Harmonic Analysis and Banach spaces

PI: Carlos Pérez Moreno (del 01/01/2013 al 30/09/2014)

PI2: Luis Rodríguez Piazza (del 01/10/2014 al 31/12/2015) 

Abstract: In this project we propose several lines of research included mainly within the topics of Harmonic and Functional Analysis. More precisely and within the first area, we study problems related with the following topics: singular Integrals and weighted theory (growth of the Ap constants, improvements and variants of the A2 theorem, the Muckenhoupt-Wheeden conjecture, the A1 conjecture, the two-weight problem for Singular Integrals, multilinear Calder\’on-Zygmund theory), Furstenberg-Kakeya’s sets and restriction problems for Fourier transform and lacunary sets in Harmonic Analysis. Within the area of Functional Analysis we study convex Geometry of finitely dimensional norm spaces, operator theory and composition Operators between analytic functions. Furthermore we consider some aspects of Number theory. 

Source of Funding: 2012 National Plan  / MTM2012-30748

Implied entities: Universidad de Sevilla, Universidad de Extremadura, Trinity College, Michigan State Univ., Universidad Nacional del Sur (Argentina), University of Kansas, Barillan Univ., University of Helsinki, Université d’Artois, Université de Lille. 

iMAT research line:   RL10. Mathematical Analysis         

Researchers:

Juan Arias de Reyna
David
Cruz-Uribe
Wendolín Damián
J. Antonio Facenda
Fco. José Freniche
Tuomas Hytönen
C. Hugo Jiménez
Miguel
Lacruz
Pascal Lefèvre
Daniel Li
Teresa Luque
Sheldy Ombrosi
Carmen Ortiz
Hervé Queffelec
Ezequiel Rela
Rodolfo H. Torres
Rafael Villa
Alexander
Volberg