Challenges of combinatorial optimization in data science and large-scale complex network models (P18-FR-1422 )

PI1: Justo Puerto Albandoz,
PI2: Antonio Manuel Rodríguez Chía

Abstract: The main outcome of this project will be a new family of algorithms, models, tools, and technologies for optimizing the classification of discriminant systems in data intensive applications paying particular attention to develop flexible models and feature selection in Support Vector Machines. Our proposal is based on a deep analysis from the methodological and modeling point of view of these problems using Mathematical Programming approaches, including Linear Programming (LP), Mixed-Integer Linear Programming (MILP), Nonlinear Programming and Support Vector Machines (SVM). As a first step, the applications will focus on classification healthcare data analysis for medical diagnosis (the allocation of patients to disease classes based on symptoms and lab tests). 

Implied entities: Universidad de Sevilla (Programa Operativo FEDER 2014-2020 y  Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía)

iMAT research line:   RL5. Optimization and mathematical programming          

Researchers:

Stefano Benati 
Víctor Blanco Izquierdo 
Antonia Castaño Martínez 
Inmaculada Espejo Miranda 
Elena Fernández Areizaga 
Lina García García 
Yolanda Hinojosa Bergillos 
Martine Labbé 
José Fernando López Blázquez 
Federico Perea Rojas-Marcos 
Román Salmerón Gómez 
Begoña Salamanca Miño

Working Team:

Baldomero Naranjo, Marta 
Alberto Japón Sáez 
Marina Leal Palazón 
Martínez Merino, Luisa Isabel 
Diego Ponce López 
Miguel Angel Pozo Montaño 
Moisés Rodríguez Madrena