7 gives A3(G) = n. This is the
contradiction we were looking for, and we conclude n1 = n.



Chapter 6

A brief introduction to Gromov
hyperbolic graphs

6.1 A historical introduction to non-Euclidean geome-

tries

Let us first briefly discuss the history of non-Euclidean geometries. Euclid’s Elements consists
of 13 books, written at about 300BC, that are mainly concerned with geometry (although
they also contain some number theory and the method of exhaustion which is related to
integration). It is the earliest known systematic discussion of geometry.

Book 1 begins with 23 definitions (of a point, line, etc.) and 10 axioms. Of these axioms,
the following five are termed Postulates:

(1) Any two points can be joined by a straight line.
(2) Any straight line segment can be extended indefinitely in a straight line.
(3) Given any straight line segment, a circle can be drawn having the segment as radius

and one endpoint as center.
(4) All right angles are congruent.
(5) Parallel Postulate: If two lines intersect a third in such a way that the sum of the

inner angles on one side is less than two right angles, then the two lines inevitably must
intersect each other on that side if extended far enough.

The Parallel Postulate is equivalent to the statement that for any given line R and point
p /∈ R, there is exactly one line through p that does not intersect R, i.e., that is parallel to
the line R.

For two millenia, mathematicians were troubled by the Parallel Postulate of Euclid, prin-
cipally because it is more complex and rather different from the other Postulates. For most of
that time, mathematicians attempted to prove that it followed from the other postulates, as
Proclus, Ibn al-Haytham (Alhacen), Omar Khayyám, Nasir al-Din al-Tusi, Witelo, Gerson-
ides, Alfonso, and later Giovanni Gerolamo Saccheri, John Wallis, Johann Heinrich Lambert

67
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and Legendre. Some of them succeeded in finding a large variety of false “proofs” which all
fail because they make some assumption that is equivalent to the Parallel Postulate. In fact,
if we replace the Parallel Postulate by:

(a) for any line R and any point p /∈ R, there exist at least two lines parallel to R passing
through p,
or

(b) for any line R and any point p /∈ R, there exists no line parallel to R passing through
the point p,
we obtain different geometries: hyperbolic geometry or elliptic geometry, respectively.

In elliptic geometry, whose main model is any sphere in R3, there are no parallel lines at
all. Elliptic geometry has a variety of properties that differ from those of classical Euclidean
plane geometry. For example, the sum of the angles of any triangle is always greater than π.

In the nineteenth century, hyperbolic geometry was extensively explored by Janos Bolyai
and Nikolai Ivanovich Lobachevsky, after whom it sometimes is named. Lobachevsky pub-
lished in 1830, while Bolyai independently discovered it and published in 1832. Carl Friedrich
Gauss also studied hyperbolic geometry, describing in a 1824 letter to Taurinus that he had
constructed it, but did not publish his work. Initially, some mathematicians thought that
this new geometry was not consistent; however, Eugenio Beltrami provided models of the
hyperbolic geometry in 1868, and used this to prove that hyperbolic geometry is consistent
provided that Euclidean geometry is. The term “hyperbolic geometry” was introduced by
Felix Klein in 1871. For more history, see [29], [41], [83] and [117].

There are four models commonly used for hyperbolic geometry: the Klein model, the
Poincaré disc, the Poincaré halfplane, and the Lorentz model. These models define a real
hyperbolic space which satisfies the axioms of a hyperbolic geometry. Despite their names,
the first three mentioned above were introduced as models of hyperbolic space by Beltrami,
not by Poincaré or Klein. We are mainly interested in the two Poincaré models.

The Poincaré metric in the unit disk D = {z ∈ C : |z| < 1} is given infinitesimally at a
point z = x+ iy ∈ D by

ds2D =
4(dx2 + dy2)

(1− (x2 + y2))2
=

4(dx2 + dy2)

(1− |z|2)2 , dsD =
2 |dz|
1− |z|2 ,

and so the hyperbolic area element is

dAD =
4 dx dy

(1− (x2 + y2))2
=

4 dx dy

(1− |z|2)2 .

Given z1, z2 ∈ D, the associated distance function is

dD(z1, z2) = 2 arctanh
∣∣∣
z1 − z2
1− z1z2

∣∣∣.

The hyperbolic plane contains a unique geodesic between every pair of points. In the
Poincaré disk D, the geodesic lines are precisely the intersections with D of circles that cut
the unit circle orthogonally, plus diameters of the boundary circle.
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The Poincaré metric in the upper halfplane U = {z = x + iy ∈ C : y > 0} is given
infinitesimally at a point z = x+ iy ∈ U by

ds2U =
dx2 + dy2

y2
, dsU =

|dz|
y

,

and so the hyperbolic area element is

dAU =
4 dx dy

y2
.

Given z1 = x1 + iy1, z2 = x2 + iy2 ∈ U, the associated distance function satisfies

dU(z1, z2) = log
|z1 − z2|+ |z1 − z2|
|z1 − z2| − |z1 − z2|

, sinh2 dU(z1, z2)

2
=

|z1 − z2|2
4 y1 y2

.

The geodesic lines are precisely the intersections with U of circles orthogonal to the real line,
plus rays perpendicular to the real line.

Both Poincaré models preserve hyperbolic angles, and are thereby conformal. All isome-
tries within these models are therefore Möbius transformations. The halfplane model is
“identical” (isometric) to the Poincaré disc model.

The area of a triangle in the hyperbolic plane increases more slowly and the area of a
disk increases quicker than in the Euclidean setting. Let us now say more about both of
these.

There is a simple and remarkable relationship between angles and area of a triangle which
can be obtained as a consequence of Gauss-Bonnet formula:

The hyperbolic area of a triangle with interior angles α, β, γ is π − (α + β + γ). This
holds even if one or more vertices of the triangle are on the ideal boundary (in which case
the associated angles are zero). It follows from the Gauss-Bonnet formula that if we rescale
upwards the sidelengths of a hyperbolic triangle, its area increases, with a limiting area of π
as the sidelengths tend to infinity.

Then, Euclidean triangles are “wider” than hyperbolic triangles, and one can think that
the Euclidean plane is “wider” than the hyperbolic plane.

The area Ar of a hyperbolic disk of radius r is independent of the center, and is given by
4π sinh2(r/2). The length Lr of the hyperbolic circle of radius r is 2π sinh r. Therefore, Ar

and Lr are very similar to the corresponding Euclidean quantities when r is small:

Ar ≈ πr2, Lr ≈ 2πr, as r → 0+.

However they increase far faster than in the Euclidean setting when r is large:

Ar ≈ Lr ≈ πer, as r → ∞.

Hence, the hyperbolic plane is “wider” than the Euclidean plane (although Euclidean trian-
gles are “wider” than hyperbolic ones).
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There are many excellent books about hyperbolic geometry, e.g., the books by Anderson
[9], Beardon [15] and Krantz [77].

In complex analysis, the most important property of the Poincaré metric is that holo-
morphic mappings are contractions with respect to it. More precisely, we have (see [2, p.3]):

Theorem 6.1.1 (Schwarz-Pick Lemma). Every holomorphic function f : D → D verifies

dD
(
f(z1), f(z2)

)
6 dD(z1, z2)

for every z1, z2 ∈ D.
Furthermore, if the equality holds for some z1, z2 ∈ D with z1 6= z2, then f is an au-

tomorphism (i.e., a Möbius self-map of D), and so dD
(
f(z1), f(z2)

)
= dD(z1, z2) for every

z1, z2 ∈ D.

In fact, the Poincaré metric can be defined for any domain Ω ⊂ C such that ∂Ω has more
than one point. If we denote by dΩ the Poincaré distance in Ω, then we have the following
generalization of Schwarz-Pick Lemma (see, e.g., the books [77] and [100]):

Theorem 6.1.2. If Ω1, Ω2 are open connected subsets of C, ∂Ω1 and ∂Ω2 have more than
one point and f : Ω1 → Ω2 is holomorphic, then

dΩ2

(
f(z1), f(z2)

)
6 dΩ1

(z1, z2)

for every z1, z2 ∈ Ω1.
Furthermore, if the equality holds for some z1, z2 ∈ Ω1 with z1 6= z2, then f is a conformal

map of Ω1 onto Ω2, and so dΩ2

(
f(z1), f(z2)

)
= dΩ1

(z1, z2) for every z1, z2 ∈ Ω1.

The simplest particular case of Schwarz-Pick Lemma is the classical Schwarz’s Lemma
(see [2, p.3]):

Theorem 6.1.3. Every holomorphic function f : D → D with f(0) = 0 verifies
∣∣f(z)

∣∣ 6 |z|
for every z ∈ D.

This is a bound for the growth of every holomorphic function f : D −→ D (with the
normalization f(0) = 0).

One of the most famous applications of Theorem 6.1.2 is the following (see [1] or [2,
p.19]):

Theorem 6.1.4 (Schottky’s Theorem). If f : D −→ C \ {0, 1} is holomorphic, then

|f(z)| 6 exp
( 1 + |z|
1− |z|

(
7 + max

{
0, log |f(0)|

}))
,

for every z ∈ D.

Note that this is a bound for the growth of every holomorphic function f : D −→
C \ {0, 1}.
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6.2 Gromov hyperbolic spaces

Now, let us introduce the concept of Gromov hyperbolicity and the main results concerning
this theory. For detailed expositions about Gromov hyperbolicity, see e.g. [6],[26, II.H], [40],
[54] or [115].

Gromov hyperbolicity was introduced by Gromov in the setting of geometric group theory
[40], [54], [57], [58], but has played an increasing role in analysis on general metric spaces [12],
[22], [23], with applications to the Martin boundary, invariant metrics in several complex
variables [12] and extendability of Lipschitz mappings [79].

Hyperbolic spaces play an important role in geometric group theory and in geometry of
negatively curved spaces (see [6], [54], [57]). The concept of Gromov hyperbolicity grasps the
essence of negatively curved spaces like the classical hyperbolic space, Riemannian manifolds
of negative sectional curvature, and of discrete spaces like trees and the Cayley graphs of
many finitely generated groups. It is remarkable that a simple concept leads to such a rich
general theory (see [6], [54], [57]).

The theory of Gromov spaces was used initially for the study of finitely generated groups
(see [57] and the references therein), where it was demonstrated to have a practical impor-
tance. This theory was applied initially to the study of automatic groups (see [87]), which
play a role in the science of computation (indeed, hyperbolic groups are strongly geodesi-
cally automatic, that is, there is an automatic structure on the group, where the language
accepted by the word acceptor is the set of all geodesic words [36]).

The concept of hyperbolicity appears also in discrete mathematics, algorithms and net-
working. Another important application of these spaces is secure transmission of information
on the internet (see [68], [69], [70]). Furthermore, the hyperbolicity plays an important role
in the spread of viruses through the network (see [68], [70]). Ideas related to hyperbolicity
have been applied in numerous other networks applications, e.g., to problems such as dis-
tance estimation, sensor networks, and traffic flow and congestion minimization [14], [73],
[74], [85],[111], as well as large-scale data visualization [84]. The latter applications typically
take important advantage of the idea that data are often hierarchical or tree-like and that
there is “more room” in hyperbolic spaces than in Euclidean spaces. The hyperbolicity is
also useful in the study of DNA data (see [27]).

The study of mathematical properties of Gromov hyperbolic spaces and its applications
is a topic of recent and increasing interest in graph theory (see, e.g., [14], [17], [18], [19], [27],
[32], [33], [38], [39], [51], [68], [69], [70], [71], [72], [73], [74], [76], [80], [81], [84], [85], [88],
[89], [90], [91], [97], [98], [101], [102], [103], [111], [113], [118]).

In recent years several researchers have been interested in showing that metrics used
in geometric function theory are Gromov hyperbolic. For instance, the Gehring-Osgood j-
metric is Gromov hyperbolic; and the Vuorinen j-metric is not Gromov hyperbolic except in
the punctured space (see [60]). The study of Gromov hyperbolicity of the quasihyperbolic
and the Poincaré metrics is the subject of [12], [22], [61], [62], [91], [92], [93], [102], [103]. In
particular, in [91], [102], [103], [113] it is proved the equivalence of the hyperbolicity of many
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negatively curved surfaces and the hyperbolicity of a very simple graph; hence, it is useful
to study hyperbolic graphs from this point of view.

Let (X, d) be a metric space and let γ : [a, b] −→ X be a continuous function. We define
the length of γ as

L(γ) := sup
{ n∑

i=1

d(γ(ti−1), γ(ti)) : a = t0 < t1 < · · · < tn = b
}
.

We say that γ is a geodesic if L(γ|[t,s]) = d(γ(t), γ(s)) = |t − s| for every s, t ∈ [a, b]. A
geodesic line is a geodesic whose domain is R.

We say that X is a geodesic metric space if for every x, y ∈ X there exists a geodesic
joining x and y; we denote by [xy] any of such geodesics (since we do not require uniqueness
of geodesics, this notation is ambiguous, but it is convenient). It is clear that every geodesic
metric space is path-connected. Recall that when the metric space X is a graph, we use the
notation [u, v] for the edge joining the vertices u and v.

In order to consider a graph G as a geodesic metric space, identify (by an isometry)
any edge with the real interval [0, k], where k is a fixed constant with L(e) = k for every
e ∈ E(G). Therefore, any point in the interior of an edge is a point of G. Then G is naturally
equipped with a distance defined on its points, induced by taking the shortest paths in G,
and we see G as a metric graph. Hence, any connected graph is a geodesic metric space.

Recall that if X is a metric space, x ∈ X and E ⊆ X , the distance d(x, E) is defined as
d(x, E) := inf

{
d(x, y)| y ∈ E

}
.

If X is a geodesic metric space and J = {J1, J2, . . . , Jn} is a polygon with sides Jj ⊆ X ,
we say that J is δ-thin if for every x ∈ Ji we have that d(x,∪j 6=iJj) 6 δ. In other words,
a polygon is δ-thin if each of its sides is contained in the δ-neighborhood of the union of
the other sides. We denote by δ(J) the sharp thin constant of J , i.e., δ(J) := inf{δ >

0| J is δ-thin } . If x1, x2, x3 ∈ X , a geodesic triangle T = {x1, x2, x3} is the union of the
three geodesics [x1x2], [x2x3] and [x3x1]. The space X is δ-hyperbolic (or satisfies the Rips
condition with constant δ) if every geodesic triangle in X is δ-thin. We denote by δ(X) the
sharp hyperbolicity constant of X , i.e., δ(X) := sup{δ(T )| T is a geodesic triangle in X }.
We say that X is hyperbolic if X is δ-hyperbolic for some δ > 0. If X is hyperbolic, then
δ(X) = inf{δ > 0|X is δ-hyperbolic }. If we have a triangle with two identical vertices, we
call it a bigon; note that since this is a special case of the definition, every geodesic bigon in
a δ-hyperbolic space is δ-thin.

One can check that if X is a δ-hyperbolic geodesic metric space, then every geodesic
polygon with n > 3 sides is (n− 2)δ-thin.

Examples:
1. Every bounded metric space X is ((diamX)/2)-hyperbolic.
2. The real line R is 0-hyperbolic: In fact, any point of a geodesic triangle in the real

line belongs to two sides of the triangle simultaneously, and therefore any geodesic triangle
in R is 0-thin.
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3. The Euclidean plane R2 is not hyperbolic, since the midpoint of a side on a large
equilateral triangle is far from all points on the other two sides.

These arguments can be applied to higher dimensions:
4. A normed real linear space is hyperbolic if and only if it has dimension 1.
5. Every metric tree with arbitrary length edges is 0-hyperbolic, by the same reason that

the real line.
6. The unit disk D (with its Poincaré metric) is log(1 +

√
2 )-hyperbolic: Consider any

geodesic triangle T in D. It is clear that T is contained in an ideal triangle T ′, all of whose
sides are of infinite length, with δ(T ) 6 δ(T ′). Since all ideal triangles are isometric, we can
consider just one fixed T ′. Then, a computation gives δ(T ′) = log(1 +

√
2 ).

7. Every simply connected complete Riemannian manifold with sectional curvatures
verifying K ≤ −c2 < 0, for some constant c, is hyperbolic (see, e.g., [54, p.52]).

8. The graph Γ of the routing infrastructure of the Internet is also empirically shown
to be hyperbolic (see [13]). One can think that this is a trivial (and then a non-useful)
fact, since every bounded metric space X is ((diamX)/2)-hyperbolic. The point is that the
quotient

δ(Γ)

diamΓ

is very small, and this makes the tools of hyperbolic spaces applicable to Γ (see, e.g., [39]).

As a remark, the main examples of hyperbolic graphs are trees. In fact, the hyperbolicity
constant of a geodesic metric space can be viewed as a measure of how “tree-like” the space
is, since those spaces X with δ(X) = 0 are precisely the metric trees. This is an interesting
subject since, in many applications, one finds that the borderline between tractable and
intractable cases may be the tree-like degree of the structure to be dealt with (see, e.g.,
[37]).

It is worth pointing out that deciding whether or not a space is hyperbolic is usually
extraordinarily difficult: Note that, first of all, one needs to consider an arbitrary geodesic
triangle T , and calculate the minimum distance from an arbitrary point P of T to the union
of the other two sides of the triangle to which P does not belong to. And then, to take the
supremum over all the possible choices for P and then over all the possible choices for T .
Without disregarding the difficulty of solving this minimax problem, notice that in general
the main obstacle is that the location of geodesics in the space is not usually known.

If X is a metric space, we define the Gromov product of x, y ∈ X with base point w ∈ X
by

(x, y)w :=
1

2

(
d(x, w) + d(y, w)− d(x, y)

)
.

A geometric interpretation of the Gromov product is obtained by mapping the triple (x, y, w)
isometrically onto a triple (x′, y′, w′) in the Euclidean plane. The circle inscribed to the
triangle x′, y′, w′ meets the sides [w′x′] and [w′y′] at points x∗ and y∗, respectively, and we
have (x, y)w = |x∗ − w′| = |y∗ − w′|.
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If X is a Gromov hyperbolic space, it holds

(x, z)w > min
{
(x, y)w, (y, z)w

}
− δ (6.2.1)

for every x, y, z, w ∈ X and some constant δ > 0 (see, e.g., [6, Proposition 2.1], [54, p.41] or
[115, 2.34 and 2.35]). Let us denote by δ∗(X) the sharp constant for this inequality, i.e.,

δ∗(X) := sup
{
min

{
(x, y)w, (y, z)w

}
− (x, z)w : x, y, z, w ∈ X

}
.

Remark 6.2.1. If X is a geodesic metric space, it is known that (6.2.1) is, in fact, equivalent
to our definition of Gromov hyperbolicity; furthermore,δ∗(X) 6 3 δ(X) and δ(X) 6 3 δ∗(X)
(see, e.g., [115, 2.34 and 2.35]).

Then (6.2.1) extends the definition of Gromov hyperbolicity to the context of (non-
necessarily geodesic) metric spaces. The disadvantage of the Gromov product definition is
that its geometric meaning is unclear at first sight, whereas the thin triangles definition is
very easy to understand geometrically.

The following useful estimate is the key to understand the geometric meaning of the
Gromov product definition (6.2.1):

Proposition 6.2.2. ([54, Lemma 1.7, p.38]) If X is a δ-hyperbolic geodesic metric space,
then for every x, y, w ∈ X and every geodesic [xy], we have

d(w, [xy])− 4δ 6 (x, y)w 6 d(w, [xy]).

Indeed only the lower bound requires hyperbolicity.

We would like to recall the surprising geometric interpretation of the Gromov product
in the hyperbolic plane. Like in the Euclidean setting, there exists a relation among the
three sides of a right-angled triangle in the hyperbolic plane (the hyperbolic Pythagorean
theorem):

cosh c = cosh a cosh b.

We also have the hyperbolic Cosine rule for any hyperbolic triangle:

cosh c = cosh a cosh b− sinh a sinh b cos θ.

If a, b, c are large, then this latter formula is asymptotically equivalent to

1

2
ec ≈ 1

4
ea+b(1− cos θ),

and we deduce

ec ≈ ea+b sin2(θ/2) =⇒ 1

2
(a + b− c) ≈ log

1

sin(θ/2)
.
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If x, y, w are the vertices of this hyperbolic triangle and θ is the angle at w, then we have

(x, y)w ≈ log
1

sin(θ/2)
,

and we can determine (approximately) the angle θ in terms of the Gromov product.
Then we could expect that the Gromov product allows to estimate “something like angles”

in hyperbolic spaces (for instance, in hyperbolic graphs!); this is the case and, consequently,
the hyperbolic spaces have richer structure than the general metric spaces.

In the setting of linear spaces with inner product, the main angle is π/2; however, in
hyperbolic spaces the main angle is π: One can check that, in a geodesic metric space,
(x, y)w = 0 if and only if w belongs to a geodesic joining x and y.

The following result is a good example of “angle estimation” in hyperbolic spaces:

Theorem 6.2.3. ([54, Theorem 16, p.92]) Let us consider constants δ > 0, r, ` > 0, a
δ-hyperbolic geodesic metric space X and a finite sequence {xj}06j6n in X with

d(xj−1, xj+1) > max{d(xj−1, xj), d(xj, xj+1)}+ 18δ + r, for every 0 < j < n,

d(xj−1, xj) 6 `, for every 0 < j 6 n.

Then [x0x1] ∪ [x1x2] ∪ · · · ∪ [xn−1xn] is an (α, 0)-quasigeodesic, with α := max{`, 1/r}.

Quasigeodesics are a generalization of geodesics; we present now the precise definition.
Let (X, dX) and (Y, dY ) be two metric spaces. A map f : X −→ Y is said to be an (α, β)-
quasi-isometric embedding, with constants α ≥ 1, β ≥ 0 if, for every x, y ∈ X :

α−1dX(x, y)− β ≤ dY (f(x), f(y)) ≤ αdX(x, y) + β.

The function f is ε-full if for each y ∈ Y there exists x ∈ X with dY (f(x), y) ≤ ε.
A map f : X −→ Y is said to be a quasi-isometry, if there exist constants α ≥ 1, β, ε ≥ 0

such that f is an ε-full (α, β)-quasi-isometric embedding.
Two metric spaces X and Y are quasi-isometric if there exists a quasi-isometry f : X −→

Y . It is quite easy to see that being quasi-isometric is an equivalence relation.
An (α, β)-quasigeodesic of a metric space X is an (α, β)-quasi-isometric embedding γ :

I −→ X , where I is an interval of R. Note that a (1, 0)-quasigeodesic is a geodesic.
Let X be a metric space, Y a non-empty subset of X and ε a positive number. We

call ε-neighborhood of Y in X , denoted by Vε(Y ) to the set {x ∈ X : dX(x, Y ) ≤ ε}. The
Hausdorff distance between two subsets Y and Z of X , denoted by H(Y, Z), is the number
defined by:

inf{ε > 0 : Y ⊂ Vε(Z) and Z ⊂ Vε(Y )}.
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6.3 Gromov hyperbolicity, Mathematical Analysis and

Geometry

The ideal boundary of a metric space is a type of boundary at infinity which is a very useful
concept when dealing with negatively curved spaces. We want to talk about some subjects
in which this boundary is useful.

A main problem in the study of Partial Differential Equations in Riemannian Manifolds is
whether or not there exist nonconstant bounded harmonic functions. A way to approach this
problem is to study whether the so-called Dirichlet problem at infinity (or the asymptotic
Dirichlet problem) is solvable on a complete Riemannian manifoldM . That is to say, raising
the question as to whether every continuous function on the boundary ∂M has a (unique)
harmonic extension to M . Of course, the answer, in general, is no, since the simplest
manifold Rn admits no positive harmonic functions other than constants. However, the
answer is positive for the unit disk D.

In [7] Ancona studied the asymptotic Dirichlet problem on Gromov hyperbolic graphs
and in [8] on Gromov hyperbolic Riemannian manifolds with bounded geometry and a posi-
tive lower bound λ1(M) > 0 for Dirichlet eigenvalues. In the papers [30] and [75] conditions
on Gromov hyperbolic manifolds M that imply the positivity of λ1(M) are given and, con-
sequently, the Dirichlet problem is solvable for many Gromov hyperbolic manifolds.

One of the most important features of the transition from a Gromov hyperbolic space
to its Gromov boundary is that it is functorial. If f : X −→ Y is in a certain class
of maps between two Gromov hyperbolic spaces X and Y, then there is a boundary map
∂f : ∂X −→ ∂Y which is in some other class of maps. In particular, if f is a quasi-isometry,
then ∂f is a bihölder map (with respect to the Gromov metric on the boundary).

It is well known that biholomorphic maps between domains (with smooth boundaries) in
C can be extended as a homeomorphism between their boundaries. If we consider domains
in Cn (n > 1) instead in C, then the problem is very difficult. C. Fefferman showed in
Inventiones Mathematicae (see [46]), with a very long and technical proof, that biholomor-
phic maps between bounded strictly pseudoconvex domains with smooth boundaries can be
extended as a homeomorphism between their boundaries. It is possible to give a “more ele-
mentary” proof of this extension result using the functoriality of Gromov hyperbolic spaces:
If we consider the Carathéodory metric on a bounded smooth strictly pseudoconvex domain
in Cn, then it is Gromov hyperbolic, and the Gromov boundary is homeomorphic to the
topological boundary (see [11]). Since any biholomorphic map f between such two domains
is an isometry for the Carathéodory metrics, the boundary map ∂f is essentially a boundary
extension of f that is a homeomorphism between the boundaries (in fact, it is bihölder with
respect to the Carnot-Carathéodory metrics in the boundaries). Fefferman’s result gives
much more precise information, but this last proof is simpler and gives information about a
class of maps that is much more general than biholomorphic maps: the quasi-isometries for
the Carathéodory metrics.
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In applications to several areas of mathematics, the Gromov boundary can be similarly
be proved (under appropriate conditions) to coincide with other “finite” boundaries, such as
the Euclidean or inner Euclidean boundary, or the Martin boundary, so we obtain a variety
of boundary extension results as above.

For instance, isometries (and quasi-isometries) in a hyperbolic space X can be extended
(as an homeomorphism) to the Gromov boundary ∂X of the space. This fact allows to
classify the isometries as hyperbolic, parabolic and elliptic, like the Möbius maps in D, in
terms of their fixed points in X ∪ ∂X .

It can be proved that there are just three possibilities:

• There are exactly two fixed points in X∪∂X and both are in ∂X (hyperbolic isometry).

• There is a single fixed point in X ∪ ∂X and it is in ∂X (parabolic isometry).

• There is a single fixed point in X ∪ ∂X and it is in X (elliptic isometry).

A main ingredient in the proof of this result in the unit disk D is that the isometries
are holomorphic functions. Surprisingly, the tools in hyperbolic spaces provide a new and
general proof just in terms of distances!

6.4 Main results on hyperbolic spaces

We state now some of the main facts about hyperbolic spaces.
In the study of any mathematical property, the class of maps which preserve that property

plays a central role in the theory. The following result shows that quasi-isometries preserve
hyperbolicity.

Theorem 6.4.1. (Invariance of hyperbolicity, [54, p.88]) Let f : X −→ Y be an (α, β)-
quasi-isometric embedding between the geodesic metric spaces X and Y. If Y is hyperbolic,
then X is hyperbolic.

Besides, if f is ε-full for some ε > 0 (a quasi-isometry), then X is hyperbolic if and only
if Y is hyperbolic.

We next discuss the connection between hyperbolicity and geodesic stability. In the
complex plane (with its Euclidean distance), there is only one optimal way of joining two
points: a straight line segment. However if we allow “limited suboptimality”, the set of
“reasonably efficient paths” (quasigeodesics) are well spread. For instance, if we split the
circle ∂D(0, R) ⊂ C into its two semicircles between the points R and −R, then we have two
reasonably efficient paths (two (π/2, 0)-quasigeodesics) between these endpoints such that
the point Ri on one of the semicircles is far from all points on the other semicircle provided
that R is large. Even an additive suboptimality can lead to paths that fail to stay close
together. For instance, the union of the two line segments in C given by [0, R + i

√
R ] and
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[R + i
√
R , 2R] gives a path of length less than 2R + 1 (since 2

√
R2 +R 6 2R + 1), and so

it is “additively inefficient” by less than 1 (a (1, 1)-quasigeodesic). However, its corner point
is very far from all points on the line segment [0, 2R] when R is very large.

The situation in Gromov hyperbolic spaces is very different, since all such reasonably
efficient paths ((α, β)-quasigeodesics for fixed α, β) stay within a bounded distance of each
other:

Theorem 6.4.2. (Geodesic stability, [54, p.87]) For any constants α > 1 and β, δ > 0 there
exists a constant H = H(δ, α, β) such that for every δ-hyperbolic geodesic metric space and
for every pair of (α, β)-quasigeodesics g, h with the same endpoints, H(g, h) ≤ H.

The geodesic stability is not just a useful property of hyperbolic spaces; in fact, M. Bonk
proves in [24] that the geodesic stability is equivalent to the hyperbolicity:

Theorem 6.4.3. ([24, p.286]) Let X be a geodesic metric space with the following property:
For each a > 1 there exists a constant H such that for every x, y ∈ X and any (a, 0)-
quasigeodesic g in X starting in x and finishing in y there exists a geodesic γ joining x and
y satisfy H(g, γ) 6 H. Then X is hyperbolic.

Theorem 6.4.1 can be easily deduced from Theorem 6.4.2:

Proof of Theorem 6.4.1. By hypothesis there exists δ > 0 such that Y is δ-hyperbolic.
Let T be a geodesic triangle in X with sides g1, g2 y g3, and TY the triangle with (α, β)-

quasigeodesic sides f(g1), f(g2) and f(g3) in Y . Let γj be a geodesic joining the endpoints
of f(gj), for j = 1, 2, 3, and T ′ the geodesic triangle in Y with sides γ1, γ2, γ3.

Let p be any point in f(g1). We are going to prove that there exists a point q ∈ f(g2) ∪
f(g3) with dY (p, q) 6 K, where K := δ + 2H(δ, α, β). By Theorem 6.4.2, there exists a
point p′ ∈ γ1 with dY (p, p

′) 6 H(δ, α, β). Since T ′ is a geodesic triangle, it is δ-thin and
there exists q′ ∈ γ2 ∪ γ3 with dY (p

′, q′) 6 δ. Using again Theorem 6.4.2, there exists a point
q ∈ f(g2) ∪ f(g3) con dY (q, q′) 6 H(δ, α, β). Therefore,

dY (p, f(g2) ∪ f(g3)) 6 dY (p, q) 6 dY (p, p
′) + dY (p

′, q′) + dY (q
′, q)

6 H(δ, α, β) + δ +H(δ, α, β) = K.

Let z ∈ T ; without loss of generality we can assume that z ∈ g1. We have seen that there
exists a point q ∈ f(g2)∪ f(g3) with dY (f(z), q) 6 K. If w ∈ g2 ∪ g3 satisfies f(w) = q, then

dX(z, g2 ∪ g3) 6 dX(z, w) 6 αdY (f(z), q) + αβ 6 αK + αβ.

Hence, T is (αK+αβ)-thin. Since T is an arbitrary geodesic triangle,X is (αδ+2αH(δ, α, β)+
αβ)-hyperbolic.

Assume now that f is ε-full. One can check that a quasi-isometry f− : Y −→ X can be
constructed as follows: for y ∈ Y choose x ∈ X with dY (f(x), y) 6 ε and define f−(y) := x.
Then the first part of the Theorem gives the result.



Chapter 7

Hyperbolicity constant of cubic
graphs

Along this chapter by a graph we mean a connected graph such that every edge has length
k, for some fixed constant k.

In this chapter we obtain information about the hyperbolicity constant of cubic graphs.
They are a very interesting class of graphs with many applications (see, e.g., [25, 29, 42, 88]);
furthermore, they are also very important in the study of Gromov hyperbolicity, since for
any graph G with bounded maximum degree there exists a cubic graph G∗ such that G is
hyperbolic if and only if G∗ is hyperbolic (see [18, Section 4] and [88, Theorem 2.2]). We find
some characterizations for the cubic graphs which have small hyperbolicity constants, i.e.,
the graphs which are like trees (in the Gromov sense); in [88, Theorem 3.13] also appears a
result on this topic, but our results are different and stronger. Besides, we obtain bounds
for the hyperbolicity constant of the complement graph of a cubic graph; our main result of
this kind says that for any finite cubic graph G which is not isomorphic either to K4 or to
K3,3, the inequalities 5k/4 ≤ δ

(
G
)
≤ 3k/2 hold, improving the previous result [88, Theorem

4.9]. This is a very precise result, since it implies that δ
(
G
)
is either 5k/4 or 3k/2, by [17,

Theorem 2.6].

7.1 Small values of the hyperbolicity constant

We recall that by cycle in a graph we mean a simple closed curve, i.e., a path with different
vertices, except for the last one, which is equal to the first vertex. If C is any path in a
graph G and w ∈ V (C), we denote by degC(w) the degree of the vertex w in the subgraph
induced by V (C).

We denote by diamG V (G) or diamV (G) the standard diameter of the graph G, i.e.,
diamV (G) := sup{dG(x, y) : x, y ∈ V (G)}. By diamGG or diamG we denote the diameter
of the geodesic metric space G, i.e., diamG := sup{dG(x, y) : x, y ∈ G}. A subgraph Γ of G

79
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is said isometric if dΓ(x, y) = dG(x, y) for every x, y ∈ Γ.

In [16, Theorem 4.10] appear the following result which characterizes the hyperbolic
graphs G with hyperbolicity constant verifying δ(G) = k. The case δ(G) < k will be treated
later in Lemma 7.1.21. Also, we would like to comment that δ(G) must be a multiple of k/4
(see Theorem 7.1.18).

Theorem 7.1.1. Let G be any graph. Then δ(G) = k if and only if the following conditions
hold:

(1) There exists a cycle isomorphic to the cycle graph C4.

(2) For every cycle γ with L(γ) ≥ 5k we have degγ(w) ≥ 3 for every vertex w ∈ γ.

In this section we study the hyperbolic cubic graphs G with hyperbolicity constant veri-
fying δ(G) 6 3k/2.

We start with a consequence of Theorem 7.1.1. Recall that a Hamiltonian cycle in a
graph G is a cycle that visits each vertex of G exactly once (except for the vertex that is
both the start and end, which is visited twice); a graph that contains a Hamiltonian cycle
is called a Hamiltonian graph.

Proposition 7.1.2. Let G be any cubic graph. Then δ(G) = k if and only if the following
conditions hold:

(1) There exists a cycle isomorphic to C4.

(2) Every cycle in G with length greater than 4k is Hamiltonian.

Proof. If γ is a cycle in G with degγ(w) ≥ 3 for every vertex w ∈ γ, then degγ(w) = 3 for
every vertex w ∈ γ, since G is a cubic graph. Hence, if L(γ) > 4k, then every vertex of G
belongs to γ, and γ is a Hamiltonian cycle.

Corollary 7.1.3. Let G be any cubic graph. If δ(G) = k and there exists a cycle γ with
L(γ) > 4k, then G is a Hamiltonian graph and γ is a Hamiltonian cycle.

Theorem 7.1.4. Let G be any cubic graph. Then δ(G) = k if and only if we have either:

(1) G is isomorphic to K4 or K3,3.

(2) G is an infinite graph such that every cycle γ in G has length L(γ) 6 4k and there
exists a cycle with length 4k.

Proof. If we have either (1) or (2), then Proposition 7.1.2 gives δ(G) = k.
Assume that δ(G) = k.
If G is an infinite graph, then Proposition 7.1.2 gives that every cycle γ in G has length

L(γ) 6 4k and that there exists a cycle with length 4k.
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Assume that G is a graph of order n.
If n 6 6, then one can check that G is isomorphic to K4 or K3,3.
We are going to finish the proof by showing that it is not possible to have n > 6. Seeking

for a contradiction, assume that n > 6; then we have n > 8, since G is a cubic graph.
Assume that there exists a cycle C in G with length L(C) > 4k. By Proposition 7.1.2,

C has length L(C) = kn; since G is a cubic graph, given any vertex v ∈ V (C) = V (G) there
exists an edge [v, w] ∈ E(G) \E(C). Let us consider the two cycles C1, C2 ⊂ C ∪ [v, w] with
L(C1) 6 L(C2) < L(C) = kn; since n > 8, we have 4k < L(C2) < kn, which contradicts
Proposition 7.1.2.

Assume that every cycle γ in G has length L(γ) 6 4k. Let γ1, . . . , γr be cycles such that
γi ∩ γj = ∅ for i 6= j, and if γ is any cycle in G then V (γ) ⊆ V (γj) for some j ∈ {1, . . . , r}
(note that the set γi ∩ γj cannot be a single vertex, since it would have a degree of at least
four; if γi ∩ γj were a single edge e, then γi and γj would have length 3k and we could take
the new cycle γi∪γj \{e}, with length 4k, instead of γi and γj). We define now a graph T in
the following way: V (T ) = {v1, . . . , vr} (each vj represents to γj) and [vi, vj] ∈ E(T ) if and
only if there exists a path η in G joining γi and γj such that every edge e ∈ E(η) verifies
that G \ {e} is not connected. One can check that T is a (finite) tree; hence, there exists
a vertex vs with degree one. Therefore, there exists a vertex in the cycle γs joined with an
infinite tree, since G is a cubic graph; but this is a contradiction, since G is a finite graph.

We conclude that it is not possible to have a finite cubic graph with δ(G) = k and n > 6.
This finishes the proof.

In [16, Proposition 4.12] appears the following result.

Proposition 7.1.5. Let G be any graph. If δ(G) ≥ 3k/2, then there exists a cycle g in G
with diam g ≥ 3k.

The converse of Proposition 7.1.5 does not hold, even for cubic graphs. For instance, in
the cubic graph H , see Figure 7.1, there is a cycle C with diamC = 3k, but δ(H) = 5k/4 <
3k/2.

Figure 7.1: Cubic graph H with δ(H) = 5k/4 and a cycle C such that diamC = 3k.

We also have a kind of converse of Proposition 7.1.5 for cubic graphs.

Proposition 7.1.6. Let G be any cubic graph. If there exists a cycle g in G such that
diamV (g) ≥ 3k, then δ(G) ≥ 3k/2.
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Proof. Note that L(g) ≥ 6k since diamV (g) ≥ 3k.
Define Γ as the set of geodesics γ joining two vertices in g at distance 3k, and for each

γ ∈ Γ let Aγ as the set of cycles Aγ := {ρ/ ρ is a cycle in G containing γ}.
We claim that Aγ 6= ∅ for some γ ∈ Γ.

For the moment, we will assume this claim; we will show a proof for it at the end of this
proof.

Fix γ ∈ Γ with Aγ 6= ∅; then γ joins two vertices u, v ∈ g with d(u, v) = 3k. Let us
choose σ ∈ Aγ with L(σ) 6 L(ρ) for every ρ ∈ Aγ .

Let us consider the midpoints p of γ and q of σ \ γ; consider the curves γ1, γ2 joining,
respectively, u and q, and v and q, with γ1 ∪ γ2 = (σ \ γ) ∪ {u, v}.

Assume first that L(σ) 6 8k or σ is an isometric cycle. Then γ1 and γ2 are geodesics. If
T is the geodesic triangle T = {γ, γ1, γ2}, then δ(G) > dG(p, γ1∪γ2) = dG(p, {u, v}) = 3k/2.

Assume now that L(σ) > 9k and σ is not an isometric cycle. A shortcut in the cycle σ is a
geodesic [pq] in G joining two vertices p, q ∈ σ∩V (G) such that L([pq]) = dG(p, q) < dσ(p, q),
and [pq] ∩ σ = {p, q}. Since σ is not an isometric cycle, there exists a shortcut [xy] in σ.
Since γ is a geodesic, it is not possible to have x, y ∈ γ. Denote by γ′ the curve γ′ := γ1∪γ2;
since L(σ) 6 L(ρ) for every ρ ∈ A, it is not possible to have x, y ∈ γ′ (however, it is possible
to have dG(x0, y0) < dσ(x0, y0) for some x0, y0 ∈ γ′ if the geodesic joining x0 and y0 intersects
γ \ {u, v}). Without loss of generality we can assume that x ∈ γ \ {u, v}, y ∈ σ \ γ and
dG(x, u) = k. Define the set of geodesics B := {[xz]/ z ∈ σ \ γ and [xz] is a shortcut in σ};
note that B 6= ∅ since [xy] ∈ B. Let us choose [xz0] ∈ B with dγ′(z0, v) 6 dγ′(z, v) for every
[xz] ∈ B. Denote by ηu and ηv the curves contained in γ′ joining u and z0, and v and z0,
respectively.

If L(ηv) > 3k, then dG(z0, v) > 3k (since G is a cubic graph) and g1 := [xz0] ∪ ηv ∪ [vx]
is a cycle with L(g1) < L(g) and diamV (g1) ≥ 3k.

If L(ηv) 6 2k, then the cycle g1 := [xz0] ∪ ηu ∪ [u, x] is a cycle with L(g1) > 6k. Denote
by u′ the point in ηu with dγ′(u, u′) = 2k; by the minimizing property of σ, it follows that
dG(u, u

′) = 2k; then dG(z0, u
′) > 3k (since G is a cubic graph) and g1 := [xz0] ∪ ηv ∪ [u, x] is

a cycle with L(g1) < L(g) and diamV (g1) ≥ 3k.
Iterating this process we obtain a cycle gr verifying the properties of g and such that

L(gr) 6 8k or gr is an isometric cycle. Therefore, we conclude δ(G) > 3k/2 if the claim
holds.

We will finish the proof by showing the claim. Seeking for a contradiction, assume that
Aγ = ∅ for every geodesic γ ∈ Γ. Let us fix any γ ∈ Γ; then γ joins two vertices u, v ∈ g
with d(u, v) = 3k. Let g1, g2 be the subcurves of g with g1 ∪ g2 = g and g1 ∩ g2 = {u, v}.
Since Aγ = ∅, g1 and g2 contain some interior vertex of γ; since G is a cubic graph, g1 and
g2 contain some edge of γ; if γ = [u, u0] ∪ [u0, v0] ∪ [v0, v], then without loss of generality we
can assume that [u, u0] ⊂ g1 and [v0, v] ⊂ g2.

Let x be the vertex in g1 with dg1(x, u0) = 2k. If γ0 is the subcurve of g1 joining u and
x, then dG(x, u) 6 L(γ0) = 3k.
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If dG(x, u) = 3k, then γ0 ∈ Γ and g ∈ Aγ0 6= ∅, which is a contradiction.
If dG(x, u) = 2k, then there exists a geodesic γ1 joining u and x with L(γ1) = 2k;

if y is the interior vertex in γ1, then y /∈ {u0, v0} since G is a cubic graph. Therefore,
γ1 ∪ (g1 \ γ0) ∪ γ ∈ Aγ 6= ∅, which is a contradiction.

If dG(x, u) = k, then [u, x] ∈ E(G) and [u, x] ∪ (g1 \ γ0) ∪ γ ∈ Aγ 6= ∅, which is a
contradiction.

Hence, the claim and the proposition hold.

The converse of Proposition 7.1.6 does not hold. For instance, the Petersen graph P
satisfies diamV (P ) = 2k and δ(P ) = 3k/2 (see [101, Theorem 11]).

In [16, Theorem 4.2 and Proposition 4.11] appear the following results.

Theorem 7.1.7. Let G be any graph. Then δ(G) > 5k/4 if and only if there exist a cycle
g in G with length L(g) > 5k and a vertex w ∈ g such that degg(w) = 2.

Proposition 7.1.8. Let G be any graph. Assume that the following conditions hold:

(1) There exist a cycle g in G such that L(g) ≥ 5k and a vertex w ∈ g satisfying degg(w) =
2.

(2) For every cycle γ in G, we have diam γ 6 5k/2.

Then we have δ(G) = 5k/4.

Example after Proposition 7.1.5 shows that the converse of Proposition 7.1.8 does not
hold, since it provides a graph H with δ(H) = 5k/4 and a cycle C in H with diamC = 3k.

Theorem 7.1.7 and Proposition 7.1.6 give a kind of converse of Proposition 7.1.8 for cubic
graphs.

Proposition 7.1.9. Let G be any cubic graph. If δ(G) = 5k/4, then the following conditions
hold:

(1) There exist a cycle g in G such that L(g) ≥ 5k and a vertex w ∈ g satisfying degg(w) =
2.

(2) For every cycle γ in G we have diamV (γ) 6 2k.

The converse of Proposition 7.1.9 does not hold. For instance, the Petersen graph P
satisfies diamV (P ) = 2k and δ(P ) = 3k/2 (see [101, Theorem 11]).

From [81, Proposition 5 and Theorem 7] we deduce the following result.

Lemma 7.1.10. Let G be any graph with a cycle g. If L(g) > 3k, then δ(G) > 3k/4. If
L(g) > 4k, then δ(G) > k.
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Proposition 7.1.11. Let G be a cubic graph. If there exists a cycle g with L(g) = jk, for
some j ∈ {3, 4, 5}, then δ(G) ≥ jk/4.

Proof. The results for j = 3, 4 are consequence of Lemma 7.1.10; the result for j = 5 follows
from Theorem 7.1.7, since G is a cubic graph.

The previous result does not hold for j = 6; in fact, condition L(g) > 6k does not imply
δ(G) > 5k/4, since the complete bipartite graph K3,3 has a cycle with length 6k and verifies
δ(K3,3) = k (see [101, Theorem 11]).

Let us define the circumference c(G) of a graph G as the supremum of the lengths of its
cycles if G is not a tree; we define c(G) = 0 for every tree G. The following result (see [33,
Proposition 3.9]) will be useful.

Proposition 7.1.12. For any graph G we have δ(G) 6 c(G)/4.

The following result provides a simple and explicit formula for the hyperbolicity constant
of a large class of cubic graphs.

Proposition 7.1.13. If G is any cubic graph with c(G) 6 5k, then δ(G) = c(G)/4.

Proof. Since c(G) 6 5k, Proposition 7.1.11 gives δ(G) > c(G)/4. Proposition 7.1.12 gives
the converse inequality.

The previous result does not hold for graphs with c(G) = 6k, since c(K3,3) = 6k and
δ(K3,3) = k < 3k/2.

In [102, Lemma 2.1] or [18, Corollary 4] we found the following result.

Lemma 7.1.14. In any graph G we have

δ(G) = sup
{
δ(T ) : T is a geodesic triangle that is a cycle

}
.

We have a sufficient condition in order to obtain δ(G) = 3k/2 for cubic graphs G.

Proposition 7.1.15. Let G be any cubic graph. Assume that the following conditions hold:

(1) For every cycle γ in G we have diam γ ≤ 3k.

(2) There exists a cycle g such that diamV (g) > 3k.

Then we have δ(G) = 3k/2.

Proof. By (2) and Proposition 7.1.6, we have δ(G) ≥ 3k/2. For every geodesic triangle T
that is a cycle, using (1), we have dG(x, y) ≤ 3k for every x, y ∈ T and, in consequence,
δ(T ) ≤ 3k/2. By Lemma 7.1.14 we deduce δ(G) ≤ 3k/2.
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The converse implication in the last proposition does not hold. The Petersen graph with
edges of length k has δ(G) = 3k/2 (see [101, Theorem 11]), it satisfies (1) but it does not
satisfy (2). Let G be the Cartesian product of an infinite path and a path with two vertices,
with edges of length k; then δ(G) = 3k/2, G satisfies (2) but it does not satisfy (1).

In order to prove our following result we need to introduce a useful concept.

Given a graph G, we say that a family of subgraphs {Gn}n of G is a T-decomposition
of G if ∪nGn = G, Gn ∩ Gm is either a vertex or the empty set for each n 6= m, and if the
graph R defined as follows is a tree: for each n let us define a point vn (vn is an abstract
point, it is not contained in G); we have V (R) := {vn}n and [vn, vm] ∈ E(R) if and only if
Gn ∩Gm 6= ∅.

A T-decomposition of G always exists, as we will show now (although it can be trivial:
if the graph is two-connected then any T-decomposition has just one element). We say
that a vertex v of a graph G is a cut-vertex if G \ {v} is not connected. A graph is two-
connected if it is connected and it does not contain cut-vertices. Given any edge in G, let us
consider the maximal two-connected subgraph containing it. It is clear that the set of these
maximal two-connected subgraphs {Gn}n is a T-decomposition of G; we call it the canonical
T-decomposition of G.

Lemma 7.1.16 below shows that T-decompositions are useful in the study of hyperbolic
graphs. In particular, the canonical T-decomposition of a graph plays an interesting role,
since it is the T-decomposition that minimizes supn diamGn.

Note that every Gn in any T-decomposition of G is an isometric subgraph of G.

We will need the following result, which allows to obtain global information about the
hyperbolicity of a graph from local information.

Lemma 7.1.16. Let G be any graph and let {Gn}n be any T-decomposition of G. Then

δ(G) 6
1

2
sup
n

diamGn.

Proof. Let us consider a geodesic triangle T = {x, y, z} in G and p ∈ [xy] with δ(T ) =
dG(p, [xz] ∪ [zy]). By Lemma 7.1.14, without loss of generality we can assume that T is a
cycle. Note that, since {Gn}n is a T-decomposition of G, there exists m such that T ⊆ Gm.
Hence,

δ(T ) = dG(p, [xz] ∪ [zy]) = dGm
(p, [xz] ∪ [zy]) 6 dGm

(p, {x, y})

6
1

2
diamGm

Gm 6
1

2
sup
n

diamGGn.

Lemma 7.1.17. Let G be any cubic graph with canonical T-decomposition {Gn}n. If we
have supn diamV (Gn) > 3k, then δ(G) ≥ 3k/2.
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Proof. Let us choose m with diamV (Gm) > 3k and x, y ∈ V (Gm) with dG(x, y) > 3k. Since
Gm is two-connected, Whitney’s Theorem (see [116]) guarantees that there exists a cycle g
in G with x, y ∈ V (g). Since diamV (g) ≥ 3k, Proposition 7.1.6 gives δ(G) ≥ 3k/2.

The following result appears in [17, Theorem 2.6].

Theorem 7.1.18. For every hyperbolic graph G, δ(G) is an integer multiple of k/4.

Lemma 7.1.17 and Theorem 7.1.18 have the following consequence.

Corollary 7.1.19. Let G be any cubic graph with canonical T-decomposition {Gn}n. If
δ(G) ≤ 5k/4, then supn diamV (Gn) 6 2k.

Theorem 7.1.20. Let G be any cubic graph with canonical T-decomposition {Gn}n. If
δ(G) = 5k/4, then supn diamV (Gn) = 2k.

Proof. Since δ(G) = 5k/4, Lemma 7.1.16 gives supn diamGn > 5k/2; hence, supn diamV (Gn)
> 2k. Corollary 7.1.19 gives the converse inequality.

The converse of Theorem 7.1.20 is not true (see Proposition 7.1.22 and Remark 7.1.23
below). In any case, we also have a kind of converse of Theorem 7.1.20. We need the
following result which appears in [81, Theorem 11].

Lemma 7.1.21. Let G be any graph.

(1) δ(G) = 0 if and only if G is a tree.

(2) δ(G) = k/4, k/2 is not satisfied for any graph G.

(3) δ(G) = 3k/4 if and only if G is not a tree and every cycle in G has length 3k.

Proposition 7.1.22. Let G be any cubic graph with canonical T-decomposition {Gn}n.

(1) If supn diamV (Gn) = k, then δ(G) 6 k.

(2) If supn diamV (Gn) = 2k, then k 6 δ(G) 6 3k/2.

Proof. If supn diamV (Gn) = k, then we have supn diamGn 6 2k. Lemma 7.1.16 gives
δ(G) 6 k.

Assume now supn diamV (Gn) = 2k.
Then we have supn diamGn 6 3k. Lemma 7.1.16 gives δ(G) 6 3k/2.
If δ(G) < k, then Lemma 7.1.21 gives that every Gn is either isomorphic to an edge or a

cycle graph C3; consequently, supn diamV (Gn) = k, which is a contradiction.

Remark 7.1.23. Note that every bound for δ(G) in Proposition 7.1.22 is attained: the bound
in (1) is attained for the complete graph K4, the lower one in (2) for the complete bipartite
graph K3,3 and the upper one for the Petersen graph (see [101, Theorem 11]).
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7.2 Complement of cubic graphs

The paper [19] studies the hyperbolicity of the complement of graphs. In this section, we
obtain new results for this operation on cubic graphs.

In [101, Theorem 8] we find the following result (note that it can be deduced from Lemma
7.1.16).

Lemma 7.2.1. In any graph G the inequality δ(G) 6 (diamG)/2 holds.

Given any finite cubic graph G, we denote by G its complement graph. If G is not
connected, with connected components G1, . . . , Gr (r > 2), we define

δ
(
G
)
:= max

{
δ
(
G1

)
, . . . , δ

(
Gr

)}
,

diamG := max
{
diamG1, . . . , diamGr

}
;

hence, Lemma 7.2.1 also holds for non-connected G.

The following lemma is a consequence of [43, Proposition 1.3.1].

Lemma 7.2.2. If m > 2 is a natural number and G is any finite graph with edges of length
k and deg v > m for every v ∈ V (G), then there exists a cycle η in G with L(η) > k(m+1).

Lemmas 7.2.2 and 7.1.10 give the following proposition.

Proposition 7.2.3. Let G be any cubic graph of order n.

• If n = 6, then δ
(
G
)
> 3k/4.

• If n > 6, then δ
(
G
)
> k.

In [101, Theorem 11] and [81, Theorem 30] we find the following results.

Lemma 7.2.4. For any cycle graph Cn with n > 3, we have δ(Cn) = L(Cn)/4 = nk/4.

Lemma 7.2.5. Let G be any graph of order n. Then δ(G) 6 nk/4.

This inequality can be improved for cubic graphs (see [88, Theorem 3.7]).

Theorem 7.2.6. Let G be any cubic graph of order n. Then δ(G) 6 kmin
{3n
16

+ 1,
n

4

}
.

The following lemma can be deduced from [19, Proposition 2.7]. However, we give a
proof with a new and interesting argument.

Lemma 7.2.7. Given any finite cubic graph G, we have δ
(
G
)
6 3k/2.
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Proof. It suffices to prove the result for k = 1. Let n be the order of G.
Assume first that n 6 6. Denote by G1, . . . , Gr (r > 1), the connected components of G,

with n1, . . . , nr vertices, respectively. Then Lemma 7.2.5 gives δ
(
Gj

)
6 nj/4 6 n/4 6 3/2

for j = 1, . . . , r, and we conclude δ
(
G
)
6 3/2.

Assume now that n ≥ 8. Since G is a (n−4)-regular graph with n vertices, it is connected.
Let T := {γ1, γ2, γ3} be a geodesic triangle in G. In order to compute δ

(
G
)
, by Lemma

7.1.14, we can assume that T is a cycle. Let us consider p ∈ T ; without loss of generality we
can assume that p ∈ γ1 := [xy].

If L(T ) 6 6, then L(γ1) ≤ 3 and dG(p, γ2 ∪ γ3) ≤ dG(p, {x, y}) ≤ L(γ1)/2 ≤ 3/2.
If L(T ) > 7, then there are n − L(T ) vertices in V

(
G
)
\ V (T ). Hence, since G is a

(n− 4)-regular graph, every vertex in V (T ) has at least n− 4− (n− L(T )) = L(T )− 4 > 3
neighbors in V (T ) and, therefore, at least one neighbor in a different side of T . Now, there
exists a vertex v ∈ V (T ) with dG(p, v) 6 1/2. If v ∈ γ2 ∪ γ3, then dG(p, γ2 ∪ γ3) ≤ 1/2. If
v ∈ γ1, then dG(p, γ2 ∪ γ3) ≤ dG(p, v) + dG(v, γ2 ∪ γ3) ≤ 3/2.

Then δ
(
G
)
6 3/2 and this finishes the proof.

The following result provides precise bounds for the hyperbolicity constant of (n − 4)-
regular graphs.

Proposition 7.2.8. Let G be any (n − 4)-regular graph with order n ≥ 6. Then we have
k 6 δ(G) 6 3k/2.

Proof. For n = 6, we have that G is isomorphic to C6 and Lemma 7.2.4 gives δ(C6) = 3k/2.
Assume now that n ≥ 8. Since G is the complement of a cubic graph, Proposition 7.2.3 gives
the lower bound. Finally, Lemma 7.2.7 gives the upper bound in this case.

The lower bound in Proposition 7.2.8 is attained for the complete bipartite graph K4,4

and the upper one for the cycle graph C6.

Proposition 7.2.9. Let G be any (n− 4)-regular graph with order n ≥ 6. Then, δ(G) = k
if and only if diamG = 2k.

Proof. If diamG = 2k, then by Proposition 7.2.8 and Lemma 7.2.1 we have δ(G) = k.
Assume that δ(G) = k. By Lemma 7.2.1, diamG > 2k.
If n = 6, then G is isomorphic to C6; so, we have diamC6 = 3k and Lemma 7.2.4 gives

δ(C6) = 3k/2. Assume that n ≥ 8.
We prove now the following statement: for any couple of vertices v, w ∈ V (G) such that

[v, w] /∈ E(G), there are two vertices that are neighbors of v and w. Since [v, w] /∈ E(G) and
deg(v) + deg(w) = 2n− 8 ≥ (n− 2) + 2, there exist at least two vertices that are neighbors
of v and w.

Hence, we have diamV (G) = 2k; thus, diamG ≤ 3k. If diamG > 2k, then we have
either diamG = 5k/2 or diamG = 3k.
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If diamG = 5k/2, there exist v ∈ V (G) and a midpoint p in G such that dG(v, p) = 5k/2.
Let v1, v2 be vertices in G such that p ∈ [v1, v2]. By the previous statement, there is a cycle
C in G such that L(C) = 5k and v, p ∈ C. Let γ1 and γ2 be two geodesics joining v and
p such that γ1 ∪ γ2 = C and γ1 ∩ γ2 = {v, p}. This implies that B = {γ1, γ2} is a geodesic
bigon. Since dG(w, γ2) = 5k/4 if w is the midpoint of γ1, we deduce that δ(B) = 5k/4;
hence, we obtain δ(G) ≥ 5k/4. Therefore, if diamG = 5k/2, then δ(G) ≥ 5k/2.

If diamG = 3k, there exist two midpoints p1 and p2 in G such that dG(p1, p2) = 3k.
Let v1, v2, w1, w2 be vertices in G such that p1 ∈ [v1, w1] and p2 ∈ [v2, w2]. By the previous
statement, there is a cycle C in G such that L(C) = 6k and p1, p2 ∈ C. Let γ1, γ2 be two
geodesics joining p1 and p2 such that γ1 ∪ γ2 = C and γ1 ∩ γ2 = {p1, p2}. This implies
that B = {γ1, γ2} is a geodesic bigon. Since dG(p, γ2) = 5k/4 if p is the point in γ1
with dG(p, p1) = 5k/4, we deduce that δ(B) > 5k/4; hence, δ(G) ≥ 5k/4. Therefore, if
diamG = 3k, then δ(G) ≥ 5k/4. This finishes the proof.

Proposition 7.2.9 has the following consequence.

Corollary 7.2.10. Let G be any finite cubic graph which is not isomorphic either to K4 or
to K3,3. Then, δ

(
G
)
= k if and only if diamG = 2k.

Theorem 7.2.11. Given any finite cubic graph G which is not isomorphic to P2 × C3, we
have diamG V (G) ≤ 2k. Furthermore, if G has order n ≥ 8, then diamG V (G) = 2k.

Proof. Let n be the order of G. If n = 4, then G is isomorphic to the complete graph
K4 and 0 = diamG V (G) ≤ 2k. If n = 6, then G is isomorphic either to K3,3 or to P2 ×
C3. If G is isomorphic to K3,3, then G is isomorphic to the union of two graphs C3 and
k = diamG V (G) ≤ 2k; if G is isomorphic to P2 × C3, then G is isomorphic to C6 and
2k < diamG V (G) = 3k.

The complement of any cubic graph G with order n ≥ 8 is an (n− 4)-regular connected
graph. If u, v are two vertices in G, then the number of common neighbors of u and v in G
is at least n− 4+n− 4− (n− 2) = n− 6 > 2. Hence, dG(u, v) ≤ 2k, and diamG V (G) ≤ 2k.

On the other hand, if n ≥ 8, then diamG V (G) > k and we conclude diamG V (G) =
2k.

Theorem 7.2.12. For any finite cubic graph G which is not isomorphic either to K4 or to
K3,3, we have diamG ≥ 5k/2.

Proof. Let n be the order of G. We just consider the case n > 6, since if n = 4, then G
is isomorphic to the complete graph K4. If n = 6, then G is isomorphic to P2 × C3, G is
isomorphic to C6 and diamG = 3k.

Assume now n ≥ 8. Since G is a cubic graph, diamG V (G) ≥ 2k. Therefore, there
is an induced subgraph isomorphic to P3 with vertices u, v and w (in this order); hence,
[u, v], [v, w] ∈ E(G) and [u, w] /∈ E(G). Since [u, v], [v, w] /∈ E(G), we have dG(v, {u, w}) >
2k. Thus, if t is the midpoint of [u, w] ∈ E(G), then dG(v, t) > 5k/2 and we conclude
diamG ≥ 5k/2.
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The following is one of the main results in this chapter; it states that the hyperbolicity
constant of the complement of (almost) every finite cubic graph can take only two values,
either 5k/4 or 3k/2.

Theorem 7.2.13. For any finite cubic graph G which is not isomorphic either to K4 or to
K3,3, we have 5k/4 6 δ

(
G
)
≤ 3k/2.

Proof. Let n be the order of G. We just consider the case n > 6, since if n = 4, then G
is isomorphic to the complete graph K4. If n = 6, then G is isomorphic to P2 × C3, G is
isomorphic to C6 and δ

(
G
)
= 3k/2.

Assume now that n > 8. Proposition 7.2.3 and Lemma 7.2.7 give k 6 δ
(
G
)
≤ 3k/2. By

Theorem 7.2.12 and Corollary 7.2.10 we have δ
(
G
)
6= k. Finally, by Theorem 7.1.18, we

conclude 5k/4 6 δ
(
G
)
≤ 3k/2.

Proposition 7.2.9 and Theorem 7.2.13 have the following consequence, which improves
Proposition 7.2.8.

Corollary 7.2.14. Let G be any (n − 4)-regular graph with order n > 8. Then we have
5k/4 6 δ(G) 6 3k/2.

We have found as well sufficient conditions in order to guarantee that the hyperbolicity
constant is equal to 5k/4 or 3k/2.

Theorem 7.2.15. If G is a finite cubic graph with order n > 4 and it does not contain an
induced subgraph isomorphic to a cycle C4, then diamG = 5k/2 and δ

(
G
)
= 5k/4.

Proof. If n = 6, then G is isomorphic either to K3,3 or to P2 × C3. Note that both graphs
contain an induced subgraph isomorphic to a cycle C4.

If G is a cubic graph with order n ≥ 8, then diamG V (G) = 2k by Theorem 7.2.11, and
diamG 6 diamG V (G) + k = 3k. By Theorem 7.2.12, diamG ≥ 5k/2, and we have either
diamG = 5k/2 or diamG = 3k by Theorem 7.1.18.

Now, we prove diamG = 5k/2. Seeking for a contradiction, assume that diamG = 3k.
Since diamG V (G) = 2k, there exists a closed path in G with vertices u1, u2, u3, u4, u5, u6 (in
this order, i.e., [ui, ui+1] ∈ E(G) for i = 1, . . . , 5 and [u6, u1] ∈ E(G)) with dG(x, y) = 3k,
where x is the midpoint of [u1, u2] and y is the midpoint of [u4, u5] (note that it is possible
to have u3 = u6). Since dG(x, y) = 3k, [u2, u4], [u1, u5], [u1, u4], [u2, u5] /∈ E(G); hence,
[u2, u4], [u1, u5], [u1, u4], [u2, u5] ∈ E(G). Then u1, u4, u2, u5 (in this order) is a cycle in G;
furthermore, it is an induced subgraph, since [u1, u2], [u4, u5] /∈ E(G). This is a contradiction
and we conclude that diamG = 5k/2.

Now, Lemma 7.2.1 gives that δ
(
G
)
6 5k/4. Finally, δ

(
G
)
= 5k/4 by Theorem 7.2.13.

Theorem 7.2.16. Let G be any finite cubic graph. If there exists an induced subgraph C in
G isomorphic to a cycle C6 with diamG C = 3k, then δ

(
G
)
= 3k/2.
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Proof. Let x, y ∈ C with dG(x, y) = 3k; we can choose x and y such that they are either
vertices or midpoints of edges in C. Since L(C) = 6k and diamG C = 3k, there are two
geodesics g1, g2 with g1 ∪ g2 = C and g1 ∩ g2 = {x, y}. Let p be the midpoint of g1.

Assume first that x, y ∈ V (G). Then p is the midpoint of an edge in C and dG(p, g2) >
3k/2. Since L(g1) = 3k, we have dG(p, g2) = 3k/2.

Assume now that x and y are midpoints of edges in C. Hence, p ∈ V (G). If v ∈ V (G)∩g2,
then dG(p, v) > 2k since C is an induced subgraph. Therefore, dG(p, g2) = dG(p, {x, y}) =
3k/2.

Then we have in any case dG(p, g2) = 3k/2. Since B = {g1, g2} is a geodesic bigon in G,
we deduce δ

(
G
)
> δ(B) > dG(p, g2) = 3k/2. Finally, δ

(
G
)
= 3k/2 by Theorem 7.2.13.

Finally, we bound δ(G) + δ
(
G
)
.

Theorem 7.2.17. Let G be any cubic graph with n vertices.

• If n = 4, then δ(G) + δ
(
G
)
= k.

• If n = 6, then δ(G) + δ
(
G
)
∈ {7k/4 , 11k/4}.

• If 8 6 n 6 16, then 9k/4 6 δ(G) + δ
(
G
)
6 (n + 6)k/4.

• If n > 18, then 9k/4 6 δ(G) + δ
(
G
)
6 (3n+ 40)k/16.

Proof. If n = 4, then G is isomorphic to K4, δ(G) = k and δ
(
G
)
= 0. If n = 6, then

G is isomorphic either to K3,3 or P2 × C3. Since K3,3 is isomorphic to the disjoint union
of two cycle graphs C3 and P2 × C3 is an isomorphic graph to C6, we obtain the result
since δ(K3,3) = k, δ

(
K3,3

)
= 3k/4, δ(P2 × C3) = 5k/4 and δ(C6) = 3k/2. If n ≥ 8, then

Lemmas 7.2.2 and 7.1.10 give directly that δ(G) > k; besides, by Theorem 7.2.13 we have

5k/4 6 δ
(
G
)
6 3k/2. Finally, Theorem 7.2.6 gives that δ(G) 6 kmin

{3n
16

+ 1,
n

4

}
.



Conclusions

The main results obtained in this PhD Thesis are the following:

• We introduce the alliance polynomial of a graph and we develop and implement an
algorithm that computes it in an efficient way. We compute the alliance polynomial
for some graphs and we study its coefficients. We investigate the alliance polynomials
of path, cycle, complete and complete bipartite graphs. Also we prove that the path,
cycle, complete and star graphs are characterized by their alliance polynomials.

• We obtain further results about the alliance polynomial of cubic graphs. In particular,
we prove that the family of alliance polynomials of cubic graphs is a very special
one, since it does not contain alliance polynomials of graphs which are not cubic.
Furthermore, we obtain (computationally) the alliance polynomials of cubic graphs
with small order and we prove that they satisfy uniqueness.

• We prove that the family of alliance polynomials of connected ∆-regular graphs with
small degree is a very special one, since it does not contain alliance polynomials of
graphs which are not connected ∆-regular.

• We find some characterizations for the cubic graphs which have small hyperbolicity
constants. Besides, we obtain bounds for the hyperbolicity constant of the complement
graph of a cubic graph; our main result of this kind says that for any finite cubic graph
G which is not isomorphic either to K4 or to K3,3, the inequalities 5k/4 ≤ δ

(
G
)
≤ 3k/2

hold, if k is the length of every edge in G. This is a very precise result, since it implies
that δ

(
G
)
is either 5k/4 or 3k/2.

92



Future work

At the light of the results in this PhD Thesis we asked the following question: can the alliance
polynomials characterize the graphs? (i.e., do non-isomorphic graphs have different alliance
polynomials?). This is an interesting open problem. However, since this is a very ambitions
goal, it is reasonable to ask the question for several classes of graphs (regular graphs, planar
graphs, chordal graphs, bridged graphs, ...).

Another problem is to obtain further properties of alliance polynomials and their co-
efficients. This problem is interesting by itself and, furthermore, it can help to solve the
previous one.

Also, we would like to study the relation between A(G; x) and other graph polynomials.

Another open problem is whether there exist linear recurrence relations for A(G; x) with
respect to elementary edge and vertex operations.

A natural problem is to generalize the results on cubic graphs in Chapter 7 to ∆-regular
graphs (graphs such that the degree of every vertex is ∆), for any fixed integer ∆ ≥ 4.
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[8] Ancona, A., Théorie du potentiel sur les graphes et les variétés. In Ecole d’été de
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[18] Bermudo, S., Rodŕıguez, J. M., Sigarreta, J. M. and Vilaire, J.-M., Gromov hyperbolic
graphs, Discr. Math. 313 (2013), 1575-1585.
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alence of the hyperbolic and quasihyperbolic metrics in Denjoy domains, Bull. London
Math. Soc. 42 (2010), 282-294.

[62] Hästö, P. A., Lindén, H., Portilla, A., Rodŕıguez, J. M. and Touŕıs, E., Gromov hyper-
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