PI1: Justo Puerto Albandoz,
PI2: Antonio Manuel Rodríguez Chía
Abstract: The main outcome of this project will be a new family of algorithms, models, tools, and technologies for optimizing the classification of discriminant systems in data intensive applications paying particular attention to develop flexible models and feature selection in Support Vector Machines. Our proposal is based on a deep analysis from the methodological and modeling point of view of these problems using Mathematical Programming approaches, including Linear Programming (LP), Mixed-Integer Linear Programming (MILP), Nonlinear Programming and Support Vector Machines (SVM). As a first step, the applications will focus on classification healthcare data analysis for medical diagnosis (the allocation of patients to disease classes based on symptoms and lab tests).
Implied entities: Universidad de Sevilla (Programa Operativo FEDER 2014-2020 y Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía)
iMAT research line: ⊕ RL5. Optimization and mathematical programming
Researchers:
Stefano Benati
Víctor Blanco Izquierdo
Antonia Castaño Martínez
Inmaculada Espejo Miranda
Elena Fernández Areizaga
Lina García García
Yolanda Hinojosa Bergillos
Martine Labbé
José Fernando López Blázquez
Federico Perea Rojas-Marcos
Román Salmerón Gómez
Begoña Salamanca Miño
Working Team:
Baldomero Naranjo, Marta
Alberto Japón Sáez
Marina Leal Palazón
Martínez Merino, Luisa Isabel
Diego Ponce López
Miguel Angel Pozo Montaño
Moisés Rodríguez Madrena