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Question 1

We are interested in developing a model of how deep a ball of mass m and radius r will penetrate
into sand if dropped from some height above the sand. We make the following assumption:

• Sand is like a fluid, flowing freely, and obeying Pascal’s Law for pressure as a function of
depth, with a pressure of 0 on the surface.

• Any buoyant forces of the sand on the ball are negligible.

• The force of gravity on the ball is negligible compared to the primary resistive force.

• The depth d the ball will penetrate is much smaller than the height H from which the ball
was dropped. However, d � r, the radius of the ball.

We then consider the following three possibilities for a frictional resistive force that is

a. proportional to the static pressure of the sand on the ball, F ∝ P , much like kinetic sliding
friction; or

b. proportional to the speed of the ball v as it moves through the sand, F ∝ v, much like a
viscous retarding force; or

c. a hybrid model proportional to the speed of the ball as it moves through the sand but also
proportional to the pressure of the sand on the ball.

For each case, develop a formula to predict the depth d that a ball will sink if it is dropped
from a height H above the surface of the sand. Your answer only needs to indicate the functional
relationship between d and H.

An experiment is performed; that experiment yields the following data points:

H (meters) 0.7 1.4 2.9 4.6 5.8 5.9 6.2
d (meters) 0.27 0.31 0.39 0.44 0.48 0.46 0.47

d. By sketching an appropriate graph determine which model (or models) is most likely.

Solution

The pressure of the sand at depth y will be given by ρgy, with ρ the density of the sand. Positive
y is directed down. The kinetic energy of the ball just before it enters the sand will be given by
mgH; the velocity of the ball just before it enters the sand will be given by v0 =

√
2gH.

a. We assume F = k1P , where k1 is a constant. Then

F = k1ρgy

It is easiest to balance energy. The work done by the sand is then going to be

W =
∫

F dy =
1
2
k1ρgd2

Equating this to the potential energy of the ball, we arrive at

d ∝ H1/2
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b. We assume that F = k2v, where k is a constant. It is now easiest to consider a simple
differential equation for velocity,

m
dv

dt
= −k2v,

where the negative reflects the fact that friction opposes the motion. This expression is easily
integrated;

m dv = −k2dy

so that
v = v0 −

k2

m
y.

The maximum depth is when v = 0, or v0 = k2d/m. Combining with above energy expres-
sions,

d ∝ H1/2

c. In the last case we have
F = −k3ρgyv

which can be written as
m

dv

dt
= −k3ρgyv

or
m

dv

dt
= −k3ρgy

dy

dt
,

an expression that can be easily integrated to yield

mv −mv0 = −k3ρgy2

Maximum depth is when v0 = 0, so

mv0 = k3ρgy2

Combining with the energy relation for height, H, we get

d ∝ H1/4

d. A log-log plot is the best choice.

H d log(H)
0.3 0.04

0.7 0.27 0.27 -0.15 -0.57
1.4 0.33 0.31 0.15 -0.51
2.9 0.39 0.39 0.46 -0.41
4.6 0.44 0.44 0.66 -0.36
5.8 0.47 0.48 0.76 -0.32
5.9 0.47 0.46 0.77 -0.34
6.2 0.47 0.47 0.79 -0.33
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Question 2

A student constructs a simple heat engine that consists of a cylinder and a piston. She designs
a cycle that has four processes: (A) isothermal expansion, (B) adiabatic expansion, (C) isother-
mal compression, and (D) adiabatic compression. The isothermal processes are done in contact
with large heat reservoirs; at temperature TH for the expansion and at temperature TC for the
compression.

Instead of filling the cylinder with an ideal gas, she first evacuates the cylinder, and then adds
a small amount of liquid. Since TC < TH < Tcritical, the critical temperature, some of the liquid
evaporates and fills the cylinder with vapor. At all points in the cycle there is some liquid present;
there is also vapor present, and except for the fact that the vapor can condense into liquid, we shall
assume the vapor is an ideal gas. Finally, the liquid and vapor are always in thermal equilibrium,
but assume that the volume of the liquid is at all times negligible compared to the volume of the
vapor.

a. Sketch a PV diagram for this process.

b. Calculate the efficiency for this cycle, in terms of TH and TC .

c. The condition for thermal equilibrium between the liquid and the vapor is given by
1
nl

(VldP − SldT ) =
1
ng

(VgdP − SgdT )

where the subscript l refers to liquid, and g refers to the vapor state; n is moles, S entropy,
V volume, P pressure, and T temperature. Continuing with the assumption that Vl ≈ 0, and
that the vapor is an ideal gas, derive an expression for

i. dP/dT in terms of the latent heat of vaporization per mole Lv, the volume of the cylinder
V , the temperature T , the number of moles of vapor n, and any relevant fundamental
constants; and

ii. P in terms of T , Lv, any relevant fundamental constants, and a reference pressure and
temperature P0, T0.

Solution

a. The process is shown below. Since the vapor coexists with the liquid, any isothermal line is
also a isobaric line. There is no easy way to determine the exact shape of the adiabatic line.

V

P
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b. No heat is transferred during the adiabats; and the het transfer during the isotherms is given
by Q = T∆S, where T depends on the temperature. But ∆S is the same for the two processes,
since it is a reversible cycle, and therefore

e = 1− QC

QH
= 1− TC

TH

c. Two parts.

i. Rearrange,
dP

dT
=

Sg/ng − Sl/nl

Vg/ng − Vl/nl

We are allowed to assume Vl/nl ≈ 0.
The quantity Sg/ng is a measure of entropy per mole; Sg/ng−Sl/nl is then the measure
of a change in entropy per mole as liquid changes to gas. But this is the same as
∆Q/n/T , where ∆Q/n = Lv is heat per mole of vaporization, and T is temperature of
vaporization. Then

dP

dT
=

Lv

TV/n

where n is ng.

ii. This expression is not hard to integrate, if we let n/V = P/RgT ;

dP

dT
=

Lvn

TV

=
Lv

Rg

P

T 2

dP

P
=

Lv

Rg

dT

T 2

ln
P

P0
=

Lv

Rg

(
1
T0
− 1

T

)
P = P0e

Lv
RgT0 e

− Lv
RgT
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Question 3

A circuit is wired in the shape of a cube. There are twelve circuit elements: three identical
inductances L, three identical capacitances c, three identical resistances R, and three identical
resistanceless wires.

R

L

C

B

A

The time constant of a series circuits containing L and R is measured to be τL. The time
constant of a series circuit containing C and R is measured to be τR.

a. Derive an expression for the impedance of the cube as measured between corners A and B in
terms of L, R, C and an applied sinusoidal potential with an angular frequency ω. You may
use complex number notation.

b. Assuming that ω = 1/
√

τLτR, find the impedance between A and B in terms of τL, τR, and
R.

Solution

a. Start by flattening the circuit! Redrawn, it looks like

A

B

A

B
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Consider a fairly simple circuit element like the one below. We wish to compute the
impedance.

For the parallel section,
1

Z23
=

1
Z2

+
1
Z3

or
Z23 =

Z2Z3

Z2 + Z3
.

Adding this to the series portion gives

Z123 = Z1 +
Z2Z3

Z2 + Z3
=

Z1Z2 + Z1Z3 + Z2Z3

Z2 + Z3

Ever so symmetric and aesthetically pleasing!

There are three of these elements in the full cube, except that we rotate items 1, 2, and 3.
The only thing that changes is the denominator of the above expression, but since the three
elements are in parallel, we add reciprocals, and the final impedance is going to be given by

1
Z

= 2
Z1 + Z2 + Z3

Z1Z2 + Z1Z3 + Z2Z3

Let Z1 = R, Z2 = 1/iωC, and Z3 = iωL, then

Z =
iR(ωL− 1/ωC) + L/C

2(R + i(ωL− 1/ωC))

This is of the form
Z =

R

2
iα + L/RC

R + iα

which has magnitude

|Z| = R

2

√
α2 + (L/RC)2

α2 + R2

b. If ω = 1/
√

τLτC , the good things happen, since

ω =
1√

(L/R)(RC)
=

1√
LC

.

Copyright c©2012 Paul Stanley



7

Then α = 0, or

ωL− 1/ωC = ωL

(
1− 1

ω2LC

)
= 0

and the impedance simplifies to

Z =
L

2RC
=

L

2R2C
R =

1
2

τL

τC
R.
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Question 4

A cannon is effectively a gently tapered cylindrical tube with a cylindrical bore. We can model the
cannon as having an inner radius r, and outer radius R(x) that depends on the distance from the
end of the cannon bore. We choose R(x) to be as small as possible so that the cannon does not
explode from the pressure of internal gases.

We will consider a cannon barrel that has length L � r; and we will write the initial position
of the cannon shot as L0. For x < L0, the outer radius of the cannon is R0. This cannon is made
of a metal with a tensile strength of σ, a measure of the maximum pulling force per unit area that
the metal can support without tearing. The cannonball is made of a metal of density ρ.

R0

L0
x

L

r

R(x)

When the explosive charge is set off, it instantaneously creates n0 moles of an ideal monatomic
gas at a temperature of T0 in the space behind the cannonball. Ignore friction between the can-
nonball and the walls of the cannon and assume that the cannonball moves so quickly out of the
cannon that no heat is exchanged between the expanding gas and the cannon or cannonball. For
convenience, assume the cannon is fired in a vacuum; to avoid confusion, you ought write the ideal
gas constant as Rg.

a. Find an expression for R0 in terms of n0, T0, L0, r, σ, and any relevant fundamental constants.

b. Find an expression for Rx in terms of x, R0, r, L0, and any relevant fundamental constants.

c. Find an expression for the kinetic energy given to the cannonball as a function of n0, T0, L0,
L, and any relevant fundamental constants.

d. A reasonable approximation to the cost of a cannon is to assume that it is proportional to
M = LR2

0. Ignoring tapering, find the maximum kinetic energy that can be given to the
cannonball in terms of n0, T0, σ, M , and any relevant fundamental constants.

Solution

a. From the ideal gas law, we have the pressure behind the cannonball as

P0V0 = n0RgT0
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with the volume V0 = πr2L0. Imagining the cannon as being split in half lengthwise, and
then being glued together with a substance with strength σ. The cross sectional area inside
the bore is 2rL0, so the force from the gases is

F = 2rL0P0

and the force of the “glue” is
F = 2(R0 − r)L0σ.

Equating,

(R0 − r)L0σ = rL0P0 = rL0
n0RgT0

πr2L0

or

R0 = r

(
n0RgT0

πσr2L0
+ 1
)

b. The gas expands adiabatically, so
PV γ = P0V0

γ

In terms of position, we can write

P = P0

(
L0

x

)γ

and substitute this into the expression for R, so that

R(x) = r

(
n0RgT0

πσr2L0

(
L0

x

)γ

+ 1
)

or

R(x) = (R0 − r)
(

L0

x

)γ

+ r

c. The work done for adiabatic expansion is

W =
∫

P dV

which, along the cannon bore, can be written as

W = πr2

∫
P dx

Using the answers from above, we get

W = πr2

∫ L

L0

P0

(
L0

x

)γ

dx,

= πr2P0
1

γ − 1
L0

(
1−

(
L0

x

)γ−1
)

,

=
1

γ − 1
n0RgT0

(
1− β1−γ

)
,

where β = L/L0, the fraction of the total length of the cannon to the original length. γ =
CP /CV = 5/3, and therefore

W =
3
2
n0RgT0

(
1− β−2/3

)
,
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d. Cannon cost is given by M = R02L. W depends only on L via β, so we would want to
maximize L, or minimize R0. The minimum R0 depends on the strength of the material, so
we start with

R0 =
n0RgT0

πσrL0
+ r.

Taking the derivative with respect to the only variable (r) yields

0 =
dR0

dr
= −n0RgT0

πσr2L0
+ 1

with solution

r =
√

n0RgT0

πσL0

and then

R0,min = 2
√

n0RgT0

πσL0

Since M is fixed, we will shrink R0 to make L as large as possible, and then

Lmax =
M

R0
2

=
πσML0

4n0RgT0

Then we have

Wmax =
3
2
n0RgT0

(
1−

(
πσM

4n0RgT0

)−2/3
)

,

Note that U0 = 3
2n0RgT0 is a measure of the energy of the explosion. We could then define

the cannon efficiency by

e = 1−
(

3πσM

8U0

)−2/3

For a “typical” cannon, U0 ≈ 5 MJ (per kilogram of gunpowder). A cannon might be
configured to have M = 2 m3 of bronze, and σ = 200 MPa. As such, we expect a maximum
efficiency of about 95%.
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Question 5

A simple model for nuclear fission is to treat the nucleus as a charged liquid drop that splits in two.
The liquid has a constant density δ, a constant charge density ρ, and a constant surface tension
γ. Originally the drop is spherical with a radius R and charge Q; by adding some energy (in the
form of shape oscillations) the large drop splits into two identical smaller droplets that then move
apart. The first four parts of this question expect exact result; the purpose of the last five parts is
to develop a reasonable approximation to an otherwise very difficult problem.

x

xx x

x

The figure shows the large drop (darker curve that evolves into an ellipsoid) as the effective
center of the two daughter droplets move apart. The daughter droplets can not actually overlap;
the excess fluid must rearrange itself around the outline of the two droplets.

a. Exactly calculate the electrostatic potential self energy of a uniformly charged spherical drop
of charge Q and radius R and any necessary fundamental constants. Call this energy Ue

b. Exactly calculate the electrostatic potential self energy of one of the daughter droplets in
terms of Ue

c. Exactly calculate the surface tension energy of a spherical drop of surface tension γ and radius
R and any necessary fundamental constants. Call this energy Us

d. Exactly calculate the surface tension energy of one of the daughter droplets in terms of Us

e. Sketch an approximate graph of the electrostatic potential energy of the system as a function
of x, the distance between the centers of the two daughter droplets.

For this graph, and the two following graphs, make sure to clearly indicate the
functional form of any relevant straight lines or curves, values of intercepts or
asymptotes, and the distance xs when the two droplets are just touching.

f. Sketch an approximate graph of the surface tension energy of the system as a function of x.

g. Sketch an approximate graph of the total potential energy of the system as a function of x.

h. Estimate a minimum energy of required so that the single drop would split into the two
smaller droplets.

i. Estimate the minimum ratio of Us/Ue so that the drop is stable under spontaneous fission.
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Solution

a. Use Gauss’s law to find the electric field in and around a charged drop, a distance r from the
center of the drop: ∮

~E · d ~A =
Qenc

ε0

Outside the droplet (r > R), the integral is trivial:∮
~E · d ~A =

1
ε0

∫
ρ dV

4πr2E =
1
ε0

4
3
πR3ρ

E =
ρR3

3ε0r2

Inside the droplet (r < R), the integral is only a little more difficult∮
~E · d ~A =

1
ε0

∫
ρ dV

4πr2E =
1
ε0

4
3
πr3ρ

E =
ρr

3ε0

There are several ways to find the self energy. We will use the energy stored in the electric
field, where the energy density is given by

u =
ε0
2

E2

and then integrate over all space. For r > R we have∫
u dV = 2πε0

∫ ∞
R

(
ρR3

3ε0r2

)2

r2 dr,

=
2π

9ε0
ρ2R6

∫ ∞
R

dr

r2
,

=
2π

9ε0
ρ2R5.

For r < R we have ∫
u dV = 2πε0

∫ R

0

(
ρr

3ε0

)2

r2 dr,

=
2π

9ε0
ρ2

∫ R

0
r4 dr,

=
2π

9ε0
ρ2 1

5
R5.

Add the two terms, and

U =
4π

15ε
ρ2R5.
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Writing this in terms of Q = 4
3πR3ρ gives

Ue =
3
5

Q2

4πε0R

It is convenient to write things in terms of

U0 =
Q2

4πε0R

so
Ue =

3
5
U0

b. Since the volume of the daughter droplet is half that of the parent drop, we have Rd =
R/ 3
√

2 ≈ 4R/5 for the radius of the daughter droplet. The charge is also half that of the full
drop, so

Udaughter =
3 3
√

2
20

Q2

4πε0R
=

3 3
√

2
20

U0 ≈
1
5
U0

c. Surface tension energy is given by γA, where A is the surface area. Then

Us = 4πγR2

d. Using the smaller radius of the droplet yields

Udaughter =
4
3
√

4
πγR2 ≈ 5

8
Us

e. As one big drop, x = 0, we use the answer above,

U(x = 0) =
3
5
U0

As two drops infinitely far apart, we double the smaller droplet energy, and

U(x = ∞) ≈ 2
5
U0

In between, we have to consider the electrostatic energy of two droplets. Approximate them
as point charges, and we get

U(x) ≈ (Q/2)2

4πε0x
+

2
5
U0,

or
U(x) ≈ R

x

1
4
U0 +

2
5
U0,

Certainly valid for x >> R, but not so reasonable for x ≈ 2Rd = 2R/ 3
√

2, the distance at
which the droplets would “touch”. Note that, at that distance,

U(2Rd) ≈

(
3
√

2
8

+
2
5

)
U0 ≈

5
9
U0

We will assume that it is a “smooth” transition to x = 0, and always increasing.
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2R
x

U

d

f. For x > 2Rd the two droplets don’t touch, and the energy is

U(x) ≈ 5
4
Us

For one drop, x = 0, and the energy is

U(0) = Us

We assume that the surface energy decrease smoothly (but fairly rapidly) to the minimum
value as x decreases from Rd.

2R
x

U

d

g. Add the potential energies, and

2R
x

U

d
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h. Assume the maximum total potential energy of the system is right when the droplets are
barely touching. Then

Umax ≈
5
4
Us +

5
9
U0

The minimum is one drop, or

Umin ≈ Us +
3
5
U0

The difference is the required energy, or

∆E ≈ 1
4
Us −

2
45

U0 ≈
1
4
Us −

2
27

Ue

i. The system is only stable if ∆E is positive, otherwise it will spontaneously fizz. So

1
4
Us >

2
27

Ue

or
Us

Ue
>

8
27
≈ 1

3
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